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Unitary matrices

Random (sampled uniformly according to Haar measure) unitary
matrix UN of size N.

Eigenvalues: (u1, . . . , uN) =
(
e iθ1 , . . . , e iθN

)
, (θ1, . . . , θN) ∈ [−π, π]N

Define tth powers of eigenvalues:
(
e itθ1 , . . . , e itθN

)
for t ≥ 0.

Questions: Let ε > 0
1 Compute the probability PN,ε(t) that at time t > 0, all

eigenvalues
(
e itθ1 , . . . , e itθN

)
are located in {e iθ, θ ∈ [−πε, πε]}.

t is called a Strong Return Time (SRT).
2 Define TN,ε the first strong return time:

TN,ε = Min
t>0
{t > 0 is SRT and /∃t0 < t / t0 not STR}

Compute E(TN,ε) and law of TN,ε
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Lonely runner type problem

Particles running along the unit circle ⇒ Periodicity issues

Velocities (θi= initial positions at t = 1) are NOT independent

Times studied are “regroup times” around a specific point (θ = 0)
and not uniform spreading

Real origin of the problem in quantum measurements theory
(Poincaré reccurence time)
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Measure on eigenvalues

Induced Haar measure for eigenvalues:

ZN =

∫
[−π,π]N

dθ1 . . . dθN

(
N∏
i<j

∣∣∣e iθi − e iθj
∣∣∣2)

= (−1)
N(N+1)

2 iN
∫
CN

du1 . . . duN

(
N∏
i<j

|ui − uj |2
)
e
−N

N∑
k=1

ln uk

= (2π)NN!

ZN is a Matrix Integral with interactions |∆(u1, . . . , uN)|2 with
potential V (x) = ln x . Compact closed contour C.

Integral over a union of intervals I (t):

PN,ε(t) =
1

ZN

∫
I (t)N

dθ1 . . . dθN

(
N∏
i<j

∣∣∣e iθi − e iθj
∣∣∣2) def

=
ZN,ε(t)

ZN
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Evolution of angles

∀t ∈ [2k + ε, 2(k + 1)− ε] : I (t) =
k⋃

j=−k

[
2πj − πε

t
,

2πj + πε

t

]

∀t ∈ [2k − ε, 2k + ε] : I (t) =

 k−1⋃
j=−k+1

[
2πj − πε

t
,

2πj + πε

t

] ∪ [2πk − πε
t

, π

]
∪
[
−π,−

2πk − πε
t

]



Introduction Matrix Model approach First Return Time Conclusion Bibliography

Toeplitz determinants

Toeplitz integrals:

1

(2π)NN!

∫
[−π,π]N

 N∏
i<j

|e iθi − e iθj |2
( N∏

i=1

f (e iθi )dθi

)
= det

(
Ti,j (f ) = ti−j

)
1≤i,j≤N

with Fourier coefficients: tk = 1
2π

∫ 2π
0 f (e iθ)e−ikθdθ

Known results when f is continuous (Szegö) or isolated jumps
(Fisher-Hartwig singularities): 1

N ln detTN converges

Known results (Widom) if f supported on a single arc interval
[α, 2π − α] ( 1

N2 ln detTN converges)

Reformulation (efficient for numeric finite N computations):

PN (t ∈ [2R + ε, 2(R + 1)− ε]) = det

[
sin (j−i)(2R+1)π

t
sin (j−i)πε

t

π(j − i) sin (j−i)π
t

]
1≤i,j≤N

PN (t ∈ [2R − ε, 2R + ε]) = det

[
δj−i=0 −

sin 2(j−i)πR
t

sin (1−ε)(j−i)π
t

π(j − i) sin (j−i)π
t

]
1≤i,j≤N
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Trivial case when t > N

Simplification for t > N of the Toeplitz determinants:

∀ t > N : PN(t) ∼
N→∞

εN
(

2

t
b t

2
c
)N

= eNε ln( 2
t b

t
2 c)

New methods required for N > t ⇒ Matrix models techniques
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Expansion at large N

- Eigenvalues condensate to a absolutely continuous measure
ρt(x)dx on the unit circle when N →∞
- Support generically is I (t) ⇒ Support is a union of gt segments
- Stieljes transform of ρt(x) gives the “spectral curve”
General theorem (Borot-Guionnet-Kozlowski):

ZN = NN+ 1
4

(g+1)exp

 ∞∑
k=−1

N−2kF
[2k]
ε?



∑
m≥0

∑
l1,...,lm≥1
k1,...,km≥−1
m∑
i=1

li+2ki>0

N
−

m∑
i=1

li+2ki

m!

(
m⊗
i=1

F
[2ki ],(li )
ε?

li !

)
· ∇
⊗
(

m∑
i=1

li

)
ν


Θ−Nε?

(
0
∣∣F [−2],(2)
ε?

)

g + 1 dimensional vector ε? is the vector of optimal filling
fractions to spread over the various intervals of ρt(x)
First orders:

lnZN = N2F
[−2]
ε? +N lnN+

1

4
(g+1) lnN+F

[0]
ε?+ln

(
Θ−Nε?

(
0
∣∣F [−2],(2)
ε?

))
+O

(
1

N

)
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Energy functional analysis

Previous theorem is only valid under certain restrictions:
1 Decomposition of the interaction:

N∏
i<j

|e iθi − e iθj |2 =

(
N∏
i<j

|θi − θj |2
)
e

1
2

N∑
i,j=1

T (θi ,θj )

with T (x1, x2) bounded on [−π, π]2 and holomorphic on a
neighborhood of [−π, π]2: OK

2 Segments of I (t) are not restricted to a single point ⇒ Apart
isolated times {tk = 2k − ε, k ∈ N∗}: OK

3 Minimum of the energy functional is unique: OK (Fourier
analysis)

4 ρt(x) is non-critical ⇔ behaves like
(√

x − ai
)±1

at endpoints and
strictly positive inside each intervals. OK only for t < 2− ε (1-cut
case) and t ∈ N (additional discrete rotation symmetry)

Numeric simulations indicate non-criticality at all times

Non-criticality often a difficult problem when no symmetry
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One cut case: t ≤ 2− ε

t < ε: all eigenvalues are inside [−πε, πε]: PN,ε(t) = 1

t < 2− ε: I (t) = [−tπ, tπ] ⇒ Special case of Iθ0,θ1 = [θ0π, θ1π]
1 Loop equations technique for matrix integrals ⇒ Spectral curve:

y(x) =
x − α

2x
√

(x − a)(x − b)
, a = e iθ0 , b = e iθ1 , α = −e i

θ0+θ1
2

2 Singular points x ∈ {0, α} outside Iθ0,θ1 ⇒ Non-criticality
3 Expansion of ZN,ε(t) reduces to topological part. Symplectic

invariants F [g ] computed by Topological Recursion:

−F [−2] = − ln

(
sin
|θ1 − θ0|

4

)
−F [0] = −

1

24
ln 2 +

1

24
ln

(
tan
|θ1 − θ0|

4

)
−

1

8
ln

(
sin
|θ1 − θ0|

2

)

−F [2] =
3 cos

(
θ1−θ0

2

)
− 1

128 cos2
(
θ1−θ0

4

)
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Results for t < 2− ε

Final result: ∀ ε < t < 2− ε :

1

N2
lnPN,ε(t)+

1

N2
ln((2π)NN!) =

N→∞
ln
(

sin
πε

2t

)
+

lnN

N
+

1

4

lnN

N2

+
1

24N2
ln

(
2 sin3 πε

t

tan πε
2t

)
+

1

64N4

1− 3 cos
(
πε
t

)
1 + cos(πε

t
)

+ O

(
1

N6

)
Improvement of Widom’s result (blue)

Topological recursion can compute all next orders
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Analysis at integer times

Integer times ⇒ Additional symmetry ⇒ Exact computation of
the spectral curve and optimal filling fractions
Spectral curves at t = 2k + 1 or t = 2k (k ∈ N∗):

y2k+1(x) =

(
x2k+1 + 1

)
2x
√(

x2k+1 − e−iπε
) (

x2k+1 − e iπε
)

y2k (x) =

(
x2k + 1

)
2x
√(

x2k − e−iπε
) (

x2k − e iπε
)
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Results at integer times

Zeros of numerators outside I (t) ⇒ Non-criticality
Symplectic transformation

(X (z),Y (z)) =
(
x2k+1(z), y(z)

(2k+1)x2k (z)

)
gives for t = 2k + 1:{

X (z) = cosπε+ 1
2

sinπε
(
z − 1

z

)
Y (z) = 1+X (z)

(2k+1)X (z)(z+ 1
z ) sinπε

Preserves symplectic invariants F [g ]. (X (z),Y (z)) is a genus 0
curve ⇒ Computation of Topological Recursion is possible

Symmetry ⇒ ε? =
(

1
2k+1 , . . . ,

1
2k+1

)
Similar expressions for t = 2k
Finally, ∀ t ∈ N∗:

1

N2
lnPN,ε(t) +

1

N2
ln((2π)NN!) =

1

t
ln
(

sin
πε

2

)
+

lnN

N
+

t

4

lnN

N2

−
t

24N2

(
2 ln t + ln

(
4 tan

πε

2

))
+ O

(
1

N2

)
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Non Integer times

Determining the spectral curve exactly remains open (Polynomial
numerator of y(x)?)

Non criticality condition remains open

Determining algebraically the filling fractions ε? is known to be very
challenging

Average Block Interaction Approximation (ABIA): Approximate
interactions for eigenvalues in different segments by mean interaction
(i.e. concentration of eigenvalues in the center of the segment)

Define ck(t) center of each segment [ak(t), bk(t)] (1 ≤ k ≤ g(t)):

1

N2
lnPN,ε(t) ≈ 2εkεk′

g(t)∑
k<j

ln |ck (t)−cj (t)|−
g(t)∑
k=1

F [−2](ak (t), bk (t), εk )+O

(
1

N

)
Optimization relatively to ε ⇒ quadratic form computations ⇒
invert an explicit g(t)× g(t) matrix
Integer times ⇒ ε trivial ⇒ Explicit computations:

P ABIA
N,ε (t) =

1

t
ln
(
t sin

πε

2t

)
instead of PN,ε(t) =

1

t
ln
(

sin
πε

2

)
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Summary

Plot of t 7→ 1
N2 lnPN,ε= 1

5
(t). Exact computations for 2 ≤ N ≤ 35 in

colored points. Black curve is ABIA
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First Return Time

For given θi ’s only ti,k = 2πk
|θi | −

ε
2 Sign(θi ) with 1 ≤ i ≤ N and k > 0

are possible First Return Times ⇒ Discrete problem

ti,k are NOT independent ⇒ very hard problem (Hitting time type
problem)

Assuming that TN,ε = ti,k does not provide a tractable domain of
integration I (we need to rule out the lower tj,l ’s as first return
times) ⇒ Spectral curve of very high genus

Topological Recursion should still apply as soon as the spectral
curve is known

The case of i.i.d. θi ’s corresponds to a number theory problem.
Take (Xi )1≤i≤N i.i.d. uniform variables on

[
− 1

2 ,
1
2

]
Look at the first time SN,ε where all tXi ’s have a distance to their
nearest integer less than ε

2 . Known as simultaneous Diophantine
approximation type problem.
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Conjecture

Conjecture

NTN,ε

4ε−(N−1)

Law→
N→∞

Exp(1) and
NSN,ε

4ε−(N−1)

Law→
N→∞

Exp(1)

Histograms of
NTN,ε

4ε−(N−1) (left) and
NSN,ε

4ε−(N−1) (right) for N = 6 and

ε ∈ {0.15, 0.2, 0.25, 0.3} (103 independent samples). Empirical estimation of λ
decreases from 1.021 to 1.002 for TN,ε and increases from 0.96 to 0.91 for SN,ε
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Conclusion

Application of the Topological Recursion in probability for unitary
random matrices

Toeplitz determinants with symbols vanishing on several intervals
rewritten as matrix integrals

Computation of the spectral curve of the matrix integral

Computation of the symplectic invariants by Topological Recursion
⇒ Asymptotics of the Toeplitz determinant at large N
Rightarrow Improvement of Widom’s result.

Method limited by the explicit computation of the spectral curve
(limiting eigenvalues density and filling fractions)

Explicit computations of the spectral curve when only one cut or
when additional symmetries

Good approximation (ABIA) when no symmetry to fall back into the
one cut case

Conjecture for the harder problem of first return time
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