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The effect of measurement errors in discriminant analysis is investigated. Given observations Z = X + ε,
where ε denotes a random noise, the goal is to predict the density of X among two possible candidates
f and g. We suppose that we have at our disposal two learning samples. The aim is to approach the best
possible decision rule G� defined as a minimizer of the Bayes risk.

In the free-noise case (ε = 0), minimax fast rates of convergence are well-known under the margin as-
sumption in discriminant analysis (see (Ann. Statist. 27 (1999) 1808–1829)) or in the more general classifi-
cation framework (see (Ann. Statist. 35 (2002) 608–633, Ann. Statist. 32 (2004) 135–166)). In this paper, we
intend to establish similar results in the noisy case, that is, when dealing with errors in variables. We prove
minimax lower bounds for this problem and explain how can these rates be attained, using in particular an
Empirical Risk Minimizer (ERM) method based on deconvolution kernel estimators.
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1. Introduction

In the problem of discriminant analysis, we usually observe two i.i.d. samples X
(1)
1 , . . . ,X

(1)
n

and X
(2)
1 , . . . ,X

(2)
m . Each observation X

(i)
j ∈ R

d is assumed to admit a density with respect to a

σ -finite measure Q, dominated by the Lebesgue measure. This density will be denoted by f if
the observation belongs to the first set (i.e., when i = 1) or g in the other case. Our aim is to infer
the density of a new incoming observation X. This problem can be considered as a particular
case of the more general and extensively studied binary classification problem (see [13] for a
detailed introduction or [7] for a concise survey).

In this framework, a decision rule or classifier can be identified with a set G ⊂ R
d , which

attributes X to f if X ∈ G and to g otherwise. Then, we can associate to each classifier G its
corresponding Bayes risk RK(G) defined as:

RK(G) = 1

2

[∫
K/G

f (x)dQ(x) +
∫

G

g(x)dQ(x)

]
, (1.1)
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where we restrict the problem to a compact set K ⊂ R
d . The minimizer of the Bayes risk (the

best possible classifier for this criterion) is given by:

G�
K = {

x ∈ K :f (x) ≥ g(x)
}
, (1.2)

where the infimum is taken over all subsets of K . The Bayes classifier is obviously unknown
since it explicitly depends on the couple (f, g). The goal is thus to estimate G�

K thanks to a
classifier Ĝn,m based on the two learning samples.

The risk minimizer (1.2) has attracted many attentions in the last two decades because it in-
volves a quantity of applied motivating examples, including pattern recognition, spam filtering,
or medical diagnostic. However, in many real-world problems, direct observations are not avail-
able and measurement errors occur. As a result, it could be interesting to take into account this
problem into the classification task. In this paper, we propose to estimate the Bayes classifier G�

K
defined in (1.2) thanks to noisy samples. For all i ∈ {1,2}, we assume that we observe:

Z
(i)
j = X

(i)
j + ε

(i)
j , j = 1, . . . , ni, (1.3)

instead of the X
(i)
j , where in the sequel n1 = n and n2 = m. The ε

(i)
j denotes i.i.d. ran-

dom variables expressing measurement errors. We will see in this work that we are facing
an inverse problem, and more precisely a deconvolution problem. Indeed, assume that for all
x ∈ R

d , dQ(x) = μ(x)dx for some bounded function μ. If ε admits a density η with respect
to the Lebesgue measure, then the corresponding density of the Z

(i)
j is the convolution product

(f · μ) ∗ η if i = 1 or (g · μ) ∗ η if i = 2. This property gives rise to a deconvolution step in the
estimation procedure. Deconvolution problems arise in many fields where data are obtained with
measurement errors and are at the core of several nonparametric statistical studies. For a general
review of the possible methodologies associated to these problems, we may mention for instance
[28]. More specifically, we refer to [15] in density estimation, [9] for nonparametric prediction
or [8] where goodness-of-fit tests are constructed in the presence of noise. The main key of all
these studies is to construct a deconvolution kernel which may allow to annihilate the noise ε.
More details on the construction of such objects are provided in Section 3. It is important to
note that in this discriminant analysis setup, or more generally in classification, there is up to our
knowledge no such a work. The aim of this article is to describe minimax rates of convergence
in noisy discriminant analysis under the Margin assumption.

In the free-noise case, that is, when ε = 0, [26] has attracted the attention on minimax fast rates
of convergence (i.e., faster than n−1/2). In particular, they propose a classifier Ĝn,m satisfying

sup
G�

K∈G(α,ρ)

E
[
RK(Ĝn,m) − RK

(
G�

K

)] ≤ C(n ∧ m)−(α+1)/(2+α+ρα), (1.4)

for some positive constant C. Here, G(α,ρ) denotes a nonparametric set of candidates G�
K with

complexity ρ > 0 and margin parameter α ≥ 0 (see Section 2.1 for a precise definition). In (1.4),
the complexity parameter ρ > 0 is related to the notion of entropy with bracketing whereas the
margin is used to relate the variance to the expectation. It allows [26] to get improved bounds
using the so-called peeling technique of [32]. This result is at the origin of a recent and vast litera-
ture on fast rates of convergence in classification (see, for instance, [2,27]) or in general statistical
learning (see [20]). In these papers, the complexity assumption can be of two forms: a geometric
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assumption over the class of candidates G�
K (such as finite VC dimension, or boundary frag-

ments) or assumptions on the regularity of the regression function of classification (plug-in type
assumptions). In [27], minimax fast rates are stated for finite VC classes of candidates whereas
plug-in type assumptions have been studied in the binary classification model in [2] (see also
[13,35]). More generally, [20] proposes to consider ρ > 0 as a complexity parameter in local
Rademacher complexities. It gives general upper bounds generalizing (1.4) and the results of
[26] and [2]. In the present work, a plug-in type complexity assumption will be considered.

In all these results, empirical risk minimizers appear as good candidates to reach these fast
rates of convergence. Indeed, given a class of candidates G, a natural way to estimate G�

K is
to consider an Empirical Risk Minimization (ERM) approach. In standard discriminant analysis
(e.g., in the free-noise case considered in [26]), the risk RK(G) in (1.2) can be estimated by:

Rn,m(G) = 1

2n

n∑
j=1

1{X(1)
j ∈K/G} + 1

2m

m∑
j=1

1{X(2)
j ∈G}. (1.5)

It leads to an empirical risk minimizer Ĝn,m, if it exists, defined as:

Ĝn,m = arg min
G∈G

Rn,m(G). (1.6)

Unfortunately, in the errors-in-variables model, since we observe noisy samples Z = X + ε,
the probability densities of the observed variables w.r.t. the Lebesgue measure are respectively
convolution (f ·μ)∗η and (g ·μ)∗η, where, for instance, f ·μ(x) = f (x)×μ(x) for all x ∈ R

d .
As a result, classical ERM principle fails since:

1

2n

n∑
i=1

1{Z(1)
i ∈K/G} + 1

2m

m∑
i=1

1{Z(2)
i ∈G}

a.s.−−−−→
n,m→∞

1

2

[∫
K/G

(f · μ) ∗ η(x)dx +
∫

G

(g · μ) ∗ η(x)dx

]

= RK(G).

As a consequence, we add a deconvolution step in the classical ERM procedure and study the
solution of the minimization:

min
G∈G

Rλ
n,m(G),

where Rλ
n,m(G) is an asymptotically unbiased estimator of RK(G). This empirical risk uses

kernel deconvolution estimators with smoothing parameter λ. It is called deconvolution empirical
risk and will be of the form:

Rλ
n,m(G) = 1

2n

n∑
j=1

hK/G,λ

(
Z

(1)
j

) + 1

2m

m∑
j=1

hG,λ

(
Z

(2)
j

)
, (1.7)

where the hG,λ(·) are deconvoluted versions of indicator functions used in classical ERM for
direct observations (see Section 3 for details).

In this contribution, we would like to describe as precisely as possible the influence of the
error ε on the classification rates of convergence and the presence of fast rates. Our aim is to use
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the asymptotic theory of empirical processes in the spirit of [32] (see also [33]) when dealing
with the deconvolution empirical risk (1.7). To this end, we study in details the complexity of the
class of functions {hG,λ,G ∈ G}, given the explicit form of functions hG,λ. This complexity is
related to the imposed complexity over G.

We establish lower and upper bounds and discuss the performances of this deconvolution ERM
estimator under a plug-in complexity assumption. As mentioned earlier, different complexity as-
sumptions have been developed in the last decades. The boundary fragment regularity, considered
by, e.g., [21,26] is the core of a future work.

We point out that the definition of the empirical risk (1.7) leads to a new and interesting theory
of risk bounds detailed in Section 3 for discriminant analysis. In particular, parameter λ has to be
calibrated to reach a bias/variance trade-off in the decomposition of the excess risk. Related ideas
have been recently introduced in [19] in the Gaussian white noise model and density estimation
setting for more general linear inverse problems using singular values decomposition. In our
framework, up to our knowledge, the only minimax result is [17] which gives minimax rates
in Hausdorff distance for manifold estimation in the presence of noisy variables. [11] gives also
consistency and limiting distribution for estimators of boundaries in deconvolution problems, but
no minimax results are proposed. In the free-error case, we can also apply this methodology. In
this case, the empirical risk is given by the estimation of f and g using simple kernel density
estimators. This idea has been already mentioned in [34] in the general learning context and
called Vicinal Risk Minimization (see also [10]). However, even in pattern recognition and in the
direct case, up to our knowledge, there is no asymptotic rates of convergence for this empirical
minimization principle.

In this contribution, a classifier G is always identified with a subset of R
d . Our aim is to

mimic the set G�
K from the noisy observations (1.3). In particular, we aim at understanding the

relationship between the spatial position of an input X ∈ R
d and its affiliation to one of the

candidate densities. For this purpose, we give a deconvolution strategy to minimize the excess
risk (1.1). This problematic falls into the general problem of prediction with measurement errors
(see [9]). This is the classification counterpart of the more extensively studied model of regression
with errors-in-variables (see [16] or more recently [28]). It is important to note that one could
alternatively try to provide the best classifier for a noisy input Z. In this case, we are faced to a
direct problem which is in some sense already treated in [26]. However, it could be interesting to
compare the performances of the two different approaches.

At this step, remark that similar problems have been considered in the test theory. Indeed, if
we deal with a new incoming (noise free) observation X having density fX , our aim is exactly to
test one of the following ‘inverse’ hypotheses:

HIP
0 :fX = f, against HIP

1 :fX = g. (1.8)

However, we do not set any kind of order (null and alternative) between H0 and H1. The risk
RK(G) is then related to the sum of the first and second kind error. Alternatively, if we deal with
a noisy input Z having density (fX · μ) ∗ η, this would correspond to test:

HDP
0 : (fX · μ) ∗ η = (f · μ) ∗ η, against HDP

1 : (fX · μ) ∗ η = (g · μ) ∗ η. (1.9)
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A natural question then arises: are the both problems (1.8) and (1.9) equivalent or comparable?
This question has already been addressed in [22] or [23] in a slightly different setting. This could
be the core of a future work, but it requires the preliminary study provided in these papers.

Finally, for practical motivation, we can refer to the monograph of Meister [28] for particular
models with measurement errors, such as in medicine, econometry or astronomy. In the specific
context of classification, we met two explicit examples. The first one is an example in oncology
where we try to classify the evolution of cancer thanks to medical images (like MRI or X-ray).
These images are noisy due to the data collection process or the interpretation of the practitioner.
The second example comes from meteorology where the weather forecaster wants to predict the
future raining day thanks to measures such as rain gauge or barometer (which have well-studied
random errors).

The paper is organized as follows. In Section 2, the model assumptions are explicited and
an associated lower bound is stated. This lower bound generalizes to the indirect case the well-
known lower bound of [2] established in classification. Deconvolution ERM attaining these rates
are presented in Section 3. We also consider in this section standard kernel estimators, which
allow to construct a new minimax optimal procedure in the direct case. A brief discussion and
some perspectives are gathered in Section 4 while Section 5 is dedicated to the proofs of the main
results.

2. Lower bound

2.1. Model setting

In this section, we detail some common assumptions (complexity and margin) on the pair (f, g).
We then propose a lower bound on the corresponding minimax rates.

First of all, given a set G ⊂ K , simple algebra indicates that the excess risk RK(G)−RK(G�
K)

can be written as:

RK(G) − RK

(
G�

K

) = 1
2df,g

(
G,G�

K

)
,

where the pseudo-distance df,g over subsets of K ⊂R
d is defined as:

df,g(G1,G2) =
∫

G1	G2

|f − g|dQ,

and G1	G2 = [Gc
1 ∩G2] ∪ [Gc

2 ∩G1] is the symmetric difference between two sets G1 and G2.
In this context, there is another natural way of measuring the accuracy of a decision rule G

through the quantity:

d	

(
G,G�

K

) =
∫

G	G�
K

dQ,

where d	 defines also a pseudo-distance on the subsets of K ⊂R
d .
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In this paper, we are interested in the minimax rates associated to these pseudo-distances. In
other words, given a class F , one would like to quantify as precisely as possible the correspond-
ing minimax risks defined as

inf
Ĝn,m

sup
(f,g)∈F

Ef,gd�
(
Ĝn,m,G�

K

)
,

where the infimum is taken over all possible estimators of G�
K and d� stands for df,g or d	

following the context. In particular, we will exhibit classification rules Ĝn,m attaining these rates.
In order to obtain a satisfying study of the minimax rates mentioned above, one needs to detail
the considered classes F . Such a class expresses some conditions on the pair (f, g). They are
often separated into two categories: margin and complexity assumptions.

A first condition is the well-known Margin assumption. It has been introduced in discriminant
analysis (see [26]) as follows.

Margin assumption. There exists positive constants t0, c2, α ≥ 0 such that for 0 < t < t0:

Q
{
x ∈ K :

∣∣f (x) − g(x)
∣∣ ≤ t

} ≤ c2t
α. (2.1)

This assumption is related to the behavior of |f − g| at the boundary of G�
K . It may give a

variety of minimax fast rates of convergence which depends on the margin parameter α. A large
margin corresponds to configurations where the slope of |f − g| is high at the boundary of G�

K .
The most favorable case arises when the margin α = +∞. In such a situation, f − g has a
discontinuity at the boundary of G�

K .
From a practical point of view, this assumption provides a precise description of the interaction

between the pseudo distance df,g and d	. In particular, it allows a control of the variance of the
empirical processes involved in the upper bounds, thanks to Lemma 2 in [26]. More general
assumptions of this type can be formulated (see, for instance, [5] or [20]) in a more general
statistical learning context.

For the sake of convenience, we will require in the following an additional assumption on the
noise ε. We assume in the sequel that ε = (ε1, . . . , εd)′ admits a bounded density η with respect
to the Lebesgue measure satisfying:

η(x) =
d∏

i=1

ηi(xi) ∀x ∈R
d . (2.2)

In other words, the entries of the vector ε are independent. The assumption below describes the
difficulty of the considered problems. It is often called the ordinary smooth case in the inverse
problem literature.

Noise assumption. There exist (β1, . . . , βd)′ ∈R
d+ and C1,C2,C3 positive constants such that for

all i ∈ {1, . . . , d}, βi > 1/2,

C1|t |−βi ≤ ∣∣F[ηi](t)
∣∣ ≤ C2|t |−βi , and

∣∣∣∣ d

dt
F[ηi](t)

∣∣∣∣ ≤ C3|t |−βi as |t | → +∞,
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where F[ηi] denotes the Fourier transform of ηi . Moreover, we assume that F [ηi](t) 
= 0 for all
t ∈ R and i ∈ {1, . . . , d}.

Classical results in deconvolution (see, e.g., [15,16] or [8] among others) are stated for d = 1.
Two different settings are then distinguished concerning the difficulty of the problem which is
expressed through the shape of F [η]. One can consider alternatively the case where C1|t |−β ≤
|F [η](t)| ≤ C2|t |−β as |t | → +∞, which yet corresponds to mildly ill-posed inverse problem
or C1e−γ |t |β ≤ |F[η](t)| ≤ C2e−γ |t |β , γ > 0 as |t | → +∞ which leads to a severely ill-posed
inverse problem. This last setting corresponds to a particularly difficult problem and is often
associated to low minimax rates of convergence.

In this contribution, we only deal with d-dimensional mildly ill-posed deconvolution prob-
lems. For the sake of brevity, we do not consider severely ill-posed inverse problems or possible
intermediates (e.g., a combination of polynomial and exponential decreasing functions). Never-
theless, the rates in these cases could be obtained through the same steps.

The Margin assumption is ‘structural’ in the sense that it describes the difficulty to distinguish
an observation having density f from an other with density g. In order to provide a complete
study, one also needs to set an assumption on the difficulty to find G�

K in a possible set of can-
didates, namely a complexity assumption. In the classification framework, two different kinds of
complexity assumptions are often introduced in the literature. The first kind concerns the reg-
ularity of the boundary of the Bayes classifier. Indeed, our aim is to estimate G�

K , which yet
corresponds to a nonparametric set estimation problem. In this context, it seems natural to tra-
duce the difficulty of the learning process by condition on the shape of G�

K . Another way to
describe the complexity of the problem is to impose condition on the regularity of the underlying
densities f and g. Such kind of condition is originally related to plug-in approaches and will be
the investigated framework. Remark that these two assumptions are quite different and are con-
venient for distinct problems. In particular, a set G�

K with a smooth boundary is not necessarily
associated to smooth densities, and vice-versa.

In the rest of this section, lower bounds for the associated minimax rates of convergence are
stated in the noisy setting. Corresponding upper bounds are presented and discussed in Section 3.

2.2. Lower bound for the Plug-in assumption

The Plug-in assumption considered in this paper is related to the regularity of the function f −g,
expressed in terms of Hölder spaces. It corresponds to the same kind of assumption as in [2] for
classification.

Given γ,L > 0, �(γ,L) is the class of isotropic Hölder continuous functions ν having con-
tinuous partial derivatives up to order �γ �, the maximal integer strictly less than γ and such
that: ∣∣ν(y) − pν,x(y)

∣∣ ≤ L‖x − y‖γ , ∀x, y ∈R
d,

where pν,x is the Taylor polynomial of ν at order �γ � at point x and ‖ · ‖ stands for the Euclidean
norm on R

d .

Plug-in assumption. There exist positive constants γ and L such that f − g ∈ �(γ,L).
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We then call Fplug(Q) the set of all pairs (f, g) satisfying both the Margin (with respect to Q)
and the Plug-in assumptions, since the previous assumption is often associated to plug-in rules
in the statistical learning literature. The following theorem proposes a lower bound for the noisy
discriminant analysis problem in such a setting.

Theorem 1. Suppose that the Noise assumption is satisfied. Then, there exists a measure Q0

such that for all α ≤ 1,

lim inf
n,m→+∞ inf

Ĝn,m

sup
(f,g)∈Fplug(Q0)

(n ∧ m)τd(α,β,γ )
Ef,gd�

(
Ĝn,m,G�

K

)
> 0,

where the infinimum is taken over all possible estimators of the set G�
K and

τd(α,β, γ ) =

⎧⎪⎪⎨
⎪⎪⎩

γ α

γ (2 + α) + d + 2
∑d

i=1 βi

for d� = d	,

γ (α + 1)

γ (2 + α) + d + 2
∑d

i=1 βi

for d� = df,g .

Remark that we obtain exactly the same lower bounds as [2] in the direct case, which yet
corresponds to the situation where βj = 0 for all j ∈ {1, . . . , d}.

In the presence of noise in variables, the rates obtained in Theorem 1 are slower. The price to
pay is an additional term of the form:

2
d∑

i=1

βi.

This term clearly connects the difficulty of the problem to the tail behavior of the characteris-
tic function of the noise distribution. This price to pay is already known in density estimation,
regression with errors in variables or goodness-of-fit testing. Last step is to get a corresponding
upper bound to validate this lower bound in the presence of noise in variables.

Remark that this lower bound is valid only for α ≤ 1. This restriction appears for some tech-
nical reasons in the proof (see Section 5). The main difficulty here is to use standard arguments
from lower bounds in classification (see [1,2]) in this deconvolution setting. More precisely, we
have to take advantage of the Noise assumption, related to the Fourier transform of the noise dis-
tribution η. To this end, we use in the proof of Theorem 1 an algebra based on standard Fourier
analysis tools, and we have to consider sufficiently smooth objects. As a consequence in the
lower bounds, we can check the Margin assumption only for values of α ≤ 1. Nevertheless, we
conjecture that this restriction is only due to technical reasons and that our result remains per-
tinent for all α ≥ 0. In particular, an interesting direction is to consider a wavelet basis which
provides an isometric wavelet transform in L2 in order to obtain the desired lower bound in the
general case.

The measure Q0 that we mention in Theorem 1 is explicitly constructed in the proof. For
the sake of convenience, the construction of this measure is not reproduced here (we refer to
Section 5.1 for an interested reader).
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3. Upper bounds

3.1. Estimation of G�
K

In the free-noise case (ε(i)
j = (0, . . . ,0) for all j ∈ {1, . . . , n}, i ∈ {1,2}), we deal with two sam-

ples (X
(1)
1 , . . . ,X

(1)
n ), (X

(2)
1 , . . . ,X

(2)
m ) having respective densities f and g. A standard way to

estimate G�
K = {x ∈ K :f (x) ≥ g(x)} is to estimate RK(·) thanks to the data. For all G ⊂ K ,

the risk RK(G) can be estimated by the empirical risk defined in (1.5). Then the Bayes classifier
G�

K is estimated by Ĝn,m defined as a minimizer of the empirical risk (1.5) over a given family
of sets G. We know for instance from [26] that the estimator Ĝn,m reaches the minimax rates of
convergence in the direct case when G = G(γ,L) corresponds to the set of boundary fragments
with γ > d − 1. For larger set G(γ,L), as proposed in [26], the minimization can be restricted
to a δ-net of G(γ,L). With an additional assumption over the approximation power of this δ-net,
the same minimax rates can be achieved in a subset of G(γ,L).

If we consider complexity assumptions related to the smoothness of f −g, we can show easily
with [2] that an hybrid plug-in/ERM estimator reaches the minimax rates of convergence of [2]
in the free-noise case. The principle of the method is to consider the empirical minimization (1.6)
over a particular class G based on plug-in type decision sets. More precisely, following [2] for
classification, we can minimize in the direct case the empirical risk over a class G of the form:

G = {{f − g ≥ 0}, f − g ∈Nn,m

}
,

where Nn,m is a well-chosen δ-net. With such a procedure, minimax rates can be obtained with
no restriction over the parameter γ , α and d .

In noisy discriminant analysis, ERM estimator (1.6) is no longer available as mentioned earlier.
Hence, we have to add a deconvolution step to the classical ERM estimator. In this context, we
can construct a deconvolution kernel, provided that the noise has a nonnull Fourier transform, as
expressed in the Noise assumption. Such an assumption is rather classical in the inverse problem
literature (see, e.g., [8,15] or [28]).

Let K = ∏d
j=1 Kj :Rd → R be a d-dimensional function defined as the product of d unidi-

mensional functions Kj . The properties of K leading to satisfying upper bounds will be made
precise later on. Then, if we denote by λ = (λ1, . . . , λd) a set of (positive) bandwidths and by
F [·] the Fourier transform, we define Kη as:

Kη :Rd → R,
(3.1)

t �→ Kη(t) =F−1
[ F[K](·)
F[η](·/λ)

]
(t).

In this context, for all G ⊂ K , the risk RK(G) can be estimated by

Rλ
n,m(G) = 1

2

[
1

n

n∑
j=1

hK/G,λ

(
Z

(1)
j

) + 1

m

m∑
j=1

hG,λ

(
Z

(2)
j

)]
,
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where for a given z ∈R
d :

hG,λ(z) =
∫

G

1

λ
Kη

(
z − x

λ

)
dx. (3.2)

In the following, we study ERM estimators defined as:

Ĝλ
n,m = arg min

G∈G
Rλ

n,m(G), (3.3)

where parameter λ = (λ1, . . . , λd) ∈ R
d+ has to be chosen explicitly. Functions hG,λ in equation

(3.2) are at the core of the upper bounds. In particular, following the pioneering’s works of Vapnik
(see [34]), we have for Rλ

K(·) := ERλ
n,m(·):

RK

(
Ĝλ

n,m

) − RK

(
G�

K

) ≤ RK

(
Ĝλ

n,m

) − Rλ
n,m

(
Ĝλ

n,m

) + Rλ
n,m

(
G�

K

) − RK

(
G�

K

)
≤ Rλ

K

(
Ĝλ

n,m

) − Rλ
n,m

(
Ĝλ

n,m

) + Rλ
n,m

(
G�

K

) − Rλ
K

(
G�

K

)
(3.4)

+ (
RK − Rλ

K

)(
Ĝλ

n,m

) − (
RK − Rλ

K

)(
G�

K

)
≤ sup

G∈G

∣∣Rλ
K − Rλ

n,m

∣∣(G,G�
K

) + sup
G∈G

∣∣Rλ
K − RK

∣∣(G,G�
K

)
,

where we write for concision for any G,G′ ⊂ K :∣∣Rλ
K − Rλ

n,m

∣∣(G,G′) = ∣∣Rλ
K(G) − Rλ

K

(
G′) − Rλ

n,m(G) + Rλ
n,m

(
G′)∣∣,

and similarly: ∣∣Rλ
K − RK

∣∣(G,G′) = ∣∣Rλ
K(G) − Rλ

K

(
G′) − RK(G) + RK

(
G′)∣∣.

As a result, to get risk bounds, we have to deal with two opposing terms, namely a so-called
variability term:

sup
G∈G

∣∣Rλ
K − Rλ

n,m

∣∣(G − G�
K

)
, (3.5)

and a bias term (since ERλ
n,m(G) 
= RK(G)) of the form:

sup
G∈G

∣∣Rλ
K − RK

∣∣(G − G�
K

)
. (3.6)

The variability term (3.5) gives rise to the study of increments of empirical processes. In this
work, this control is based on entropy conditions and uniform concentration inequalities. It is in-
spired by results presented for instance in [33] or [32]. The main novelty here is that in the noisy
case, empirical processes are indexed by a class of functions which depends on the smoothing
parameter λ. The bias term (3.6) is controlled by taking advantages of the properties of G and of
the assumptions on the kernel K. Indeed, it can be related to the standard bias term in nonpara-
metric density estimation and can be controlled using smoothness assumptions of plug-in type.
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This bias term is inherent to the estimation procedure and its control is a cornerstone of the upper
bounds.

The choice of λ will be a trade-off between the two opposing terms (3.5) and (3.6). Small
λ leads to complex functions hG,λ and blasts the variance term whereas (3.6) vanishes when λ

tends to zero. The kernel K has to be chosen in order to take advantage of the different conditions
on G�

K . This choice will be operated according to the following definition.

Definition. We say that K is a kernel of order l ∈ N
∗ if and only if:

• ∫
K(u)du = 1.

• ∫
uk

jK(u)du = 0 ∀k = 1, . . . , l, ∀j = 1, . . . , d .

• ∫ |uj |l+1|K(u)|du < ∞, ∀j = 1, . . . , d .

In addition to this definition, we will require the following assumption on the kernel K which
appears in (3.1).

Kernel assumption. The kernel K is such that F [K] is bounded and compactly supported.

The construction of kernels of order l satisfying the Kernel assumption could be managed
using for instance the so-called Meyer wavelet (see [25]).

The following subsection intent to study deconvolution ERM estimator (3.3) and gives asymp-
totic fast rates of convergence. It validates the lower bounds of Theorem 1.

3.2. Upper bound

For all δ > 0, using the notion of entropy (see, for instance, [33]) for Hölderian function on
compact sets, we can find a δ-network Nδ on �(γ,L) such that:

• log(card(Nδ)) ≤ Aδ−d/γ ,
• For all h0 ∈ �(γ,L), we can find h ∈Nδ such that ‖h − h0‖∞ ≤ δ.

In the following, we associate to each ν := f − g ∈ �(γ,L), a set Gν = {x ∈ K :ν(x) ≥ 0} and
define the ERM estimator as:

Ĝn,m = arg min
ν∈Nδ

Rλ
n,m(Gν), (3.7)

where δ = δn,m has to be chosen carefully. This procedure has been introduced in the direct case
by [2] and referred to as an hybrid plug-in/ERM procedure. The following theorem describes the
performances of Ĝn,m.

Theorem 2. Let Ĝn,m the set introduced in (3.7) with

λj = (n ∧ m)−1/(γ (2+α)+2
∑d

i=1 βi+d), ∀j ∈ {1, . . . , d}, and

δ = δn,m =
(∏d

i=1 λ
−βi

i√
n ∧ m

)2/(d/γ+2+α)

.



Minimax rates for noisy discriminant analysis 187

Given some σ -finite measure Q, suppose (f, g) ∈Fplug(Q) and the Noise assumption is satisfied

with βi > 1/2, ∀i = 1, . . . , d . Consider a kernel Kη defined as in (3.1) where K = ∏d
j=1 Kj is a

kernel of order �γ �, which satisfies the Kernel assumption. Then, for all real α ≥ 0, if Q is the
Lebesgue measure:

lim
n,m→+∞ sup

(f,g)∈Fplug(Q)

(n ∧ m)τd(α,β,γ )
Ef,gd�

(
Ĝn,m,G�

K

)
< +∞,

where

τd(α,β, γ ) =

⎧⎪⎪⎨
⎪⎪⎩

γ α

γ (2 + α) + d + 2
∑d

i=1 βi

for d� = d	,

γ (α + 1)

γ (2 + α) + d + 2
∑d

i=1 βi

for d� = df,g .

Moreover, if Q(x) = μ(x)dx, the same upper bounds hold provided that μ ∈ �(γ,L) and that
minx∈K μ(x) ≥ c0 for some c0 > 0.

Theorem 2 validates the lower bounds of Theorem 1. Deconvolution ERM are minimax opti-
mal over the class Fplug. These optimal rates are characterized by the tail behavior of the charac-
teristic function of the error distribution η. We only consider the ordinary smooth case whereas
straightforward modifications lead to slow rates of convergence in the super-smooth case.

Here, fast rates (i.e., faster than 1/
√

n) are pointed out when αγ > d + 2
∑

βi . This result is
comparable to [2], where fast rates are proposed when αγ > d . However, it is important to stress
that large values of both α and γ correspond to restrictive situations. In this case, the margin
parameter is high whereas the behavior of f −g is smooth, which seems to be contradictory (see
the related discussion in [2]).

If Q is not the Lebesgue measure, μ has to be lower bounded by a constant c0 > 0 which
appears in the upper bound. This assumption can be relaxed to recover the case of Theorem 1.

For the sake of concision, we do not study plug-in rules in this paper. Such algorithms are
characterized by classifiers of the form

G̃n,m = {
x ∈ K, f̃n(x) − g̃m(x) ≥ 0

}
,

where f̃n − g̃m is an (optimal) estimator of the function f − g. The performances of such kind
of methods have been investigated by [2] in the binary classification model. We also mention for
instance [18] or [6] for contributions in a more general framework.

Nevertheless, we point out that the choice of λ in Theorem 2 is the trade-off between the
variability term (3.5) and the bias term (3.6). It is important to note that this asymptotic for
λ is not the optimal choice in the problem of deconvolution estimation of f − g ∈ �(γ,L)

thanks to noisy data. Here the bandwidth depends on the margin parameter α and optimizes the
classification excess risk bound. It highlights that the estimation procedure (3.7) is not a plug-in
rule but an hybrid ERM/Plug-in estimator as in [2].

Finally, this deconvolution ERM appears to be minimax optimal when we deal with noisy
data such that βi > 1

2 , ∀i = 1, . . . , d . A natural question is to extend these results to the direct
case where βi = 0, ∀i = 1, . . . , d . Moreover, the minimax optimality of this procedure depends
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on the choice of λ in Theorem 2. In the following subsection, we deal with a similar approach
in the direct case, using standard kernel estimators instead of deconvolution kernel estimators.
Interestingly in this situation, the choice of λ is not crucial to derive optimal rates of convergence.

3.3. Upper bound in the free-noise case

In the free-noise setting, direct observations X
(1)
j , j = 1, . . . , n and X

(2)
j , j = 1, . . . ,m are avail-

able. In this case, we can construct an estimation procedure based on (3.7) where a standard
kernel estimator is used instead of a deconvolution kernel estimator. Following the noisy setting,
we define in the direct case G̃λ

n,m as follows:

G̃λ
n,m = arg min

ν∈Nδ

R̃λ
n,m(Gν), (3.8)

where here R̃λ
n,m(G) is an estimator of RK(G) defined as:

R̃λ
n,m(G) = 1

2

[
1

n

n∑
j=1

h̃K/G,λ

(
X

(1)
j

) + 1

m

m∑
j=1

h̃G,λ

(
X

(2)
j

)]
,

where for a given kernel K:

h̃G,λ(z) =
∫

G

1

λ
K

(
z − x

λ

)
dx.

The following theorem describes the performances of G̃λ
n,m.

Corollary 1. Let F =Fplug(Q) and G̃λ
n,m the set introduced in (3.8) with

λj ≤ (n ∧ m)−1/(γ (2+α)+d), ∀j ∈ {1, . . . , d}, and δ = δn,m =
(

1√
n ∧ m

)2/(d/γ+2+α)

.

Consider a kernel K = ∏d
j=1 Kj of order �γ � satisfying the Kernel assumption. Then, if Q is the

Lebesgue measure, for any real α ≥ 0:

lim
n,m→+∞ sup

(f,g)∈Fplug(Q)

(n ∧ m)τd(α,γ )
Ed�

(
G̃λ

n,m,G�
K

)
< +∞,

where

τd(α, γ ) =

⎧⎪⎨
⎪⎩

γ α

γ (2 + α) + d
for d� = d	,

γ (α + 1)

γ (2 + α) + d
for d� = df,g .

Moreover, if Q(x) = μ(x)dx, the same upper bounds holds provided that μ ∈ �(γ,L) and that
minx∈K μ(x) ≥ c0 for some c0 > 0.



Minimax rates for noisy discriminant analysis 189

These rates correspond to the lower bound of Theorem 1 for βj = 0, ∀j = 1, . . . , d (see also
[2]). As a result, (3.8) provides a new procedure which reaches the minimax optimality in classi-
fication. Some remarks are in order.

The choice of λ in Corollary 1 is not standard. It seems that if λ is small enough, the ERM
procedure (3.8) is minimax. This result can be explain as follows. Here, λ is not a trade-off
between two opposing terms. In the control of the variability term, it appears that with a good
choice of K, the variability term does not depend on the bandwidth λ of the kernel. As a result,
we only need to control the bias term with a small bandwidth.

This property can also be interpreted heuristically as follows. It is clear that the estimation
procedure (3.8) with kernel estimator K is not so far from the usual ERM estimator in the direct
case. Indeed, if λ is small enough, we have coarsely:

h̃G,λ(Xi) =
∫

G

1

λ
K

(
Xi − x

λ

)
dx ≈ 1G(Xi).

As a result, with a small enough bandwidth, the procedure (3.8) reaches the same asymptotic
performances as standard ERM.

4. Conclusion

We have provided in this paper minimax rates of convergence in the framework of smooth dis-
criminant analysis with errors in variables. In the presence of plug-in type assumptions, we re-
place the unknown densities f and g by deconvolution kernel estimators. It gives a new family of
ERM estimators called deconvolution ERM. It reaches the minimax rates of convergence. These
optimal rates are fast rates (faster than n−1/2) when αγ > d +2

∑d
i=1 βi and generalize the result

of [2]. As shown in Table 1, the influence of the noise ε can be compared with standard results in
nonparametric statistics (see [15,16] for regression and density estimation with errors in variables
or [8] in goodness-of-fit testing) using kernel deconvolution estimators. Note that this idea can
be adapted to the direct case using kernel density estimators. It provides a new minimax optimal
procedure in the direct case, under the Plug-in assumption.

It is important to note that considering the estimation procedure of this paper, we are facing
two different problems of model selection or adaptation. First of all, the choice of the bandwidths

Table 1. Optimal rates of convergence in pointwise L2-risk in density estimation (see [15]), optimal sepa-
ration rates for goodness-of-fit testing on Sobolev spaces W(s,L) (see, e.g., [8]) and the result of this work
in smooth discriminant analysis (where β̄ := ∑d

i=1 βi )

Density estimation Goodness-of-fit testing Classification

Direct case (ε = 0) n−2γ /(2γ+1) n−2γ /(2γ+1/2) n−γ (α+1)/(γ (α+2)+d)

Errors-in-variables n−2γ /(2γ+2β+1) n−2γ /(2γ+2β+1/2) n−γ (α+1)/(γ (α+2)+2β̄+d)

Regularity f ∈ �(γ,L) f ∈ W(s,L) f − g ∈ �(γ,L)

assumptions |F [η](t)| ∼ |t |−β |F [η](t)| ∼ |t |−β |F [ηi ](t)| ∼ |t |−βi ∀i
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clearly depends on parameters which may be unknown a priori (e.g., the margin α and the reg-
ularity γ of the densities). In this sense, adaptation algorithms should be investigated to choose
automatically λ to balance the bias term and the variance term. The second step of adaptation
would be to consider a family of nested (Gk) ⊂ G and to choose the model which balances the
approximation term and the estimation term. This could be done using for instance penalization
techniques, such as [31] or [20] or a comparison method such as [30].

This work can be considered as a first attempt into the study of risk bounds in classification
with errors in variables. It can be extended in many directions. Naturally the first extension will
be to state the same kind of result in classification. Another natural direction would be to consider
more general complexity assumptions for the hypothesis space G. In the free-noise case, [4] deal
with local Rademacher complexities. It allows to consider many hypothesis spaces, such as VC
classes of sets, kernel classes (see [29]) or even Besov spaces (see [24]). Another advantage of
considering Rademacher complexities is to develop data-dependent complexities to deal with the
problem of model selection (see [3,20]). It also allows us to deal with the problem of nonunique
solution of the empirical minimization.

Into the direction of statistical inverse problem, there are also many open problems. A natural
direction for applications would be to consider unknown density η for the random noise ε. This is
a well known issue in the errors-in-variables setting to deal with unknown operator of inversion.
In this setting we can consider repeated measurements to estimate the density of the noise ε

(see, for instance, [12] for both density estimation and regression with errors). Another natural
extension will be to consider general linear compact operator A :f �→ Af to generalize the case
of deconvolution. In this case, ERM estimators based on standard regularization methods from
the inverse problem literature (see [14]) appear as good candidates. This could be the material of
future works.

Finally, the presence of fast rates in discriminant analysis goes back to [26]. In [26], the reg-
ularity assumption is related to the smoothness of the boundaries of the Bayes classifier. If we
consider a set of Hölder boundary fragments, [26] states minimax fast rates in noise-free discrim-
inant analysis. These rates are attained by ERM estimators. A natural extension of the present
contribution is to state minimax rates in the presence of Hölder boundary fragments, where the
control of the bias term seems really more nasty. This is the purpose of a future work.

5. Proofs

In this section, with a slight abuse of notations, C,c, c′ > 0 denote generic constants that may
vary from line to line, and even in the same line. Given two real sequences (an)n∈N and (bn)n∈N,
the notation a � b (resp. a � b) means that there exists generic constants C,c > 0 such that
can ≤ bn ≤ Can (resp. an ≤ Cbn) for all n ∈ N.

5.1. Proof of Theorem 1

The proof mixes standard lower bounds arguments from classification (see [1] and [2]) but then
uses some techniques which are specific to the inverse problem literature (see, for instance, [8]
or [28]).
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Consider F1 = {f−→
σ ,

−→
σ = (σ1, . . . , σk) ∈ {0,1}k} a finite class of densities with respect to a

specific measure Q0 and g0 a fixed density (with respect to the same Q0) such that (f−→
σ , g0) ∈

Fplug for all
−→
σ ∈ {0,1}k . The construction of f−→

σ as a function of
−→
σ , the value of g0 and the

definition of Q0 will be precised in Section 5.1.1. Then, for all estimator Ĝn,m of the set G�
K , we

have:

sup
(f,g)∈Fplug

Ef,gd	

(
Ĝn,m,G�

K

) ≥ sup
f ∈F1

Eg0

[
Ef

{
d	

(
Ĝn,m,G�

K

)|Z(2)
1 , . . . ,Z(2)

m

}]
. (5.1)

In a first time, we propose a triplet (F1, g0,Q0). Then, we prove that each associated element
satisfies our hypotheses. We finish the proof with a convenient lower bound for (5.1).

5.1.1. Construction of the triplet (F1, g0,Q0)

We only consider the case d = 2 for simplicity, whereas straightforward modifications lead to
the general d-dimensional case. For g0, we take the constant 1 over R2:

g0(x) = 1, ∀x ∈R
2.

For any z ∈R
2 and positive δ, we write in the sequel B(z, δ) := {x = (x1, x2) : |xi − zi | ≤ δ}.

For an integer q ≥ 1, introduce the regular grid on [0,1]2 defined as:

Gq =
{(

2p1 + 1

2q
,

2p2 + 1

2q

)
,pi ∈ {0, . . . , q − 1}, i = 1,2

}
.

Let nq(x) ∈ Gq the closest point to x ∈ R
2 among points in Gq (by convention, we choose the

closest point to 0 when it is nonunique). Consider the partition (χ ′
j )j=1,...,q2 of [0,1]2 defined as

follows: x and y belongs to the same subset if and only if nq(x) = nq(y). Fix an integer k ≤ q2.
For any i ∈ {1, . . . , k}, we define χi = χ ′

i and χ0 = R
2\⋃k

i=1 χi to get (χi)i=1,...,k a partition
of R2. In the sequel, we note by (zj )j=1,...,k the centers of the χj .

Then, we consider the measure Q0 defined as dQ0(x) = μ(x)dx where μ(x) = μ0(x) +
μ1(x) for all x ∈R

2 with

μ0(x) = kωρ(x1 − 1/2)ρ(x2 − 1/2) and μ1(x) = (1 − kω)ρ(x1 − a)ρ(x2 − b),

where k, ω, a, b are constants which will be made precise later on and where for all x ∈ R,
ρ :R→ [0,1] is the function defined as

ρ(x) = 1 − cos(x)

πx2
, ∀x ∈ R.

Recall that ρ satisfies F [ρ](t) = (1 − |t |)+. It allows us to take advantage of the Noise assump-
tion. Moreover, g defines a probability density w.r.t. to the measure Q0 since

∫
R2 μ(x)dx = 1.

Now, we have to define the class F1 = {f−→
σ ,

−→
σ }. We first introduce ϕ as a C∞ probability

density function w.r.t. the measure Q0 and such that

ϕ(x) = 1 − c�q−γ ∀x ∈ [0,1]2.
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Now introduce a class of functions ψj :R2 → R, for j = 1, . . . , k defined for any x ∈ R
2 as

follows:

ψj (x) = q−γ cψρ
(
2πq

(
x1 − z

j

1

))
ρ

(
2πq

(
x2 − z

j

2

))
cos

(
4πq

(
x1 − z

j

1

))
cos

(
4πq

(
x2 − z

j

2

))
,

where (zj )j=1,...,k are the centers of the χj . The class (ψj )j is specific to the noisy case and
the inverse problem literature (see [8] and [28]). With such notations, for any

−→
σ ∈ {0,1}k , we

define:

f−→
σ (x) = ϕ(x) +

k∑
l=1

σlψl(x), ∀x ∈ R
2.

Now we have to check that this choice of F1, g0 and Q0 provides the Margin assumption and
that the complexity assumption hold true.

5.1.2. Main assumptions check

In a first time, we prove that the f−→
σ define probability density functions w.r.t. the measure Q0.

Let
−→
σ ∈ {0,1}k . Remark that, considering the case d = 1 w.l.o.g.:∫

R

ψl(x)μ0(x)dx = F [ψlμ0](0) = cψq−γF
[
ρ(2πq·)μ0(·)

]
(±4πq)

= cψq−γ kωF[ρ] ∗F
[
ρ(2πq·)](±4πq).

Then, since

F
[
ρ(2πq·)](t) = 1

2πq
F[ρ]

(
t

2πq

)
∀t ∈ R,

and

F
[
ρ(2πq·)](t) 
= 0 ⇔ −1 <

t

2πq
< 1 ⇔ −2πq < t < 2πq,

we get

suppF [ρ] ∗F
[
ρ(2πq·)] = [−2πq − 1;2πq + 1] and

∫
R

ψl(x)μ0(x)dx = 0. (5.2)

The same computations show that
∫
R

ψl(x)μ1(x)dx = 0 and prove the desired result since ϕ is
a probability density with respect to Q0.

Concerning the regularity, f−→
σ ∈ �(γ,L) for q large enough since f−→

σ can be written as
q−γ F0(x) where F0 is infinitely differentiable.

In order to conclude this part, we only have to prove that the margin hypothesis is satisfied for
all the couples (f−→

σ , g), namely for some constant c2, t0 > 0, we have for 0 < t < t0:

Q0
({

x ∈ [0,1]d :
∣∣f−→

σ (x) − g(x)
∣∣ ≤ t

}) ≤ c2t
α.
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First, note that by construction of Q0, we have dQ0(x) = (μ0(x) + μ1(x))dx and by choos-
ing constant a, b > 0 large enough in μ1, we can restrict ourselves to the study of the Margin
assumption with respect to Q′

0(dx) = μ0(x)dx.
Concerning the triplet (k,ω, q), we set{

k = q2,

ω = q−αγ−2.

In particular, we will have kω = q−αγ . Then, we will distinguish two different cases concerning
the possible value of t . The first case concerns the situation where C1q

−γ < t < t0 for some
constant C1. Then, we have for Q′

0(dx) = μ0(x)dx:

Q′
0

({
x ∈ [0,1]2 :

∣∣f−→
σ (x) − g(x)

∣∣ ≤ t
}) ≤

∫
[0,1]2

μ0(x)dx ≤ kω ≤ Cq−αγ ≤ Ctα.

Now, we consider the case where t < C1q
−γ . For all σ ∈ {0,1}k :

Q′
0

({
x ∈ [0,1]2 :

∣∣(fσ − g)(x)
∣∣ ≤ t

}) =
∫

[0,1]2
kω1|(fσ −g)(x)|≤t dx

≤ kω

k∑
j=1

∫
χj

1|(fσ −g)(x)|≤t dx (5.3)

≤ k2ω Leb
{
x ∈ χ1 :

∣∣(fσ − g)(x)
∣∣ ≤ t

}
,

where without loss of generality, we suppose that σ1 = 1 and we denote by Leb(A) the Lebesgue
measure of A.

Last step is to control the Lebesgue measure of the set W1 = {x ∈ χ1 : |(fσ −g)(x)| ≤ t}. Since
fσ − g = ∑k

j=1 σjψj − c�q−γ , we have

W1 =
{

x ∈ χ1 :

∣∣∣∣∣
k∑

j=1

σjψj (x) − c�q−γ

∣∣∣∣∣ ≤ t

}

=
{

x ∈ χ1 :

∣∣∣∣∣ψ1(x) −
(

c�q−γ −
k∑

j=2

σjψj (x)

)∣∣∣∣∣ ≤ t

}
.

Moreover, note that on the square χj :

∑
l 
=j

σlψl(x) ≤ q−γ cψ

∑
l 
=j

1

24π6q4

2∏
i=1

1

|xi − zl,i |2

≤ q−γ cψ

24π6

∑
l 
=j

1

|l − j |4 (5.4)

≤ q−γ cψ

24π6
ζ(4) = q−γ cψπ4

90 × 24π6
:= c′q−γ ,
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where c′ = cψ

90×24π2 . Then, if we note by:

c∞ = sup
x∈χ1

ρ
(
2πq

(
x1 − z1

1

))
ρ

(
2πq

(
x2 − z1

2

))
cos

(
4πq

(
x1 − z1

1

))
cos

(
4πq

(
x2 − z1

2

))
,

we have, for any x ∈ χ1:

k∑
j=1

σjψj (x) = ψ1(x) +
k∑

j=2

σjψj (x) ≤ (
cψc∞ + c′)q−γ . (5.5)

Then, for all x ∈ χ1, we can define zx as

zx = arg min
z:ψ1(z)=c�q−γ −∑k

j=2 σj ψj (z)

‖x − z‖2.

Indeed, inequality (5.5) ensures the existence of zx provided that c� < cψc∞ + c′.
In order to evaluate the Lebesgue measure of W1, the main idea is to approximate ψ1 at each

x ∈ W1 by a Taylor polynomial of order 1 at zx . We obtain

W1 = {
x ∈ χ1 :

∣∣ψ1(x) − ψ1
(
zx

)∣∣ ≤ t
}

= {
x ∈ χ1 :

∣∣〈Dψ1
(
zx

)
, x − zx

〉 + ψ1(x) − ψ1
(
zx

) − 〈
Dψ1

(
zx

)
, x − zx

〉∣∣ ≤ t
}

⊂ {
x ∈ χ1 :

∣∣∣∣〈Dψ1
(
zx

)
, x − zx

〉∣∣ − ∣∣ψ1(x) − ψ1
(
zx

) − 〈
Dψ1

(
zx

)
, x − zx

〉∣∣∣∣ ≤ t
}
.

Now, it is possible to see that there exists c0 > 0 such that∣∣〈Dψ1
(
zx

)
, x − zx

〉∣∣ ≥ c0qq−γ
∥∥x − zx

∥∥
1, ∀x ∈ χ1. (5.6)

Moreover, using again the inequality ‖x − zx‖1 ≤ C/q , there exists a function h :R → R+ such
that qh(q) → 0 as q → ∞ and which satisfies:

|ψ1(x) − ψ1(z
x) − 〈Dψ1(z

x), x − zx〉|
‖x − zx‖1

≤ q−γ h(q). (5.7)

At this step, it is important to note that provided that q := q(n) → ∞ as n → ∞, there exists
some n0 ∈ N such that for any n ≥ n0, we have:∣∣〈Dψ1

(
zx

)
, x − zx

〉∣∣ >
∣∣ψ1(x) − ψ1

(
zx

) − 〈
Dψ1

(
zx

)
, x − zx

〉∣∣.
Hence, we get the following inclusion

W1 ⊂
{
x ∈ χ1 : c0qq−γ

∥∥x − zx
∥∥

1

(
1 − h(q)

q

)
≤ t

}
, as q → +∞.

With the property qh(q) → 0 as q → ∞ (or equivalently when n → ∞), we can find n′
0 large

enough such that for any n ≥ n′
0:

Leb(W1) ≤ Leb

({
x ∈ χ1 :

∥∥x − zx
∥∥

1 ≤ t

2c0
qγ−1

})
≤ t

2c0qq1−γ
.
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Gathering with (5.3), we hence get, for t < C1q
−γ , provided that α ≤ 1:

Q′
0

{
x ∈ [0,1]2 :

∣∣(fσ − g)(x)
∣∣ ≤ t

} ≤ Ck2ω
t

q2q−γ

≤ Ckω
t

q−γ
= Cqγ (1−α)tαt1−α ≤ Ctα,

where C > 0 is a generic constant.

5.1.3. Final minoration

Suppose without loss of generality that n ≤ m. Now we argue as in [1] (Assouad Lemma for
classification) and introduce ν, the distribution of a Bernoulli variable (ν(σ = 1) = ν(σ = 0) =
1/2). Then, denoting by P

⊗n−→
σ

the law of (Z
(1)
1 , . . . ,Z

(1)
n ) when f = f−→

σ , we get

sup
−→
σ ∈{0,1}

Ef

{
d	

(
Ĝn,m,G∗

K

)|Z(2)
1 , . . . ,Z(2)

m

}
≥ Eν⊗kEf−→

σ
d	

(
Ĝn,m,G∗

K

)

≥ Eν⊗kEf−→
σ

k∑
j=1

∫
χj

1
(
x ∈ Ĝn,m	G�

K

)
Q0(dx) (5.8)

=
k∑

j=1

Eν⊗(k−1)

∫
�

Eν(dσj )

∫
χj

1
(
x ∈ Ĝn,m(ω)	G�

K

)
Q0(dx)P⊗n−→

σ
(dω)

≥
k∑

j=1

Eν⊗(k−1)

∫
�

Eν(dσj )

∫
χj

1
(
x ∈ Ĝn,m(ω)	G�

K

)
Q0(dx)

[P⊗n−→
σ j,1

P
⊗n−→
σ j

∧
P

⊗n−→
σ j,0

P
⊗n−→
σ j

]
P

⊗n−→
σ

(dω),

where
−→
σ j,r = (σ1, . . . , σj−1, r, σj+1, . . . , σk) for r ∈ {0,1}.

Moreover, note that from (5.4), we have on the square χj :

∑
l 
=j

σlψl(x) ≤ c′q−γ ,

where c′ = cψ

90×24π2 . Now it is easy to see that from the definition of the test functions ψj , for any

integer k0, k1 :k1 > 2k0, on the square ring Bj (k0, k1) = {x ∈ χj :∀i |xi − zj,i | ≤ 1
2k0q

and |xi −
zj,i | ≥ 1

k1q
}:

ψj(x) − c�q−γ ≥ q−γ

[
cψk4

0
(1 − cos 2π/k1)

2

π6
(cos 4π/k0)

2 − c�

]
= q−γ ,



196 S. Loustau and C. Marteau

provided that cψ = π6(1+c�)

k2
0(1−cos 2π/k1)

2(cos 4π/k0)
2 . Hence, since c′ = cψ

90×24π2 , we can choose k0, k1 ∈
N such that c′ ≤ 1 to get on Bj (k0, k1):∑

l 
=j

σlψl(x) ≤ c′q−γ ≤ ψj(x) − c�q−γ . (5.9)

Now introduce binary valued functions:

f̂ (x) = 1(x ∈ Ĝn,m) and f �−→
σ
(x) = 1

(
x ∈ G�

K,σ

)
,

where G�
K,σ = {f−→

σ − g ≥ 0}. From (5.9), we claim that for any
−→
σ :

∀x ∈ Bj (k0, k1), f �−→
σ
(x) = σj . (5.10)

Indeed, since f−→
σ − g = ∑k

l=1 σlψl − c�q−γ , gathering with (5.9), we have the following asser-
tion:

f �−→
σ
(x) = 1 ⇒ (1 + σj )ψj (x) ≥ 2c�q−γ ⇒ σj = 1,

provided that c� ≤ qγ minx∈Bj (k0,k1) ψj (x)/2. Moreover, this choice of c� leads to the following
assertion:

f �−→
σ
(x) = 0 ⇒

k∑
l=1

σlψl(x) ≤ c�q−γ ≤ min
x∈Bj (k0,k1)

ψj (x)/2.

In this case, if σj = 1, we obtain:

ψj(x) +
∑
l 
=j

σlψl(x) ≤ min
x∈Bj (k0,k1)

ψj (x)/2. (5.11)

Last step is to show that (5.11) is a contradiction. For this purpose, note that:

min
x∈Bj (k0,k1)

(
ψj (x) +

∑
l 
=j

σlψl(x)

)
≥ min

x∈Bj (k0,k1)
ψj (x) + min

x∈Bj (k0,k1)

∑
l 
=j

σlψl(x)

≥ min
x∈Bj (k0,k1)

ψj (x)/2,

where the last inequality is guaranteed when:

min
x∈Bj (k0,k1)

ψj (x)/2 ≥ − min
x∈Bj (k0,k1)

∑
l 
=j

σlψl(x).

Finally, the last inequality holds thanks to the positivity of ψj(x) on the set Bj (k0, k1) and the
fact that ∀j ′ 
= j , signψj = signψj ′ . Indeed, ∀j , ψj (x) = 0 for x ∈ Zj,1 ∪Zj,2 where:

Zj,1 =
{
x ∈ R

2 :
∣∣xu − z

j
u

∣∣ = l

q
, u ∈ {1,2}, l ∈N

∗
}
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and

Zj,2 =
{
x ∈R

2 :
∣∣xu − z

j
u

∣∣ = 2l + 1

8q
,u ∈ {1,2}, l ∈N

}
.

Note that by construction, ∀j 
= j ′, Zj,2 =Zj ′,2 =Z2 does not depend on j ∈ {1, . . . , k}. More-
over, for any j ∈ {1, . . . , k}, ψj is alternatively positive and negative on the checkerboard asso-
ciated with Z2. It leads to signψj = signψj ′ , ∀j 
= j ′ since two centers zj and zj ′

are separated
by an odd number of squares (exactly 5) on both directions. We hence have by construction that
(5.11) is a contradiction and then, (5.10) is shown.

Now we go back to the lower bound. We can write:

Eν(dσj )

∫
χj

1
(
x ∈ Ĝn,m(ω)	G�

K

)
Q0(dx) = Eν(dσj )

∫
χj

1
(
f̂ 
= f �−→

σ

)
Q0(dx)

≥ Eν(dσj )

[∫
Bj

1(f̂ 
= σj )Q0(dx)

]

= 1

2

[∫
Bj

[
1(f̂ 
= 1) + 1(f̂ 
= 0)

]
Q0(dx)

]

= 1

2

∫
Bj

Q0(x)dx,

where we use (5.10) at the second line with Bj := Bj (k0, k1). Then it follows from (5.8) that:

sup
−→
σ ∈{0,+1}k

Ef

{
d	

(
Ĝn,m,G�

K

)|Z(2)
1 , . . . ,Z(2)

m

}

≥ Eν⊗(k−1)

k∑
j=1

∫
�

[P⊗n−→
σ j,0

P
⊗n−→
σ j

∧
P

⊗n−→
σ j,1

P
⊗n−→
σ j

]
(dω)

1

2

∫
χj

Q0(dx)P⊗n−→
σ

(dω)

=
k∑

j=1

Eν⊗(k−1)

[
1 −V

(
P

⊗n−→
σ ,1

,P⊗n−→
σ ,0

)]1

2

∫
Bj

Q0(dx) (5.12)

≥
k∑

j=1

Eν⊗(k−1)

[
1 −

√
χ2

(
P

⊗n−→
σ ,1

,P⊗n−→
σ ,0

) ]1

2

∫
Bj

Q0(dx)

=
k∑

j=1

[(
1 −

√(
1 + χ2(P1,P0)

)n − 1

)
1

2

] ∫
Bj

Q0(dx),

where Pi , i ∈ {0,1} is the law of Z(1) when f = f−→
σ with

−→
σ = (i,1, . . . ,1), i ∈ {0,1}, V(P,Q)

is the total variation distance between distribution P and Q and χ2(P,Q) is the χ2 divergence
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between P and Q. Then we can write, if χ2(P1,P0) ≤ C
n

:

sup
−→
σ ∈{0,+1}k

Ef−→
σ ,g0d	

(
Ĝn,m,G�

K

) ≥ c′
k∑

j=1

∫
Bj

Q0(dx) = c′kω, (5.13)

where we use the definition of Q0.
Next step is to find a satisfying upper bound for χ2(P1,P0). We have, by construction of f−→

σ :

χ2(P1,P0) =
∫ [(f−→

σ ,1 − f−→
σ ,0)μ ∗ η]2

f−→
σ ,0 ∗ η

dx

≤
∫ [(f−→

σ ,1 − f−→
σ ,0)μ0 ∗ η]2

f−→
σ ,0μ ∗ η

dx +
∫ [(f−→

σ ,1 − f−→
σ ,0)μ1 ∗ η]2

f−→
σ ,0μ ∗ η

dx.

The right-hand side term can be considered as negligible with a good choice of the parameters a

and b. Hence, we concentrate on the first one. First, remark that for all x ∈ R
2, for some C > 0:

f−→
σ ,0μ ∗ η ≥ C

(1 + x2
1)(1 + x2

2)
, ∀x ∈R

2, and

{
(f−→

σ ,+1 − f−→
σ ,0)μ0

} ∗ η = q−γ kω{ψlρ} ∗ η(x).

Then,

χ2(P1,P0) =
∫
R

∫
R

{(fω11 − fω10) ∗ η(x)}2

fω11 ∗ η(x)
dx

≤ Cq−2γ kω

∫
R

∫
R

(
1 + x2

1

)(
1 + x2

2

){
ψ1ρ ∗ η(x)

}2 dx.

Hence:

χ2(P1,P0) ≤ Cq−2γ kω

∫
R

∫
R

{
ψ1ρ ∗ η(x)

}2 dx + Cq−2γ kω

∫
R

∫
R

x2
2

{
ψ1ρ ∗ η(x)

}2 dx

+ Cq−2γ kω

∫
R

∫
R

x2
1

{
ψ1ρ ∗ η(x)

}2 dx

+ Cq−2γ kω

∫
R

∫
R

x2
1x2

2

{
ψ1ρ ∗ η(x)

}2 dx

:= A1 + A2 + A3 + A4.

In the following, we only consider the bound of A1 = Ckωq−2γ ‖(ψ1ρ) ∗ η‖2, the other terms
being controlled in the same way. From the definition of ψ1 and the conditions on η, we
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get

∥∥(ψ1ρ) ∗ η
∥∥2 =

∫
(ψ1ρ) ∗ η(x)2 dx =

2∏
i=1

∫ ∣∣F [ψ1ρ](ti)
∣∣2∣∣F[ηi](ti)

∣∣2 dti

=
2∏

i=1

∫ ∣∣F[
ρ(2πq·)ρ]

(ti − 4πq)
∣∣2∣∣F[ηi](ti)

∣∣2 dti .

Using (5.2), the Noise assumption, and the fact that q → +∞, we get

∥∥(ψ1ρ) ∗ η
∥∥2 = Cq−2(β1+β2)

2∏
i=1

∫ ∣∣F[
ρ(2πq·)ρ]

(ti − 4πq)
∣∣2 dti

= Cq−2(β1+β2)
∥∥ρ(2πq·)ρ∥∥2

≤ Cq−2(β1+β2)
∥∥ρ(2πq·)∥∥2 ≤ Cq−2(β1+β2)−2.

Similar bounds are available for A2, A3 and A4 as follows. First, note that for all t ∈ R:

F [ψ1ρ](t) = cψq−γF
[
ρ(2πq·)ρ(·)](t ± 4πq),

and

d

dt
F[ψ1ρ](t) = −(

icψq−γ
)2

t ·F[
ρ(2πq·)ρ(·)](t ± 4πq),

for all t in a subset of R having a Lebesgue measure equal to 1. Then since F [ρ] and its weak
derivative are bounded by 1 and supported on [−1;1], we have for instance for A2:

A2 = Cq−2γ kω

∫
R

∫
R

x2
2

{
ψ1ρ ∗ η(x)

}2
dx

≤ Cq−2γ kω

∫
R

∫
R

(
d

dx2
F[ψ1ρ](x)F [η](x)

)2

dx,

which leads to the same asymptotics as in A1. It leads to the following upper bound in the general
d-dimensional case:

χ2(P1,P0) ≤ Cq−2γ−αγ−d−2(β1+β2) ≤ C

n
, with q = n1/(2γ+αγ+d+2(β1+β2)). (5.14)

Now using (5.13),

sup
σ∈{0,1}k

Ef−→
σ
d	

(
Ĝn,m,G�

K

) ≥ c′kω = c′q−αγ = c′n−αγ /(2γ+αγ+d+2(β1+β2)),

which concludes the proof of the lower bound.
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5.2. Proof of Theorem 2

The proof is presented for d = 2 for simplicity whereas straightforward modifications lead to the
d-dimensional case. In the sequel, we identify each ν ∈ �(γ,L) with a set Gν = {x :ν(x) ≥ 0}.
By the same way, we identify G�

K with ν� = f − g. Moreover, we assume for simplicity that
n ≤ m.

5.2.1. A first inequality

For all Gν := {ν ≥ 0}, we have, using the notations of Section 3:

Rλ
n,m(Gν) − Rλ

n,m

(
G�

K

) − Rλ
K(Gν) + Rλ

K

(
G�

K

)
= 1

2n

n∑
i=1

Ui(Gν) + 1

2m

m∑
i=1

Vi(Gν) := 1

2
Tn,m(G),

where, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},
Ui(Gν) = {

hK/G�
K,λ

(
Z

(1)
i

) − hGC
ν ,λ

(
Z

(1)
i

)} −E
[
hK/G�

K,λ

(
Z

(1)
i

) − hGC
ν ,λ

(
Z

(1)
i

)]
,

and

Vj (Gν) = {
hG�

K,λ

(
Z

(2)
j

) − hGν,λ

(
Z

(2)
j

)} −E
[
hG�

K,λ

(
Z

(2)
j

) − hGν,λ

(
Z

(2)
j

)]
.

Then, for all i ∈ {1, . . . , n}, using successively Lemma A.2 in the Appendix and the Margin
assumption (Lemma 2 in [26]) we get:

E
[
Ui(Gν)

]2 ≤ cλ
−2β1
1 λ

−2β2
2 d	

(
Gν,G

�
K

) ≤ c′λ−2β1
1 λ

−2β2
2 df,g

(
Gν,G

�
K

)α/(α+1)
,

and

∣∣Ui(Gν)
∣∣ ≤ C

2∏
i=1

λ
−βi−1/2
i ,

for some constant C > 0. The Bernstein’s inequality leads to

P

(∣∣∣∣∣ 1

n

n∑
i=1

Ui(Gν)

∣∣∣∣∣ > a

)

≤ 2 exp

[
− Cna2

a × λ
−β1−1/2
1 λ

−β2−1/2
2 + λ

−2β1
1 λ

−2β2
2 df,g(Gν,G

�
K)α/(α+1)

]
,

for all a > 0. Since βi > 1/2 for all i ∈ {1, . . . , d}, the particular choice a = df,g(Gν,G
�
K) yields

P

(∣∣∣∣∣ 1

n

n∑
i=1

Ui(Gν)

∣∣∣∣∣ > df,g

(
Gν,G

�
K

))
≤ 2 exp

[−Cnλ
2β1
1 λ

2β2
2 df,g

(
Gν,G

�
K

)2−α/(α+1)]

= 2 exp
[−Cnλ

2β1
1 λ

2β2
2 df,g

(
Gν,G

�
K

)(2+α)/(α+1)]
.
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In the upper bound above, we have implicitly use the fact that df,g(Gν,G
�
K)/2 ≤ (df,g(Gν,G

�
K)/

2)α/(α+1) since df,g(G1,G2) ≤ 2 for all G1,G2 ⊂ K . Using the same algebra on the Vj (Gν),
we get

P
(∣∣Tn,m(Gν)

∣∣ > df,g

(
Gν,G

�
K

)) ≤ 2 exp
[−Cnλ

2β1
1 λ

2β2
2 df,g

(
Gν,G

�
K

)(2+α)/(α+1)]
.

This concludes the first part of the proof. Let t a positive parameter which will be chosen further
and introduce the set G′ defined as

G′ = {
G ∈Nδn , df,g

(
G�

K,G
)
> tδ1+α

n

}
,

where Nδn is the δn-network introduced in Section 3.2, with δn = δn,n. Using the upper bound
above,

P

(
∃G ∈ G ′ :

∣∣Tn,m(G)
∣∣ ≥ 1

4
df,g

(
G,G�

K

))

≤
∑
G∈G′

P

(∣∣Tn,m(G)
∣∣ ≥ 1

4
df,g

(
G,G�

K

))

≤
∑
G∈G′

2 exp
[−Cnλ

2β1
1 λ

2β2
2 df,g

(
G,G�

K

)(2+α)/(α+1)]

≤
∑
G∈G′

2 exp
[−Cnλ

2β1
1 λ

2β2
2

(
tδ1+α

n

)(2+α)/(α+1)]

≤
∑
G∈G′

2 exp
[−Cnλ

2β1
1 λ

2β2
2 t (2+α)/(α+1)δ2+α

n

]
.

Since log card(Nδn) ≤ Aδ
−2/γ
n , we get

P
(∃G ∈ G′ :

∣∣Tn,m(G)
∣∣ ≥ 1

4df,g

(
G,G�

K

)) ≤ exp
[
Aδ

−2/γ
n − Cnλ

2β1
1 λ

2β2
2 t (2+α)/(α+1)δ2+α

n

]
.

Thanks to the value of δn, we get δ
−2/γ
n � nλ

2β1
1 λ

2β2
2 δ2+α

n . Hence, for t large enough,

P

(
∃G ∈ G ′ :

∣∣Tn,m(G)
∣∣ ≥ 1

4
df,g

(
G,G�

K

))

≤ exp
[−Ctδ

−2/γ
n

]
(5.15)

= exp

[
−Ct

(
λ

−β1
1 λ

−β2
2√

n

)−(2/γ )(2/(2/γ+2+α))]
.

Now, using Lemma A.1 in the Appendix, we can find a set Gn ∈ Nδn such that:

df,g

(
Gn,G

�
K

) ≤ c2
∥∥ν∗ − νn

∥∥α+1
∞ ≤ c2δ

1+α
n .
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Then, for all G ∈ G′, we get

1

8
df,g

(
G,G�

K

) − 3

4
df,g

(
Gn,G

�
K

) ≥ t

8
δ1+α
n − 3c2

4
δ1+α
n ≥ c2

4
δ1+α
n ,

provided that t > 8c2. We eventually obtain:

P
(
df,g

(
G�

K, Ĝn,m

)
> tδ1+α

n

)
≤ P

(∃G ∈ G′ :Rλ
n,m(G) ≤ Rλ

n,m(Gn)
)

(5.16)

= P
(∃G ∈ G′ : 1

2dλ
f,g

(
G,G�

K

) + Tn,m(G) − 1
2dλ

f,g

(
Gn,G

�
K

) − Tn,m(Gn) ≤ 0
)
,

where for all G1,G2 ⊂ K ,

1
2dλ

f,g(G1,G2) := Rλ
K(G1) − Rλ

K(G2).

5.2.2. Control of the bias

Last step is to control the bias term. In particular, given G1,G2 ⊂ K , we want to measure the
difference between RK(G1) − RK(G2) and Rλ

K(G1) − Rλ
K(G2). First of all, we have to explicit

the term Rλ
K . Recall that for all G1 ⊂ K ,

2Rλ
K(G1) := 2ERλ

n,m(G1)

= E
[
hK/G1,λ

(
Z

(1)
1

)] +E
[
hG1,λ

(
Z

(2)
1

)]
= E

[∫
K/G1

1

λ
Kη

(
Z

(1)
1 − x

λ

)
dx

]
+E

[∫
G1

1

λ
Kη

(
Z

(2)
1 − x

λ

)
dx

]

=
∫

K/G1

E

[
1

λ
Kη

(
X

(1)
1 + ε

(1)
1 − x

λ

)]
dx +

∫
G1

E

[
1

λ
Kη

(
X

(2)
1 + ε

(2)
1 − x

λ

)]
dx.

Using the properties of the deconvolution kernel, we can see that for all x ∈ K ,

E

[
1

λ
Kη

(
X

(1)
1 + ε

(1)
1 − x

λ

)]
= E

[
1

λ
K

(
X

(1)
1 − x

λ

)]
=

∫
Rd

1

λ
K

(
y − x

λ

)
f (y)dQ(y).

The same result holds true when replacing X
(1)
1 by X

(2)
1 and f by g. Hence, we obtain that

2Rλ
K(G1) =

∫
K/G1

∫
Rd

1

λ
K

(
y − x

λ

)
f (y)dQ(y)dx +

∫
G1

∫
Rd

1

λ
K

(
y − x

λ

)
g(y)dQ(y)dx.

Moreover, if Q is not the Lebesgue measure, note that by assumption, there exists a constant
c0 > 0 such that: ∫

G1	G2

dx ≤ c−1
0 d	(G1,G2). (5.17)
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We then have:∣∣(Rλ
K − RK

)
(G1 − G2)

∣∣
≤ 1

2

∣∣∣∣
∫ [∫

1

λ
K

(
y − x

λ

)
f (y)μ(y)dy − f (x)μ(x)

][
1(x ∈ K/G1) − 1(x ∈ K/G2)

]
dx

+
∫ [∫

1

λ
K

(
y − x

λ

)
g(y)μ(y)dy − g(x)μ(x)

][
1(x ∈ G1) − 1(x ∈ G2)

]
dx

∣∣∣∣
≤ 1

2

∫
G1	G2

∣∣Kλ ∗ (
ν� · μ)

(x) − ν� · μ(x)
∣∣ dx

≤ 1

2c0

∥∥Kλ ∗ (
ν� · μ) − ν� · μ∥∥∞

∫
G1	G2

dx

≤ Cd	(G1,G2)
[
λ

γ

1 + λ
γ

2

]
≤ C

[
λ

γ

1 + λ
γ

2

]
df,g(G1,G2)

α/(α+1),

for some C > 0, where Kλ(·) = 1
λ
K(·/λ). Indeed, provided that νμ ∈ �(γ,L) and K is a kernel

of order l = �γ �, it is well known that:∥∥Kλ ∗ (νμ) − νμ
∥∥∞ ≤ C

[
λ

γ

1 + λ
γ

2

]
. (5.18)

This bound is sufficient for the case α = 0. If α > 0, using the Young inequality:

xyr ≤ ry + (1 − r)x1/(1−r), ∀x, y ∈R
+,

with r = α/(α + 1), x = Cκ−α/α+1[λγ

1 + λ
γ

2 ] and y = κdf,g(G1,G2), where κ > 0 is chosen
later on, we get for all G1,G2 ⊂ K :

∣∣(Rλ
K −RK

)
(G1 −G2)

∣∣ ≤
(

1− α

α + 1

)(
C

κ

)α[
λ

γ

1 +λ
γ

2

]α+1 + α

α + 1
κdf,g(G1,G2). (5.19)

5.2.3. Conclusion of the proof

Hence, it follows from (5.16) and (5.19) that if α > 0, by choosing κ = (α + 1)/(4α):

P
(
df,g

(
G�

K, Ĝn,m

)
> tδ1+α

n

)
≤ P

(
∃G ∈ G′ :

(
1

2
− α

α + 1
κ

)
df,g

(
G,G�

K

) + Tn,m(G)

−
(

1

2
+ α

α + 1
κ

)
df,g

(
Gn,G

�
K

) − Tn,m(Gn) + C

2∑
i=1

λ
γ (1+α)

i ≤ 0

)

≤ P

(
∃G ∈ G′ :Tn,m(G) ≤ −1

8
df,g

(
G,G�

K

))
+ P

(
Tn,m(Gn) ≥ C

(
δ1+α
n +

2∑
i=1

λ
γ (1+α)

i

))
.
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Note that the same inequalities hold for α = 0 using the crude bound:∣∣(Rλ
K − RK

)
(G1 − G2)

∣∣ ≤ C
[
λ

γ

1 + λ
γ

2

]
.

In order to conclude, remark that the proposed choice of (λj )j=1,2 provides:

δ1+α
n �

2∑
i=1

λ
γ (1+α)

i ⇔ ∀i ∈ {1,2},
(

λ
−β1
1 λ

−β2
2√

n

)(2γ (α+1))/(γ (2+α)+2)

� λ
γ (α+1)

i .

Using (5.15), we eventually get

P
(
df,g

(
G�

K, Ĝn,m

)
> tn−(γ (α+1))/(γ (2+α)+2+2

∑2
i=1 βi)

)
≤ exp

[−C1tn
1/(γ (2+α)+2+2

∑2
i=1 βi)

] + exp
[−C2n

1/(γ (2+α)+2+2
∑2

i=1 βi)
]
,

where C1, C2 denote positive constants. In order to conclude, we can remark that

nτd(α,β,γ )
Ef,gdf,g

(
G�

K, Ĝn,m

)
≤ t +Ef,gdf,g

(
G�

K, Ĝn,m

)
1{df,g(G�

K,Ĝn,m)>tn
−γ (α+1)/(γ (2+α)+d+2

∑d
i=1 βi )}

≤ t + 2 exp
[−C1tn

1/(γ (2+α)+2+2
∑2

i=1 βi)
] + 2 exp

[−C2n
1/(γ (2+α)+2+2

∑2
i=1 βi)

] ≤ C

for some positive constant C, where we have used the bound df,g(G1,G2) ≤ 2 for all
G1,G2 ⊂ K .

5.3. Proof of Corollary 1

The proof follows the same steps as the proof of Theorem 2. Note that in the direct case, using a
kernel K with bounded Fourier transform, we have under the Margin assumption:

E
[
Ui(G)2] ≤ Cd	

(
G,G�

K

) ≤ C′df,g

(
G,G�

K

)α/(α+1) and
∣∣Ui(G)

∣∣ ≤ C,

for some constant C > 0. Remark that the last inequality is more precise than in the error-in-
variable case. Then using Bernstein’s inequality, we have exactly as in the proof of Theorem 2:

P

(∣∣∣∣∣ 1

n

n∑
i=1

Ui(Gν)

∣∣∣∣∣ > a

)
≤ 2 exp

[
− Cna2

a + d	(Gν,G
∗
K)

]
,

for all a > 0. Choosing a = df,g(Gν,G
�
K) and using the same algebra, we get a control of the

upper bound provided that:

δ
−2/γ
n � nδ2+α

n and δ1+α
n ≥

2∑
i=1

λ
γ (1+α)

i .

The choice of λ and δn in Corollary 1 concludes the proof.
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Appendix

Lemma A.1. For any (f, g) satisfying the Margin assumption with parameter α > 0, we have:

df,g

(
Gν,G

�
K

) ≤ c2
∥∥ν − ν�

∥∥α+1
∞ ,

where Gν = {ν ≥ 0} and ν� = f − g.

Proof. The proof is a straightforward modification of the proof of Lemma 5.1 in [2] which state
a similar result in the binary classification framework. In the following, given x ∈ R, we write
sign(x) = 1 if x > 0, sign(x) = 0 if x = 0, and sign(x) = −1 if x < 0. Then, we get

df,g

(
Gν,G

�
K

) =
∫

K

∣∣ν�(x)
∣∣1{x∈G�

K	Gν } dQ(x)

=
∫

K

∣∣ν�(x)
∣∣1{sign(ν�(x)) 
=sign(ν(x))} dQ(x)

≤
∫

K

∣∣ν�(x)
∣∣1{0<|ν�(x)|≤|ν(x)−ν�(x)|} dQ(x)

≤ ∥∥ν − ν�
∥∥∞Q

({
x ∈ K : 0 <

∣∣ν�(x)
∣∣ ≤ ∥∥ν − ν�

∥∥∞
}) ≤ c2

∥∥ν − ν�
∥∥α+1

∞ ,

where we have used the Margin assumption in order to get the last inequality. �

Lemma A.2. Assume that η satisfies the Noise assumption. Let Kη a deconvolution kernel de-
fined in (3.1) such that F [K] is bounded and compactly supported. If Q(x) = μ(x)dx, we as-
sume that minx∈K μ(x) ≥ c0 for some c0 > 0. Then, we have,

(i) E
[
hG,λ(Z) − hG′,λ(Z)

]2 ≤ Cd	

(
G,G′) d∏

i=1

λ
−2βi

i ,

(ii) sup
x∈K

∣∣hG,λ(x) − hG′,λ(x)
∣∣ ≤ C

d∏
i=1

λ
−βi−1/2
i ,

for some generic constant C > 0.

Proof. For the sake of convenience, we only consider the case where d = 1. We first prove (i).
We have, using (5.17):

E
[
hG,λ(Z) − hG′,λ(Z)

]2

=
∫
R

[∫
R

1

λ
Kη

(
z − x

λ

)
(1{x∈G} − 1{x∈G′})1{x∈K} dx

]2

(f μ) ∗ η(z)dz

≤ c

∫
R

1

λ2

∣∣F[
Kη(·/λ)

]
(t)

∣∣2∣∣F[
(1{·∈G} − 1{·∈G′})1{·∈K}

]
(t)

∣∣2 dt



206 S. Loustau and C. Marteau

≤ C max
x∈Rd

μ(x) × λ−2β

∫
K

1{t∈G	G′} dt

≤ Cλ−2βd	

(
G,G′).

Indeed, for all s ∈R, using assumptions on the kernel Kη:

1

λ2

∣∣F[
Kη(·/λ)

]
(s)

∣∣2 = ∣∣F [Kη](sλ)
∣∣2 =

∣∣∣∣F[K](sλ)

F[η](s)
∣∣∣∣
2

(A.1)

≤ C sup
s∈[−M/λ,M/λ]

∣∣∣∣ 1

F[Kη](s)
∣∣∣∣
2

≤ Cλ−2β,

where F [K] = 0 on R \ [−M,M].
In order to prove (ii), we use the following algebra

sup
z∈R

∣∣hG,λ(z) − hG′,λ(z)
∣∣ ≤ sup

z∈R

∫
G	G′

1

λ

∣∣∣∣Kη

(
z − x

λ

)∣∣∣∣ dx

≤ C sup
z∈R

∫
K

1

λ

∣∣∣∣Kη

(
z − x

λ

)∣∣∣∣ dx

≤ C sup
z∈R

√∫
1

λ2
K2

η

(
z − x

λ

)
dx

≤ Cλ−1/2

√∫
[−M,M]

∣∣∣∣ F[K](t)
F[η](t/λ)

∣∣∣∣
2

dt

≤ Cλ−β−1/2,

where last line uses the Noise assumption and assumptions on the kernel Kη. �
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