A Lonely Runner Problem, Asymptotics of Toeplitz Determinants and Topological Recursion

Marchal Olivier

Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France

July $5^{\text {th }} 2016$
(1) Introduction

- Presentation of the problem
- Consequences for eigenvalues
- Connection with Toeplitz determinants
(2) Matrix Model approach
- General form of the large N expansion
- Analysis of the one-cut case
- Analysis at integer times
- Average Block Interaction Approximation
(3) First Return Time
- Statement of the problem
- Conjecture

4 Conclusion
(5) Bibliography

Unitary matrices

- Random (sampled uniformly according to Haar measure) unitary matrix U_{N} of size N.
- Eigenvalues: $\left(u_{1}, \ldots, u_{N}\right)=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{N}}\right),\left(\theta_{1}, \ldots, \theta_{N}\right) \in[-\pi, \pi]^{N}$
- Define $t^{\text {th }}$ powers of eigenvalues: $\left(e^{i t \theta_{1}}, \ldots, e^{i t \theta_{N}}\right)$ for $t \geq 0$.
- Questions: Let $\epsilon>0$
(1) Compute the probability $P_{N, \epsilon}(t)$ that at time $t>0$, all eigenvalues $\left(e^{i t \theta_{1}}, \ldots, e^{i t \theta_{N}}\right)$ are located in $\left\{e^{i \theta}, \theta \in[-\pi \epsilon, \pi \epsilon]\right\}$. t is called a Strong Return Time (SRT).
(2) Define $T_{N, \epsilon}$ the first strong return time:

$$
T_{N, \epsilon}=\operatorname{Min}_{t>0}\left\{t>0 \text { is SRT and } / \exists t_{0}<t / t_{0} \text { not STR }\right\}
$$

Compute $\mathbb{E}\left(T_{N, \epsilon}\right)$ and law of $T_{N, \epsilon}$

Lonely runner type problem

- Particles running along the unit circle \Rightarrow Periodicity issues
- Velocities ($\theta_{i}=$ initial positions at $t=1$) are NOT independent
- Times studied are "regroup times" around a specific point $(\theta=0)$ and not uniform spreading
- Real origin of the problem in quantum measurements theory (Poincaré reccurence time)

Measure on eigenvalues

- Induced Haar measure for eigenvalues:

$$
\begin{aligned}
Z_{N} & =\int_{[-\pi, \pi]^{N}} d \theta_{1} \ldots d \theta_{N}\left(\prod_{i<j}^{N}\left|e^{i \theta_{i}}-e^{i \theta_{j}}\right|^{2}\right) \\
& =(-1)^{\frac{N(N+1)}{2}} i^{N} \int_{\mathcal{C}^{N}} d u_{1} \ldots d u_{N}\left(\prod_{i<j}^{N}\left|u_{i}-u_{j}\right|^{2}\right) e^{-N \sum_{k=1}^{N} \ln u_{k}} \\
& =(2 \pi)^{N} N!
\end{aligned}
$$

- Z_{N} is a Matrix Integral with interactions $\left|\Delta\left(u_{1}, \ldots, u_{N}\right)\right|^{2}$ with potential $V(x)=\ln x$. Compact closed contour \mathcal{C}.
- Integral over a union of intervals $I(t)$:

$$
P_{N, \epsilon}(t)=\frac{1}{Z_{N}} \int_{I(t)^{N}} d \theta_{1} \ldots d \theta_{N}\left(\prod_{i<j}^{N}\left|e^{i \theta_{i}}-e^{i \theta_{j}}\right|^{2}\right) \stackrel{\text { def }}{=} \frac{Z_{N, \epsilon}(t)}{Z_{N}}
$$

Evolution of angles

$$
\begin{aligned}
\forall t \in[2 k+\epsilon, 2(k+1)-\epsilon]: I(t)= & \bigcup_{j=-k}^{k}\left[\frac{2 \pi j-\pi \epsilon}{t}, \frac{2 \pi j+\pi \epsilon}{t}\right] \\
\forall t \in[2 k-\epsilon, 2 k+\epsilon]: I(t)= & \left(\bigcup_{j=-k+1}^{k-1}\left[\frac{2 \pi j-\pi \epsilon}{t}, \frac{2 \pi j+\pi \epsilon}{t}\right]\right) \cup\left[\frac{2 \pi k-\pi \epsilon}{t}, \pi\right] \\
& \cup\left[-\pi,-\frac{2 \pi k-\pi \epsilon}{t}\right]
\end{aligned}
$$

Toeplitz determinants

- Toeplitz integrals:

$$
\frac{1}{(2 \pi)^{N} N!} \int_{[-\pi, \pi]^{N}}\left(\prod_{i<j}^{N} \mid e^{i \theta_{i}}-e^{\left.i \theta_{j}\right|^{2}}\right)\left(\prod_{i=1}^{N} f\left(e^{i \theta_{i}}\right) d \theta_{i}\right)=\operatorname{det}\left(T_{i, j}(f)=t_{i-j}\right)_{1 \leq i, j \leq N}
$$

with Fourier coefficients: $t_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i k \theta} d \theta$

- Known results when f is continuous (Szegö) or isolated jumps (Fisher-Hartwig singularities): $\frac{1}{N} \ln \operatorname{det} T_{N}$ converges
- Known results (Widom) if f supported on a single arc interval $[\alpha, 2 \pi-\alpha]\left(\frac{1}{N^{2}} \ln \operatorname{det} T_{N}\right.$ converges)
- Reformulation (efficient for numeric finite N computations):

$$
\begin{aligned}
& P_{N}(t \in[2 R+\epsilon, 2(R+1)-\epsilon])=\operatorname{det}\left[\frac{\sin \frac{(j-i)(2 R+1) \pi}{t} \sin \frac{(j-i) \pi \epsilon}{t}}{\pi(j-i) \sin \frac{(j-i) \pi}{t}}\right]_{1 \leq i, j \leq N} \\
& P_{N}(t \in[2 R-\epsilon, 2 R+\epsilon])=\operatorname{det}\left[\delta_{j-i=0}-\frac{\sin \frac{2(j-i) \pi R}{t} \sin \frac{(1-\epsilon)(j-i) \pi}{t}}{\pi(j-i) \sin \frac{(j-i) \pi}{t}}\right]_{1 \leq i, j \leq N}
\end{aligned}
$$

- Simplification for $t>N$ of the Toeplitz determinants:

$$
\forall t>N: P_{N}(t) \underset{N \rightarrow \infty}{\sim} \epsilon^{N}\left(\frac{2}{t}\left\lfloor\frac{t}{2}\right\rfloor\right)^{N}=e^{\left.N \epsilon \ln \left(\frac{2}{t} t \frac{t}{2}\right\rfloor\right)}
$$

- New methods required for $N>t \Rightarrow$ Matrix models techniques

Expansion at large N

- - Eigenvalues condensate to a absolutely continuous measure $\rho_{t}(x) d x$ on the unit circle when $N \rightarrow \infty$
- Support generically is $I(t) \Rightarrow$ Support is a union of g_{t} segments
- Stieljes transform of $\rho_{t}(x)$ gives the "spectral curve"
- General theorem (Borot-Guionnet-Kozlowski):

$$
\begin{aligned}
& Z_{N}=N^{N+\frac{1}{4}(g+1)} \exp \left(\sum_{k=-1}^{\infty} N^{-2 k} F_{\epsilon^{\star}}^{[2 k]}\right) \\
& \left\{\sum_{\substack{m \geq 0}} \sum_{\substack{c_{1}, \ldots, l_{m} \geq 1 \\
k_{1}, \ldots, k_{m} \geq-1 \\
\sum_{i=1} l_{i}+2 k_{i}>0}} \frac{N^{-\sum_{i=1}^{m} l_{i}+2 k_{i}}}{m!}\left(\bigotimes_{i=1}^{m} \frac{F_{\epsilon^{\star}}^{\left[2 k_{i}\right],\left(i_{i}\right)}}{l_{i}!}\right) \cdot \nabla_{\nu}^{\otimes}\left(\sum_{i=1}^{m} i_{i}\right)\right\} \Theta_{-N \epsilon^{\star}}\left(\mathbf{0} \mid F_{\epsilon^{\star}}^{[-2],(2)}\right)
\end{aligned}
$$

- $g+1$ dimensional vector ϵ^{\star} is the vector of optimal filling fractions to spread over the various intervals of $\rho_{t}(x)$
- First orders:
$\ln Z_{N}=N^{2} F_{\epsilon^{\star}}^{[-2]}+N \ln N+\frac{1}{4}(g+1) \ln N+F_{\epsilon^{\star}}^{[0]}+\ln \left(\Theta_{-N \epsilon^{\star}}\left(0 \mid F_{\epsilon^{\star}}^{[-2],(2)}\right)\right)+O\left(\frac{1}{N}\right)$

Energy functional analysis

- Previous theorem is only valid under certain restrictions:
(1) Decomposition of the interaction:

$$
\prod_{i<j}^{N}\left|e^{i \theta_{i}}-e^{i \theta_{j}}\right|^{2}=\left(\prod_{i<j}^{N}\left|\theta_{i}-\theta_{j}\right|^{2}\right) e^{\frac{1}{2} \sum_{i, j=1}^{N} T\left(\theta_{i}, \theta_{j}\right)}
$$

with $T\left(x_{1}, x_{2}\right)$ bounded on $[-\pi, \pi]^{2}$ and holomorphic on a neighborhood of $[-\pi, \pi]^{2}$: OK
(2) Segments of $I(t)$ are not restricted to a single point \Rightarrow Apart isolated times $\left\{t_{k}=2 k-\epsilon, k \in \mathbb{N}^{*}\right\}$: OK
(3) Minimum of the energy functional is unique: OK (Fourier analysis)
(9) $\rho_{t}(x)$ is non-critical \Leftrightarrow behaves like $\left(\sqrt{x-a_{i}}\right)^{ \pm 1}$ at endpoints and strictly positive inside each intervals. OK only for $t<2-\epsilon$ (1-cut case) and $t \in \mathbb{N}$ (additional discrete rotation symmetry)

- Numeric simulations indicate non-criticality at all times
- Non-criticality often a difficult problem when no symmetry

One cut case: $t \leq 2-\epsilon$

- $t<\epsilon$: all eigenvalues are inside $[-\pi \epsilon, \pi \epsilon]$: $P_{N, \epsilon}(t)=1$
- $t<2-\epsilon: I(t)=[-t \pi, t \pi] \Rightarrow$ Special case of $I_{\theta_{0}, \theta_{1}}=\left[\theta_{0} \pi, \theta_{1} \pi\right]$
(1) Loop equations technique for matrix integrals \Rightarrow Spectral curve:

$$
y(x)=\frac{x-\alpha}{2 x \sqrt{(x-a)(x-b)}}, a=e^{i \theta_{0}}, b=e^{i \theta_{1}}, \alpha=-e^{i \frac{\theta_{0}+\theta_{1}}{2}}
$$

(2) Singular points $x \in\{0, \alpha\}$ outside $\boldsymbol{I}_{\theta_{0}, \theta_{1}} \Rightarrow$ Non-criticality
(3) Expansion of $Z_{N, \epsilon}(t)$ reduces to topological part. Symplectic invariants $F^{[g]}$ computed by Topological Recursion:

$$
\begin{aligned}
-F^{[-2]} & =-\ln \left(\sin \frac{\left|\theta_{1}-\theta_{0}\right|}{4}\right) \\
-F^{[0]} & =-\frac{1}{24} \ln 2+\frac{1}{24} \ln \left(\tan \frac{\left|\theta_{1}-\theta_{0}\right|}{4}\right)-\frac{1}{8} \ln \left(\sin \frac{\left|\theta_{1}-\theta_{0}\right|}{2}\right) \\
-F^{[2]} & =\frac{3 \cos \left(\frac{\theta_{1}-\theta_{0}}{2}\right)-1}{128 \cos ^{2}\left(\frac{\theta_{1}-\theta_{0}}{4}\right)}
\end{aligned}
$$

Results for $t<2-\epsilon$

- Final result: $\forall \epsilon<t<2-\epsilon$:

$$
\begin{aligned}
& \frac{1}{N^{2}} \ln P_{N, \epsilon}(t)+\frac{1}{N^{2}} \ln \left((2 \pi)^{N} N!\right) \underset{N \rightarrow \infty}{=} \ln \left(\sin \frac{\pi \epsilon}{2 t}\right)+\frac{\ln N}{N}+\frac{1}{4} \frac{\ln N}{N^{2}} \\
& +\frac{1}{24 N^{2}} \ln \left(\frac{2 \sin ^{3} \frac{\pi \epsilon}{t}}{\tan \frac{\pi \epsilon}{2 t}}\right)+\frac{1}{64 N^{4}} \frac{1-3 \cos \left(\frac{\pi \epsilon}{t}\right)}{1+\cos \left(\frac{\pi \epsilon}{t}\right)}+O\left(\frac{1}{N^{6}}\right)
\end{aligned}
$$

- Improvement of Widom's result (blue)
- Topological recursion can compute all next orders

Analysis at integer times

- Integer times \Rightarrow Additional symmetry \Rightarrow Exact computation of the spectral curve and optimal filling fractions
- Spectral curves at $t=2 k+1$ or $t=2 k\left(k \in \mathbb{N}^{*}\right)$:

$$
\begin{aligned}
y_{2 k+1}(x) & =\frac{\left(x^{2 k+1}+1\right)}{2 x \sqrt{\left(x^{2 k+1}-e^{-i \pi \epsilon}\right)\left(x^{2 k+1}-e^{i \pi \epsilon}\right)}} \\
y_{2 k}(x) & =\frac{\left(x^{2 k}+1\right)}{2 x \sqrt{\left(x^{2 k}-e^{-i \pi \epsilon}\right)\left(x^{2 k}-e^{i \pi \epsilon}\right)}}
\end{aligned}
$$

Results at integer times

- Zeros of numerators outside $I(t) \Rightarrow$ Non-criticality
- Symplectic transformation

$$
\begin{aligned}
(X(z), Y(z))= & \left(x^{2 k+1}(z), \frac{y(z)}{(2 k+1) x^{2 k}(z)}\right) \text { gives for } t=2 k+1 \text { : } \\
& \left\{\begin{aligned}
& X(z)=\cos \pi \epsilon+\frac{1}{2} \sin \pi \epsilon\left(z-\frac{1}{z}\right) \\
& Y(z)=\frac{1+X(z)}{(2 k+1) X(z)\left(z+\frac{1}{2}\right) \sin \pi \epsilon}
\end{aligned}\right.
\end{aligned}
$$

- Preserves symplectic invariants $F^{[g]} .(X(z), Y(z))$ is a genus 0 curve \Rightarrow Computation of Topological Recursion is possible
- Symmetry $\Rightarrow \epsilon^{\star}=\left(\frac{1}{2 k+1}, \ldots, \frac{1}{2 k+1}\right)$
- Similar expressions for $t=2 k$
- Finally, $\forall t \in \mathbb{N}^{*}$:

$$
\begin{aligned}
& \frac{1}{N^{2}} \ln P_{N, \epsilon}(t)+\frac{1}{N^{2}} \ln \left((2 \pi)^{N} N!\right)=\frac{1}{t} \ln \left(\sin \frac{\pi \epsilon}{2}\right)+\frac{\ln N}{N}+\frac{t}{4} \frac{\ln N}{N^{2}} \\
& -\frac{t}{24 N^{2}}\left(2 \ln t+\ln \left(4 \tan \frac{\pi \epsilon}{2}\right)\right)+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

Non Integer times

- Determining the spectral curve exactly remains open (Polynomial numerator of $y(x)$?)
- Non criticality condition remains open
- Determining algebraically the filling fractions ϵ^{\star} is known to be very challenging
- Average Block Interaction Approximation (ABIA): Approximate interactions for eigenvalues in different segments by mean interaction (i.e. concentration of eigenvalues in the center of the segment)
- Define $c_{k}(t)$ center of each segment $\left[a_{k}(t), b_{k}(t)\right](1 \leq k \leq g(t))$:

$$
\frac{1}{N^{2}} \ln P_{N, \epsilon}(t) \approx 2 \epsilon_{k} \epsilon_{k^{\prime}} \sum_{k<j}^{g(t)} \ln \left|c_{k}(t)-c_{j}(t)\right|-\sum_{k=1}^{g(t)} F^{[-2]}\left(a_{k}(t), b_{k}(t), \epsilon_{k}\right)+O\left(\frac{1}{N}\right)
$$

- Optimization relatively to $\epsilon \Rightarrow$ quadratic form computations \Rightarrow invert an explicit $g(t) \times g(t)$ matrix
- Integer times $\Rightarrow \boldsymbol{\epsilon}$ trivial \Rightarrow Explicit computations:

$$
P_{N, \epsilon}^{\mathrm{ABIA}}(t)=\frac{1}{t} \ln \left(t \sin \frac{\pi \epsilon}{2 t}\right) \text { instead of } P_{N, \epsilon}(t)=\frac{1}{t} \ln \left(\sin \frac{\pi \epsilon}{2}\right)
$$

Summary

Plot of $t \mapsto \frac{1}{N^{2}} \ln P_{N, \epsilon=\frac{1}{5}}(t)$. Exact computations for $2 \leq N \leq 35$ in colored points. Black curve is ABIA

First Return Time

- For given θ_{i} 's only $t_{i, k}=\frac{2 \pi k}{\left|\theta_{i}\right|}-\frac{\epsilon}{2} \operatorname{Sign}\left(\theta_{i}\right)$ with $1 \leq i \leq N$ and $k>0$ are possible First Return Times \Rightarrow Discrete problem
- $t_{i, k}$ are NOT independent \Rightarrow very hard problem (Hitting time type problem)
- Assuming that $T_{N, \epsilon}=t_{i, k}$ does not provide a tractable domain of integration I (we need to rule out the lower $t_{j, \text {, }}$'s as first return times) \Rightarrow Spectral curve of very high genus
- Topological Recursion should still apply as soon as the spectral curve is known
- The case of i.i.d. θ_{i} 's corresponds to a number theory problem. Take $\left(X_{i}\right)_{1 \leq i \leq N}$ i.i.d. uniform variables on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ Look at the first time $S_{N, \epsilon}$ where all $t X_{i}$'s have a distance to their nearest integer less than $\frac{\epsilon}{2}$. Known as simultaneous Diophantine approximation type problem.

Conjecture

Conjecture

$$
\frac{N T_{N, \epsilon}}{4 \epsilon^{-(N-1)}} \stackrel{\operatorname{Lan}}{N \rightarrow \infty} \boldsymbol{E} \times p(1) \text { and } \frac{N S_{N, \epsilon}}{4 \epsilon^{-(N-1)}} \xrightarrow[N \rightarrow \infty]{\text { Law }} \mathcal{E} \times p(1)
$$

Histograms of $\frac{N T_{N, \epsilon}}{4 \epsilon^{-(N-1)}}$ (left) and $\frac{N S_{N, \epsilon}}{4 \epsilon^{-(N-1)}}$ (right) for $N=6$ and $\epsilon \in\{0.15,0.2,0.25,0.3\}$ (10^{3} independent samples). Empirical estimation of λ decreases from 1.021 to 1.002 for $T_{N, \epsilon}$ and increases from 0.96 to 0.91 for $S_{N, \epsilon}$

Conclusion

- Application of the Topological Recursion in probability for unitary random matrices
- Toeplitz determinants with symbols vanishing on several intervals rewritten as matrix integrals
- Computation of the spectral curve of the matrix integral
- Computation of the symplectic invariants by Topological Recursion \Rightarrow Asymptotics of the Toeplitz determinant at large N Rightarrow Improvement of Widom's result.
- Method limited by the explicit computation of the spectral curve (limiting eigenvalues density and filling fractions)
- Explicit computations of the spectral curve when only one cut or when additional symmetries
- Good approximation (ABIA) when no symmetry to fall back into the one cut case
- Conjecture for the harder problem of first return time

Bibliography

O. Marchal, "Matrix models, Toeplitz determinants and recurrence times for powers of random unitary matrices", RMTA, 2015
A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, "Understanding quantum measurement from the solution of dynamical models", Physics Reports, 2013
G. Szegö, "On certain Hermitian forms associated with the Fourier series of a positive function", Comm. Sem. Math. Univ. Lund, 1952
H. Widom, "Strong Szegö limit theorem on circular arcs", Indiana Univ. Math. Journ., 1971
G. Borot, A. Guionnet, K.K. Kozlowski, "Large-N asymptotic expansion for mean field models with Coulomb gas interaction", Intern. Math. Research Notices, 2015
B. Eynard, N. Orantin, "Invariants of algebraic curves and topological expansion", Comm. in Number Theory and Physics, 2007

