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Outline of the manuscript

This manuscript intends to summarize my research activities since I have obtained an as-
sistant professor position in Toulouse. Since September 2008, I get the opportunity to extend
my investigations that started during my PhD. Thesis. I get the chance to work with several
different colleagues, working on amazing different topics.

The goal of the present document is not to provide an exhaustive list of my different con-
tributions (I refer to my personal bibliography at the end of this document). In the following,
I will rather try to explain how my different contributions are related. Then, I will provide a
short overview of possible outcomes. This manuscript is decomposed in two different chapters.

Some contributions in non-parametric statistical inverse problems

In this first chapter, I will provide a brief introduction on statistical inverse problems. We
will therein discuss several different models with associated problematics falling in this scope.
In a first time, we briefly discuss both Gaussian white noise and error-in-variables models. Some
attention will also be payed to the shifted curves model that has been widely investigated last
years.

In a second time, I will briefly present my different contributions in these different topics. Few
results and proofs will be given: the interested reader will be referred to the corresponding papers
for more details. To this end, the list of my different contributions with complete references is
provided at the end of this manuscript.

Direct methods for inverse problems

The Chapter 2 contains few formal results. In this part, we show that there exist alternatives
to existing statistical procedures in an inverse problem context. For instance, in a testing frame-
work, the inversion of the operator does not appear to be always necessary. In particular,we
propose procedures that provides satisfying (minimax) behavior without inversion of an operator.

In a second time, we will see that this principle could be certainly extended to a large
amount of different topics. This part is completely heuristic: no formal result are available
at the present time and only informal discussions will be provided. In particular, the aim is
to highlight the links between the different topics I have considered since I began to work in
mathematical statistics. The different contributions that I have proposed in non-parametric
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estimation, testing theory or binary classification can indeed be related.

I will conclude this second chapter by some general perspectives in non-parametric statistics,
that do not necessarily concern an inverse problem setting.
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Chapter 1

Some contributions in
non-parametric statistical inverse
problems

In this chapter, we introduce some statistical inverse problem models. In the first section, we
briefly explain and discuss the corresponding problematics and the main related outcomes. The
second section is devoted to a presentation of my different contributions in these models.

1.1 Statistical inverse problems

Inverse problems arise in many different fields and are the core of many theoretical and practical
investigations. Although it may be possible to provide a general description of such models,
it is important to note that statistical inverse problems are related to a large amount of dif-
ferent situations, with different related methodologies. This is a fascinating particularity of
this topic. Below, we briefly discuss the properties of statistical inverse problems (and related
compact operators). Then, we will present some practical examples and associated problematics.

A statistical inverse problem can be characterized as follows. Given X and Y two Hilbert
spaces, one want to provide some inference on an unknown target f ∈ X . To this end, we assume
that we have at our disposal noisy and indirect observations. In several cases, we assume that
we observe

Af + ”noise”, (1.1)

where A : X → Y denotes an operator. In some sense, the object of interest f is distorted,
and the operator A characterizes this distortion. The noise term can model several different
situations. The properties and the behavior of this noise term will be described bellow.

The operator A and its related properties are of first importance. Indeed, in order to provide
some inference on f from (1.1) , we will have to investigate the properties of Af . In many cases
it will then be necessary to provide a (generalized if necessary) inverse of A.

In this manuscript, we will only deal with compact operator A. These operators are
very interesting from a mathematical point of view. This is due in particular to the following
proposition.



1.1. STATISTICAL INVERSE PROBLEMS C. MARTEAU

Proposition 1 Let A : X → Y a compact operator. Then

‖(A∗A)−1‖ = sup
x∈X ,‖x‖=1

‖(A∗A)−1x‖ = +∞,

where A∗ denotes the adjoint operator of A.

There exists several different kind of compact operators, leading to various inverse problems.
We refer for instance to [46] for a review of classical inverse problems. Below, we provide three
examples that often arise in the literature.

• Convolution operator. Set X = Y = L2(R), and g ∈ L1(R). The convolution operator
A is then defined as

Af(x) =

∫
R
g(y)f(x− y)dy, ∀x ∈ R, f ∈ L2(R).

The function g is called convolution kernel. Hereafter, we will often write Af = f ∗ g,
where ∗ denotes the convolution product.

• Integration operator. Set X = Y = L2([0, 1]). For all f ∈ L2([0, 1]), we define the
integration operator as

Af(t) =

∫ t

0
f(x)dx.

In such a setting, providing inference on f amounts to study the first derivative of Af . In
such a case, the corresponding model (1.1) turns to be a differentiation problem.

• Radon transform. The Radon transform arises in medical applications. Let H be the
unit disk on R2. The aim is to provide inference on the spatially varying density f of
a cross section D ⊂ H of an human body. This inference is provided via observation
obtained by non-destructive imagery, namely X-ray tomography. In such a case, given a
function f ∈ L2(H), one measure Rf(u, ϕ) which corresponds to the decay of the intensity
of the X-ray in the direction ϕ when the receiver is at a distance u. Typically, we have

Rf(u, ϕ) =
π

2
√

1− u2

∫ √1−u2

−
√

1−u2
f(u cos(ϕ)− t sin(ϕ), u sin(ϕ) + t cos(ϕ))dt,

for all (u, ϕ) ∈ [0, 1]× [0, 2π).

The main consequence of Proposition 1 is that A∗A is not continuously invertible. Hence,
nothing guarantees that a small amount of noise will provide a solution close to the target with
rough (for instance least-square) methods. In order to overcome this problem, several approaches
have been proposed in the literature. These methods are called regularization algorithms and
will be briefly discussed in the following sections.

Below, we introduce and present three different inverse problem models. In each case, we
explicit conditions on the noise term in (1.1) and discuss some related challenging problems.

2



C. MARTEAU 1.1. STATISTICAL INVERSE PROBLEMS

1.1.1 Gaussian white noise model

The Gaussian white noise model has received a lot of attention over last years. Although it
covers several practical situations, this model is often considered as a toy-model. In particular,
it allows a sharp study and a deep understanding of all the difficulties and outcomes related to
inverse problems. In such a setting, we assume that we observe

Y = Af + εξ, (1.2)

where A : X → Y is a compact operator, ε a positive noise level. In the numerical inverse
problem literature, the noise ξ is assumed to be deterministic and bounded. In a statistical
framework, we assume that this noise is Gaussian and white. In this case, the Gaussian white
noise model (1.2) is a slight abuse of notation. In fact, one assume that we observe

〈Y, g〉 = 〈Af, g〉+ ε〈ξ, g〉, ∀g ∈ Y, (1.3)

and that for all g, g1, g2 ∈ Y, one has

〈ξ, g〉 ∼ N (0, ‖g‖2), and E [〈ξ, g1〉〈ξ, g2〉] = 〈g1, g2〉.

Now, the following question arises: having at hand Y following the model (1.2), how can we
provide some inference on f?

Suppose that Y ∈ Y. In a such a situation, it would be natural to estimate f via the least
square methods, namely

f̂LS = arg min
ν∈X
‖Y −Aν‖2 = (A∗A)−1A∗Y,

where A∗ denotes the adjoint of A. Nevertheless, as discussed in Proposition 1, the operator
A∗A is not continuously invertible. Hence, it is not possible to control the associated quality of
reconstruction. A possible outcome is to impose a constraint on the estimator in order to ensure
the stability. As an example, we can mention for instance the Tikhonov estimator defined as

f̂τ := arg min
ν∈H

[
‖Y −Aν‖+ τ‖ν‖2

]
,

where τ denotes a so-called regularization parameter. This method can be seen as a generalization
of the least-square algorithm where one impose some constraint on the recovered function f ,
here a control on the norm. In particular, it is possible to prove that

f̂τ = (A∗A+ τI)−1A∗Y := gτ (A∗A)A∗Y.

Roughly speaking, the parameter τ hence control the level of the constraint on the norm of f .
Small values of τ will provide solution close to the least-square estimator, while large values of
τ will induce bias in the estimation.

Several alternative approaches have been proposed over years. In each cases, the proposed
algorithms replace the operator (A∗A)−1 by gτ (A∗A) for some function gτ . The so-called regu-
larization parameter controls the proximity between gτ (A∗A) and (A∗A)−1. More precisely, we
will require the following properties for the function gτ .

3
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Definition 1 A family of functions

gτ : (0, ‖A?A‖]→ R, τ ∈ (0, ‖A?A‖],

is called a regularization family if the functions gτ are piece-wise continuous in τ and if the
following properties holds:

• For all 0 < t ≤ ‖A?A‖, we have |rτ (t)| := |1− tgτ (t)| → 0 as τ → 0,

• There exists a constant γ1 such that

sup
0<t≤‖A?A‖

|rτ (t)| ≤ γ1,

for all τ ∈ (0, ‖A?A‖],

• There exists a constant γ? such that

sup
0<t≤‖A?A‖

τ |gτ (t)| ≤ γ?,

for all 0 < τ < +∞.

For more details, we refer for instance to [46], [54], [78].

Concerning the estimation issue, the choice of the regularization parameter and the study
of the related (quadratic) risk in this setting has concentrated a lot of attention in the two last
decades. We will mention [14], [15], [79] or [78] among others.

As a particular case of the previous approach, the spectral regularization provides interesting
properties. The main underlying idea is to project the observation in a particular basis of X , for
which the representation matrix of A∗A will be diagonal. This basis is associated to the singular
value decomposition (b2k, φk, ψk)k∈N of A∗A, where for all k ∈ N,{

Aφk = bkψk,
A∗ψk = bkφk.

Then, for all k ∈ N, replacing g by ψk in (1.3), we obtain the sequence space model

yk := 〈Y, ψk〉 = bkθk + εξk, ∀k ∈ N, (1.4)

where θk := 〈f, φk〉 for all k ∈ N and the ξk are i.i.d. standard Gaussian random variables. Such
a model appears to be an interesting generalization of classical non-parametric direct model for
which bk = 1 for all k ∈ N (see for instance [88] or [3]).

In this setting, a regularization method gτ can be identified to a linear (spectral) estimator
defined as

f̂λ =
∑
k∈N

λk(τ)b−1
k yk, (1.5)

where λ(τ) = (λk(τ))k∈N denotes a filter, i.e. a real sequence having values in [0, 1]. In partic-
ular, the spectral cut-off (projection) filter λk(τ) = 1{k≤τ−1} for some τ−1 ∈ N has attracted a

4
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lot of attention over years. For more details on such a model and related issues, we mention for
instance [31].

In an estimation purpose, it is then possible to measure the error associated to such a linear
estimator via its quadratic risk R(θ, λ) defined as

R(θ, λ) := Ef‖fλ − f‖2 =

+∞∑
k=1

(1− λk(τ))2θ2
k + ε2

+∞∑
k=1

λ2
k(τ)b−2

k .

Such a term can be controlled uniformly over wide smoothness classes of functions with an
appropriate choice for τ (minimax point of view), or compared with the smallest possible one
when we consider data-driven choices for τ (this is the oracle point of view). Different kind of
inference are also available: signal detection, estimation of quadratic functional, and so on...
Some of these topics will be detailed in Section 1.2 bellow.

Remark: In order to get the sequence space model (1.4), we have projected the observations
in the basis associated to the singular value decomposition of the operator A. In some sense,
this basis is optimal w.r.t. the operator. Nevertheless, this basis may not be convenient for the
signal of interest. For instance, the eigenvectors of the convolution operator correspond to the
real trigonometric basis. This basis does not describe non-continuous signals in a convenient
way.

In order to overcome this drawback, alternative strategies have been proposed in the last
twenty years: wavelet-vaguelette decomposition in [40], projection on Meyer wavelet basis in
[66] (or more recently [10]) for convolution problems, or construction of alternative bases as in
[69].

1.1.2 Error-in-variables model

Assume that we have at our disposal a sample S = (X1, . . . , Xn) of i.i.d. random variables,
having a common density f with respect to the Lebesgue measure. Classical non-parametric
problems in this setting are related to the estimation of alternatively f , a functional of f or
by the construction of goodness-of-fit testing procedures. In each case, one want to provide a
precise study of minimax rates of convergence associated to given smoothness constraints (see
[88]), or a precise description of minimax separation rates when working in a testing framework
(see [4], [17] or Section 1.2 for a formal definition).

In order to provide some inference on the function f (in an estimation purpose for instance),
several methods have been proposed. For instance, one can use a kernel estimator defined as

f̃λ(x) =
1

nλ

n∑
i=1

K
(
Xi − x
λ

)
, ∀x ∈ R, (1.6)

where K denotes a kernel (K ∈ L2(R),
∫
RK(x)dx = 1) and λ ∈ R+ is a bandwidth. In particular,

for all x ∈ R,

E[f̃λ(x)] =
1

λ
E
[
K
(
X1 − x
λ

)]
=

1

λ

∫
R
K
(
y − x
λ

)
f(y)dy := Kλ ∗ f(x),

5
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Kλ = λ−1K(./λ). It is then possible to control the proximity between Kλ ∗ f and f assuming
some smoothness properties (often characterized by the decay of the Fourier transform of f).
Following the purpose (estimation, test, ...), this allows to establish upper bounds for the mini-
max rate of convergence. For more details, we refer for instance to [88].

When dealing with the sample S, one implicitly assume that each observation is perfectly
gathered, i.e. that we observe the Xi with no error. Nevertheless, in several practical situations
(see [17], [81], or [57]), it is rather natural to assume that these observations are associated to
some error measurements: the Xi are not observable, but only noisy approximations of the form

Zi = Xi + εi, ∀i ∈ {1, . . . , n}. (1.7)

where the εi denote observations errors. These random variables are assumed to be i.i.d., in-
dependent of the Xi, with common density η w.r.t. the Lebesgue measure. This density will
assumed to be known in the following.

In the model (1.7), it is not possible to replace the Xi by observations Zi in the kernel
estimator (1.6). Indeed, since the variables of interest Xi are independent of the measurement
errors, the density of the Zi corresponds to the convolution product f ∗ η. Hence,

E[f̃λ(x)] =
1

h
E
[
K

(
Zi − x
h

)]
=

1

h

∫
R
K

(
y − x
h

)
f ∗ η(y)dy := Kλ ∗ {f ∗ η}(x),

where f̃λ is the kernel estimator (1.6) (replacing theXi by the Zi). In general, the termKλ∗{f∗η}
does not provide a good approximation of the unknown target f , even under strong smoothness
assumptions. We are in fact faced to an inverse (convolution) problem. As in the Gaussian
white noise model, it is necessary to introduce a regularization (deconvolution) step if one want
to recover the function f .

In this context, the construction of a deconvolution estimator is generally based on Fourier
calculus. In the following, given a function g ∈ L2(R), we denote by F [g] its corresponding
Fourier transform. It appears that

F [f ∗ η] = F [f ]×F [η].

In the frequency domain, the operator has a multiplicative effect on the unknown signal f . In
order to guarantee some identifiability properties, we will assume that F [η](t) > 0 for all t ∈ R.
This property provides a first (naive) approach. One can for instance compute the empirical
Fourier transform of f ∗η from the Zi, and then divide this term by F [η] (which is allowed since
the density η is assumed to have a non-null Fourier transform). Nevertheless, since η ∈ L2(R),
its Fourier transform is close to 0 for large frequencies, hence leading to an unstable estimator.

In order to get round of this effect, a classical approach consists in introducing a regularization
step. As before, let K be a kernel, with associated Fourier transform F [K] and let λ > 0 be a
given bandwidth. The related deconvolution kernel Kη is then defined as

F [Kη](.) =
F [K](.)

F [η](./λ)
⇔ Kη(.) =

∫
R
eit.
F [K](t)

F [η](t/λ)
dt. (1.8)

6
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A particular interesting example is the sinc kernel, defined as K(x) = sin(πx)/(πx) for all x ∈ R.
Indeed, with such a kernel, we get

F [K](t) = 1{t∈[−1;1]}, and Kη(.) =

∫ 1/λ

−1/λ
eihs.F−1[η](s)ds. (1.9)

The deconvolution kernel Kη hence corresponds in this case to a projection (spectral cut-off)
estimator of f . Remark that there a strong analogy with the spectral cut-off estimator defined
in (1.5) in the Gaussian white noise model.

Now, we have all the requirements in order to construct a (deconvolution) estimator of the
unknown density of f from the noisy data (1.7). For all x ∈ R, define f̂λ(x) as

f̂λ(x) =
1

nλ

n∑
i=1

Kη
(
Zi − x
λ

)
.

Then, we can investigate basic properties of this estimator. Concerning the expectation of f̂λ,
for all x ∈ R, we get

E
[
f̂λ(x)

]
=

1

λ
E
[
Kη
(
Z1 − x
λ

)]
,

=
1

λ
E
[∫

R
e
it
(
Z1−x
λ

)
F [K](t)

F [η](t/λ)
dt

]
,

=
1

λ
E
[∫

R
e
it
(
X1+ε1−x

λ

)
F [K](t)

F [η](t/λ)
dt

]
,

=
1

λ
E
[∫

R
e
it
(
X1−x
λ

)
F [K](t)

F [η](t/λ)
E
[
eitε1/λ/X1

]
dt

]
,

=
1

λ
E
[∫

R
e
it
(
X1−x
λ

)
F [K](t)dt

]
,

=
1

λ
E
[
K
(
X1 − x
λ

)]
. (1.10)

Indeed, for all t ∈ R,

E
[
eitε1/λ/X1

]
=

∫
R
e
its
λ η(s)ds = F [η](t/λ).

Hence, the expectation of is exactly the same than in the free-noise case (εi = 0):

E
[
f̂λ(x)

]
= E

[
f̃λ(x)

]
=

1

λ
E
[
K
(
X1 − x
λ

)]
= Kλ ∗ f(x), ∀x ∈ R.

We can now describe the behavior of the quadratic risk associated to such kind of estimator.
For the sake of readability , we will deal with the sinc kernel introduced above. Using similar
computations, we get

E‖f̂h − f‖2 = ‖Kλ ∗ f − f‖2 + E‖f̂h −Kλ ∗ f‖2,

≤ ‖Kλ ∗ f − f‖2 +
1

λ2

∫
R

∣∣K2
η(z/λ)

∣∣2 dz,
≤ ‖Kλ ∗ f − f‖2︸ ︷︷ ︸

Bias

+
C

λ
sup

t∈[−1/λ;1/λ]
F−2[η](t)︸ ︷︷ ︸

Variance

,

7
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for some constant C > 0. In the free noise case (i.e. when ε = 0), the variance term can be
bounded by 1/λ. When controlling the quadratic risk in an estimation purpose, one has to find
a trade-off between bias and variance under some smoothness assumptions in order to derive
a minimax rate of convergence. In the error in variable model, the variance is larger since it
involves F−1[η](t), the inverse of Fourier transform of η. This term explodes as t → +∞. In
such a case, it is necessary to introduce assumptions on the behavior of this term (and conditions
on the kernel K) in order to get rates of convergence.

A large amount of statistical issues can be investigated when dealing with the model (1.7).
We refer for instance to [49] for seminal investigations in this context, [20], [18], [37] for recent
contributions, [81] for a review of existing method in an estimation purpose or [17], [57] in a
goodness-of-fit testing setting. Some contributions in binary supervised classification and testing
theory are provided in Section 1.2.

1.1.3 Shifted curves model

The shifted curves model appears to be an interesting example of inverse problems with random
operator. It provides surprising and interesting outcomes. In this setting, we assume that we
can observe n noisy curves, which may be seen as realisations of the following processes

dYj(t) = f(t− τj)dt+ εdWj(t), j = 1 . . . n, (1.11)

where f ∈ L2([0, 1]) denotes the unknown 1-periodic function of interest (common to all obser-
vations), ε a positive noise level and the Wj independent Brownian motions. The sequence (τj)j
represents i.i.d. random variables. These variables are supposed to admit a common known
density g w.r.t. the Lebesgue measure, but are not observable. For such a model, one can
alternatively be interested in the estimation of the law of the shifts as in [24], [35] [11], [91] or in
the estimation of the common shape f as in [10]. We will focus on this last task in the sequel.

In this context, in an asymptotic purpose, we will assume that the noise level is fixed, but
that the number n of observed curves tends to infinity. Following [10], it is possible to prove
that the related estimation problem can be characterized as an inverse problem. We will not
dwell into details concerning this assertion. We will just remark that for all j ∈ {1, . . . , n} and
t ∈ R, we have E[Yj(t)] = f ∗ g(t) where f ∗ g denotes the convolution product between f and
g. Hence, computing for instance the empirical Fourier coefficient of the observations will not
suffice. We have to introduce a regularization (deconvolution) step.

In the following, for all k ∈ Z, we denote by θk the kth Fourier coefficient of the function f ,
defined as

θk =

∫ 1

0
e−2ikπxf(x)dx.

Hence, using the model (1.11) and the properties of the Gaussian white noise, we can observe,
for all k ∈ Z, j ∈ {1, . . . , n},

cj,k :=

∫ 1

0
e−2ikπxdYj(x) = θke

−i2πkτj + εzk,j (1.12)

8
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where zk,j are i.i.d. NC (0, 1) variables, i.e. complex Gaussian random variables with zero mean
and such that E|zk,j |2 = 1. Then, for all k ∈ Z, computing the empirical mean of the cj,k, we
get

yk :=
1

n

n∑
j=1

cj,k = θk ×
1

n

n∑
j=1

e−i2πkτj + ε
1

n

n∑
i=1

zk,j := γ̃kθk +
ε√
n
ξj , (1.13)

with

γ̃k =
1

n

n∑
j=1

e−i2πkτj ∀k ∈ Z,

and where the ξk are i.i.d. standard Gaussian (complex) random variables. The model (1.13)
more or less corresponds to the sequence space model associated to (1.11). Remark that using
this formulation, we can find strong analogies with the Gaussian white noise model described
in (1.4). The main difference is contained in the expression of the eigenvalues γ̃k. Indeed, the
γ̃k corresponds to the empirical Fourier coefficients of the density g which describes the law of
the shifts. Since the realization of the shifts are not observable, the γ̃k are unknown. Hence, we
can not use the sequence (γ̃−1

k yk)k∈N in order to estimate the corresponding coefficient θk. In
some sense, we are face to a random inverse problem, in the sense that the involved operator is
random and unobservable.

In order to get round of this problem, we can remark that due to the law of large numbers

γ̃k
P→ γk :=

∫
R
eitxg(t)dt, ∀k ∈ Z, as n→ +∞,

where the convergence holds in probability, and the γk corresponds to the Fourier coefficients
of the density g. Since this density is assumed to be known, we are able to compute these
coefficients. In this context, each coefficient θk can be estimated by γ−1

k yk. Using (1.13), it
appears that

γ−1
k yk = θk +

ε√
n
γ−1
k ξk +

(
1− γ̃k

γk

)
θk, k ∈ Z. (1.14)

Using this formulation we can remark that we deal with two random sources: the first one
depends on both the noise level ε and the number of observed curves n. It is rather classical in
the sense that it corresponds to the expression of the noise in standard non-parametric model
(except that the noise level depends on two different parameters). The second random source is
related to the fact that we approximate a random operator by a deterministic one. The corre-
sponding approximation term only depends on n and has to be considered carefully.

As for the Gaussian white noise model, we can construct linear estimators from the sequence
γ−1
k yk. Many statistical issues are then of first interest (estimation, model selection, test, etc...).

Some of them will be briefly described below.

1.1.4 Econometric models

The econometric theory provides to the statistician several different models that are of first
interest from a mathematical point of view. I will not try to provide an exhaustive list, but
rather focus on one of them: the instrumental variable regression model.

9



1.1. STATISTICAL INVERSE PROBLEMS C. MARTEAU

We assume that we have at hand a sample (Yi, Xi,Wi)i=1...n satisfying

Yi = ϕ(Xi) + Ui and E[Ui/Wi] = 0 ∀i ∈ {1, . . . , n}, (1.15)

where ϕ denotes the function of interest and Ui noise measurements. The sequence (Wi)i=1...n is
called an instrument. When Wi = Xi , we obtain the classical model of regression with a random
design. In an estimation purpose, one can use for instance a model selection approach: see for
instance [3] or [1] among others. In the model (1.15), the noise (Ui)i=1...n is not assumed to be
centered conditionally to the design. As proved in [32], we are in fact faced to an inverse problem.

In order to shed light on this assertion, first introduce the space L2
X and L2

W respectively
defined as

L2
X =

{
h : R→ R, ‖h‖2X := E[h2(X)] < +∞,

}
,

and
L2
W =

{
g : R→ R, ‖g‖2W := E[g2(W )] < +∞,

}
.

We denote by 〈., .〉X and 〈., .〉W the corresponding scalar products. Then, the model (1.15) can
be rewritten as follows. For all i ∈ {1, . . . n}, we write

Yi = ϕ(Xi) + Ui,

= E[ϕ(Xi)/Wi] + ϕ(Xi)− E[ϕ(Xi)/Wi] + Ui,

= E[ϕ(Xi)/Wi] + Vi,

where
Vi = ϕ(Xi)− E[ϕ(Xi)/Wi] + Ui ∀i ∈ {1, . . . n}.

In particular, we can remark that E[Vi/Wi] = 0 for all i ∈ {1, . . . n}. Hence, for all ϕ, defining
the operator T as

T : L2
X → L2

W

ϕ 7→ Tϕ(.) = E[ϕ(X)/W = .],
(1.16)

we can rewrite the model (1.15) as

Yi = Tϕ(Wi) + Vi ∀i ∈ {1, . . . , n},

where the noise (Vi)i=1...n is centered conditionally to the design (Wi)i=1...n.

We are in fact faced to an inverse regression model, where the operator T is unknown.
Indeed, we can see from (1.16) that T explicitly depends on the joint distribution of the couple
(X,W ), which is not assumed to be known in practice. Hence, we have to provide an estimator
for both the function ϕ of interest and the operator T from the same sample (Yi, Xi,Wi)i=1...n.

Concerning the operator, the corresponding estimation can be performed in an empirical
way. Indeed, let (φk)k and (ψk)k be two bases of respectively L2

X and L2
W . Then, we can express

T via its corresponding representation matrix T = (Tij)i,j∈N, where ∀i, j ∈ N,

Tij = 〈Tφj , ψj〉W = E[Tφi(W )ψj(W )],

= E[E[φi(X)/W ]ψj(W )],

= E[φi(X)ψj(W )].

10
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Each coefficient of the matrix T can then be empirically estimated from the sample (Yi, Xi,Wi)i=1...n

by

T̂ij =
1

n

n∑
i=1

φi(Xi)ψj(Wi).

Then, one can address the following questions

• How can we estimate the whole operator from the pointwise estimation of the different
coefficients?

• What kind of estimation algorithms can be proposed in such a setting?

• What is the influence of the empirical estimation of the operator on the quality of estima-
tion?

Different kind of strategies have been proposed in the literature in an estimation purpose. We
mention for instance [83], [23] or [53] among others. We will also present a small contribution
at the end of this chapter.

1.2 Different contributions in these models

In this section, I present a brief description of my different contributions proposed over last
years in statistical inverse problems. In particular, I have been interested in signal detection,
classification and estimation with noise in the operator. These different frameworks cover all
the models presented in Section 1.1.

1.2.1 Signal detection for inverse problems

While estimation is a quantitative problem (one want to estimate the whole signal), signal de-
tection corresponds to a qualitative task. Given noisy observations, the aim is to determine
whether these observations contain signal or not. In a non-parametric setting, this statistical
problem has been mainly popularized by Y. Ingster in the 90’s. We refer in particular to its
seminal series of papers [60],[61] and [62] for a complete description.

The formal framework of this topic is the following. Given a sample of observations Y ,
involving a function of interest f , our aim is to test

H0 : f = f0, against H1 : f 6= f0, (1.17)

where f0 denotes some given benchmark function. If we deal with the Gaussian white noise
model (1.2), the particular case where f0 = 0 corresponds to a signal detection problem: one
want to assess whether we are observing signal or not. In the error-in-variable model (1.7),
the function f0 can correspond to a benchmark density. We know that under some particular
condition, the density of the variable of interest should be f0. In such a case, one want to verify
this assertion.

As in classical parametric testing theory, we first have to construct a decision rule (a test),
i.e. a measurable function of the data. By convention, a test Φ will take values in {0, 1}: we

11
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reject H0 if Φ = 1 and do not reject this hypothesis in the other case. Given a prescribed level
α ∈]0, 1[, we will only deal with level-α tests Φα satisfying

PH0(Φα = 1) ≤ α.

Then, given such a decision rule, one might want to investigate its power or its second kind error.
If one use an alternative as expressed in (1.17), the control of this error will not be possible: the
condition f 6= f0 is indeed to rich (a similar phenomenon occurs even in the parametric setting).
Hence, the alternative is typically expressed via two conditions on the signal

• a smoothness constraint: f ∈ F for some functional space F ⊂ X ,

• a signal-to-noise ratio constraint that measures the amount of available signal in the
observations.

In the following, we will test

H0 : f = f0, against H1 : f ∈ F and ‖f − f0‖ > ρ, (1.18)

where the parameter ρ measures in some sense the separability of the both hypotheses. The set
F is assumed to be fixed (no dependency with respect to the data or the noise level).

A classical outcome in the (non-parametric) testing theory consists in investigating the lowest
possible achievable separation radius ρ. More formally, given α, β ∈]0, 1[ prescribed levels for
the first and second kinds errors, and a testing procedure Φα, one can define the separation
radius ρ(Φα, β,F) associated to Φα as

ρ(Φα, β,F) := inf

{
ρ > 0 : sup

f∈F , ‖f‖>ρ
Pf (Φα = 0) ≤ β

}
.

The quantity ρ(Φα, β,F) corresponds to the smallest possible radius for which the second kind
error can be controlled by β. The lowest possible separation radius ρ(α, β,F) is then defined as

ρ(α, β,F) = inf
Φα
ρ(Φα, β,F),

where the infimum is taken over all possible level-α tests. This term ρ(α, β,F) is called the
minimax separation rate (radius) over the set F .

Given a smoothness constraint F , one of the main goal is to establish a lower bound for
this separation radius. Then, one might want to build testing procedures that will achieve this
bound.

Signal detection for the sequence space model

Consider the sequence space model (1.4). The particular case where A = Id, i.e. bk = 1 for all
k ∈ N, has been widely investigated in the litterature: see for instance [60]-[62] or [3] in a non-
asymptotic setting. In an inverse problem framework, few investigations have been proposed.
Most of these contributions are concerned with the particular mildly ill-posed case: the sequence

12
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(b2k)k∈N is polynomially decreasing (see for instance [47]).

In Laurent et al. (2012), we propose a precise (non-asymptotic) study of the separation radii
in this setting. We consider various kind of inverse problems (mildly and severely ill-posed) and
different smoothness constraints (sparsity, ellipsoids, lp-balls). For the sake of brevity, we will
only discuss in this report smoothness constraints described as ellipsoids

F = Ea,2(R) :=

ν :

+∞∑
j=1

a2
kν

2
k ≤ R

 , (1.19)

for some non-decreasing sequence a = (ak)k∈N and a positive constant R. Without loss of gen-
erality, we deal with the case f0 = 0.

We start with the study of the lower bound. We are interested in the value of

β(Ea,2(R), α) := inf
Φα

sup
f∈F , ‖f‖>ρ

Pf (Φα = 0) ∈ [0; 1− α],

In particular, an interesting outcome is to investigate the smallest possible value ρ for which
the previous quantity can be, following the setting, lower bounded by a constant, equal to a
prescribed level β or tends to 0.

A possible way to achieve this goal is to consider a probability measure π on the set F [ρ] :=
{f ∈ F , ‖f‖ > ρ}. Denote by P0 (resp. Pπ) the measure associated to the observations vector
Y when the sequence θ is equal to 0 (resp. follows the measure π). Then, following [4], we prove
that

β(Ea,2(R), α) ≥ 1− α− 1

2

(
E0[L2

π(Y )]− 1
)1/2

,

where Lπ(Y ) denotes the likelihood ratio between the two measures P0 and Pπ. The construction
of the lower bound can be reduced to the study of this likelihood ratio. In particular, two different
regimes can be considered:

• The likelihood ratio tends to 1. In such a case, β(Ea,2(R), α) → 1 − α as ε → 0 which
means that both hypotheses H0 and H1 are not separable.

• The likelihood ratio can be bounded by a constant. In this case, the second kind error
is also lower bounded by a constant. An interesting situation corresponds to the case
where E0[L2

π(Y )] is (asymptotically) bounded by 1 + 4(1 − α − β) for some β ∈]0, 1[.
Then, β(Ea,2(R) is (asymptotically) lower bounded by β. This last case is of first interest
if one want to establish a radius that guarantee the separation of both hypotheses with
prescribed error levels.

The main conclusion of the discussion above is that the construction of the lower bound heavily
rely to the construction of a prior π on the set F . In the following, we consider the symmetric
prior π defined as

π =
∏
k∈N

πk, where πk =
1

2
(δ−bkθk + δbkθk) ∀k ∈ N,
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for some sequence θ = (θk)k∈N which will be made explicit below. Since the ξk are Gaussian
random variable, we obtain after some technical algebra

E0[L2
π(Y )] =

∏
k∈N

cosh(b2kθ
2
k/ε

2) ≤ exp

(
1

2ε4

∑
k∈N

b4kθ
4
k

)
:= exp(u2

ε (θ)). (1.20)

Then, we have to find an explicit sequence θ0 for which the previous quantity is bounded by
1 + 4(1− α − β) where β denotes a prescribed level for the second kind error. To this end, we
have considered in Laurent et al. (2011) the sequence θ0 defined as

θ0
k :=



ρε2b−2
kε4 D∑

j=1

b−4
k

1/2 , ∀k ∈ {1, . . . , D} ,

0, ∀k > D,

(1.21)

for some parameter D. In particular, we get from (1.20), (1.21) that ‖θ0‖2 = ρ2 and

E0[L2
π(Y )] ≤ exp

(
1

2ε4

∑
k∈N

b4kθ
4
k

)
= exp

[
ρ4

ε4
∑D

j=1 b
−4
k

]
≤ 1 + 4(1− α− β)2,

as soon as

ρ2 = ρ2
D := c(α, β)ε2

√√√√ D∑
j=1

b4j , (1.22)

for some constant c(α, β) which can be explicitly computed. In order to conclude, it remains to
choose an appropriate D such that θ0 ∈ Ea,2(R). To this end, remark that

∑
k∈N

a2
k(θ

0
k)

2 ≤ a2
D

D∑
j=1

(θ0
k)

2 = a2
Dρ

2
D ≤ R as soon as ρ2

D ≤ a−2
D R.

Hence, if we define

ρ2
inf := sup

D∈N

c(α, β)ε2

√√√√ D∑
j=1

b−4
j ∧R

2a−2
D

 , (1.23)

we get
inf
Φα

sup
f∈F [ρinf ]

Pf (Φα = 0) > β,

which means that
ρ(Ea,2(R), α, β) ≥ ρinf .

This corresponds to a non-asymptotic lower bound. The main advantage of such a bound is
that it provides a precise and intuitive description of the limitation of a given test. Indeed,
the lower bound (1.23) can be seen as a trade-off between an approximation term R2a−2

D and

a standard-deviation term ε2
√∑D

j=1 b
−4
j related to the estimation of ‖θ‖2 by

∑
j≤D b

−2
k y2

k for a
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given dimension D. Bellow, we propose a corresponding upper bound on this separation rate.

In order to take a decision coherent with the problem (1.18), a possible way is to construct an
estimator of ‖f‖2. Indeed, if one find a large enough value for this estimator (w.r.t. a prescribed
threshold: see below for more details), we are possibly observing (at least) a small amount of
signal. In order to estimate ‖f‖2, we will use a projection (spectral cut-off) scheme

TD =
D∑
j=1

b−2
j (y2

j − ε2), (1.24)

for some bandwidth D ∈ N. Then, we define the test Φα,D as

Φα,D = 1{TD>tα,D}, (1.25)

where tα,D denotes the 1− α quantile of TD under H0. Now, one want to express conditions on
‖f‖ for which the second kind error can be controlled, namely condition for which

Pf (Φα,D = 0) = Pf (TD ≤ tα,D) ≤ β. (1.26)

For all f ∈ X , define tβ,D(f) as the β-quantile of the variable TD. In particular Pf (TD ≤
tβ,D(f)) ≤ β. Hence, in order to verify (1.26), it suffices to find condition for which

tα,D ≤ tβ,D(f).

In Laurent et al. (2012), we have established non-asymptotic upper and lower bounds for
respectively tα,D and tβ,D(f). Both bounds are summarized in the following proposition.

Proposition 2 Let tα,D and tβ,D(θ) the two quantiles defined above. There exists a constant
C(α) such that

tα,D ≤ ε2
D∑
j=1

b−2
j + C(α)ε2

 D∑
j=1

b−4
j

1/2

,

and

tβ,D ≥
D∑
j=1

θ2
j + ε2

D∑
j=1

b−2
j + 2

√
ln(1/β)

√√√√ε4
D∑
j=1

b−4
j + 2ε2

D∑
j=1

b−2
j θ2

j .

The previous proposition provide a pertinent upper bound. It matches the lower bound proposed
above up to constants. As a matter of fact,

D∑
j=1

θ2
j ≥ C(α)ε2

 D∑
j=1

b−4
j

1/2

− 2
√

ln(1/β)

√√√√ε4
D∑
j=1

b−4
j − 2ε2

D∑
j=1

b−2
j θ2

j

implies that
tα,D ≤ tβ,D(f).

A precise investigation of the previous inequality leads to an upper bound for the separation
radius associated to the test Φα,D similar to (1.23) . In this study, the constants do not match,
but are all explicit. For a precise study of the optimal constant associated to the minimax
separation radii, we refer to [63]. These results can be summarized in the following theorem.
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Theorem 1 Let α, β be fixed and denote by ρ2(Ea,2(R), α, β) the minimax rate of testing over
Ea,2(R) with respect to the l2 norm. Then

ρ2
2(Ea,2(R), α, β) ≥ sup

D∈N
(ρ2
D ∧R2a−2

D ),

where ρ2
D has been introduced (1.22). Moreover, for all D ∈ J ,

sup
θ∈Ea,2(R),‖θ‖22≥Cρ2D+R2a−2

D

Pθ(Φα = 0) ≤ β,

where C = C(α, β) is a positive constant depending only on α and β and Φα denotes the test
introduced in (1.25). Hence,

ρ2
2(Ea,2(R), α, β) ≤ inf

D∈N
(Cρ2

D +R2a−2
D ),

Remark that the result presented in this theorem is non-asymptotic: we do not require that
ε → 0 in order to characterize the behavior of the separation radius. Nevertheless, this result
can also be used in order to get asymptotic minimax separation rates, as soon as we set specific
constraints on the sequences a = (ak)k∈N and b = (bk)k∈N. The following table summarizes the
asymptotic rates that we have obtained in this setting. They are similar to those obtained by
[63] or [17] in an error-in-variable framework.

Mildly ill-posed Severely ill-posed
bk ∼ k−t bk ∼ exp(−γkr)

ak ∼ ks σ
4s

2s+2t+1/2
(
log(σ−2)

)−2s/r

ak ∼ exp(νks) σ2
(
log(σ−2)

)(2t+1/2)/s
e−2νD̃s (s ≤ 1)

Figure 1.1: Asymptotic minimax separation rates for the l2-norm. Here D̃ denotes the integer
part of the solution of ρ2

D = R2a−2
D .

In Laurent et al. (2012), we have investigated the separation radii in various settings (sparse
signal, ellipsoids, lp balls) and derived corresponding asymptotic testing rates. We refer to the
corresponding paper for more details.

Multi-dimensional case

The previous study was only concerned with the uni-dimensional setting. In Ingster et al. (2013)
we have investigated the separation rates related to the sequence model (1.4) in a multidimen-
sional case. In particular, index are Nd valued for some d ≥ 1, which allows to model more
general situations.

In such a setting, we have adopted an asymptotic point of view. Smoothness constraints in
the alternative are expressed via ellipsoids Ea,2(R) defined as

Ea,2(R) =

ν ∈ l2(Nd),
∑
l∈Nd

a2
l ν

2
l ≤ R

 ,
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for some sequence (al)l∈Nd . We have considered two different possible behaviors for this sequence
a. The ellipsoid Ea,2(R) corresponds to a Tensor product space when

a2
l = a2

l1...ld
=

d∏
j=1

|lj |2s1 , ∀l ∈ Nd,

and a so-called Sobolev space when

a2
l = a2

l1...ld
=

d∑
j=1

|lj |2s1 , ∀l ∈ Nd,

for some s = (s1, . . . , sd).

In this setting, we investigate minimax asymptotic separation rates. Concerning the lower
bound, we start from (1.20) where we have seen (the generalization to the multi-dimensional
case is straightforward) that

E0[L2
π(Y )] ≤ exp

 1

2ε4

∑
k∈Nd

b4kθ
4
k

 := exp(u2
ε (θ)).

In Laurent et al. (2012) (see also (1.21)), we have constructed an explicit sequence (θ0
k)k∈N in

order to guarantee a prescribed error for the second kind error. An alternative idea consists in
finding the smallest possible value of u2

ε (θ) for which θ ∈ Ea,2(R). In other words, one choose
the sequence θ = θ(ρε) such that

θ = θ(ρε) = arg inf
θ

{
u2
ε (θ) :=

1

2ε4

∑
k∈N

b4kθ
4
k, s.t. ‖θ‖ = ρε and θ ∈ Ea,2(R)

}
. (1.27)

This principle has been in particular developed in the series of papers [60], [61], [62], or more
recently in [63] in an inverse problem framework. The optimization problem (1.27) is often called
extremal problem in the aforementioned literature.

Concerning the upper bound, we do not use a spectral cut-off regularization scheme. We
deal instead with general filters λ = (λk)k∈Nd where λk ∈ [0, 1]d for all k ∈ Nd. The related test
is defined as

Φα = 1{
∑
k∈Nd λ

2
ky

2
k>tα,λ}

,

for some threshold tα,λ. For the sake of brevity, we will not dwell into details. It it is nevertheless
possible to prove that finding an appropriate sequence λ can be explicitly related to the extremal
problem (1.27). Hence, all the analysis reduces to the investigation of the behavior of this
sequence. In particular, we are looking for situations where u2

ε (θ) is constant and we provide
the associated value for the separation radius ρε. We refer for Ingster et al. (2013) for more
details and an exhaustive list of related separation rates.
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General regularization schemes

In the two previous sections, we were concerned with the sequence space model (1.4). Never-
theless, there exists several situations for which this sequence is not available, or at least up to
a large amount of computation time. This is in particular the case when the bases (φk)k and
(ψk)k are unknown or difficult to handle.

In Marteau and Mathé (2013), our aim was to construct and study tests that do not neces-
sary use this sequence model. Our testing procedures are based on regularization families (see
Definition 1). Let gτ a regularization method. The term f̂τ := gτ (A?A)A?Y is an estimator of
f . In particular, we have

E[f̂τ ] = E[gτ (A?A)A?(Af + εξ)] = gτ (A?A)A?Af := fτ .

Following the approach presented in (1.24), one can estimate the norm ‖f‖2 by ‖gτ (A?A)A?Y ‖2.
In particular

Ef‖gτ (A?A)A?Y ‖2 = ‖gτ (A?A)A?Af‖2 + σ2E‖gτ (A?A)A?ξ‖2,
:= ‖fτ‖2 + σ2tr(gτ (A?A)A?A),

where tr(B) denotes the trace of a given operator B. Thanks to the properties introduced in
Definition 1, ‖fτ‖2 → ‖f‖2 as τ → 0. The term ‖fτ‖2 can hence be seen as an approximation
of ‖f‖2.

In the following, we will introduce the terms Sτ and vτ defined as follows

S2
τ = σ2tr(gτ (A?A)A?A) and v2

τ = σ2‖gτ (A?A)A?‖2.

In fact, theses terms respectively correspond to the variance and weak variance of gτ (A?A)A?Y .
Then, we consider the testing procedure Φα,τ defined as

Φα,τ = 1{‖gτ (A?A)A?Y ‖2−S2
τ>tα,τ}, (1.28)

for some threshold tα,τ . Using standard tools in operator theory, one can generalize the con-
struction of separation radii presented above. We obtain the following result.

Proposition 3 Consider the test Φα,τ as introduced in (1.28), and let

r2(Φα,τ , β) := C∗α,βε
2

√
N (τ)

τ
+ (4xα + 8xβ)

ε2

τ
, (1.29)

where C?α,β denotes a positive constant and

N (τ) := tr
[
(A?A+ λI)−1A?A

]
.

Then

sup
f,‖fR‖2≥r2(Φα,τ ,β)

Pf (Φα,τ = 0) ≤ β.
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For all τ > 0, the term N (τ) is called effective dimension. In particular, it is easy to see that,
since A is a compact operator, N (τ) → +∞ as τ → 0. Hence, the main dominating term in
(1.29) is

√
N (τ)/τ . This result can be compared to the one obtained in the sequence model,

with projection (spectral cut-off) regularization scheme. As presented in (1.23), the radius is of
order

σ2

√√√√ D?∑
j=1

b4j ≤ σ
2b−2
D?

√
D?,

for some D? > 0. In this particular case, one can compare respectively N (τ) to D?, and bD? to
1/τ , where D? corresponds to the dimension on which the estimation is performed.

As in the aforementioned contributions, we can then rely these radii to smoothness con-
straints on the target f . To this end, we use in Marteau and Mathé (2013) source conditions
and investigate properties of regularization schemes trough there qualification. Some attention
is also paid to the adaptation issue, i.e. to the construction of a data driven algorithm for the
choice of τ .

Testing as a direct problem

In the testing problem (1.18), our aim is to determine whether there is signal in our observations,
namely if f = 0 or not. First notice that a compact operator is always injective. Hence, both
assertions f = 0 and Af = 0 are equivalent. Concerning testing theory, two problems are in fact
at hand. One might want to consider the inverse problem, as described above, where one test

HIP
0 : f = 0, against HIP

1 : f ∈ F , ‖f‖ > ρIP , (1.30)

or consider the direct problem where one want to test

HDP
0 : Af = 0, against HDP

1 : f ∈ F , ‖Af‖ > ρDP . (1.31)

These hypotheses are not equivalent. Indeed, alternatives are not expressed in the same way.
This question has been adressed for the first time in [57]. A theoretical comparison of these
two points of view has been provided in Laurent et al. (2011) for the sequence space model. In
particular, when F corresponds to an ellipsoid, we have proved that

• A test minimax for the testing problem (1.31) is always minimax for the testing problem
(1.30),

• There exists tests minimax for the testing problem (1.30) that are not minimax for (1.31).

Such a results hence indicates that both direct and indirect testing problesm are not equivalent.
Moreover, the regularization of the problem does not appear to be necessary for a signal detection
purpose.

We will not dwell into details since this discussion is developed in Chapter 2. We just mention
that related discussions are proposed in Marteau and Mathé (2013) for general regularization
schemes or in Loubes and Marteau (2013) in an error-in-variable model.
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1.2.2 Supervised classification with error-in-variables

Binary supervised classification has been widely investigated over last years. Since a wide
literature is available, we will only mention [16] or [38] among others for a complete introduction
to this topic.

We will focus here on a particular framework: the smooth discriminant analysis which has
been popularized by [76]. The classical setting is the following: we have at our disposal two

samples S1 = (X
(1)
1 , . . . , X

(1)
n ) and S2 = (X

(2)
1 , . . . , X

(2)
n ) where the X

(1)
i (resp. X

(2)
i ) admit a

probability density f (resp. g) w.r.t. a given measure Q on Rd. This reference measure Q is
assumed to be σ-finite w.r.t. the Lebesgue measure on Rd. Given a new incoming observation
X, the goal is to determine whether X ∼ f or X ∼ g. In this context, a decision rule (namely
a classifier) is associated to a set G ⊂ Rd where we attribute the density f to X if X ∈ G, and
g in the other case. The performances of a given classifier can then be measured via its Bayes
risk RK(G) defined as

RK(G) =

∫
K/G

f(x)dQ(x) +

∫
G
g(x)dQ(x).

In this context, the best possible classifier G?K is

G?K = arg min
G⊂K

RK(G) = {x ∈ K : f(x) > g(x)} ,

where the infimum is taken over all possible subsets of K. In practice, G?K can be considered
as an oracle: it corresponds to the best possible strategy. Nevertheless, it is not available since
the underlying densities f and g are unknown. One of the main goal in smooth discriminant
analysis is then to provide an estimator Ĝn,m of this oracle G?K : we are in fact faced to a non-
parametric set estimation problem. In general, RK(G?K) does not tends to 0 as n,m → +∞.

The performances of a given estimator Ĝn,m are hence measured in terms of its associated excess
risk

RK(Ĝn,m)−RK(G?K).

In particular, since for all G ⊂ K, f − g and 1G?K − 1G have the same sign, we get

RK(Ĝn,m)−RK(G?K) =

∫
(f − g)(1G?K − 1Ĝn,m)dQ,

=

∫
|f − g||1G?K − 1Ĝn,m |dQ,

:= df,g(G
?
K , Ĝn,m).

This pseudo-distance df,g will be of first interest in the following. We will also sometimes use
d∆(., .) defined as

d∆(G1, G2) =

∫
|1G1 − 1G2 |dQ :=

∫
G1∆G2

dQ, ∀G1, G2 ⊂ K

where G1∆G2 denotes the symmetric difference between G1 and G2. In this setting, asymptotics
of minimax excess risk over specified conditions have been investigated. We refer to [76] for a
seminal study.
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Few years ago, we were wondering with S. Loustau whether classical algorithms in supervised
binary classification could take into account measurements errors as described in Section 1.1.2.
In order to begin our investigation in that direction, we have decided to start our study with
this smooth discriminant analysis model. We assume that we only have at our disposal noisy

samples S1 = (Z
(1)
1 , . . . , Z

(1)
n ) and S2 = (Z

(2)
1 , . . . , Z

(2)
m ), where

Z
(j)
i = X

(j)
i + ε

(j)
i , ∀j ∈ {1, 2}, (1.32)

and the ε
(j)
i denotes i.i.d. random variables having a known density η w.r.t. the Lebesgue

measure. In this context, our aim is to provide estimators for G?K and to investigate related
performances.

This question has been addressed in Loustau and Marteau (2013a) and Loustau and Marteau
(2013b) for a general measure Q. For the sake of convenience, we will assume in this manuscript
that Q is the Lebesgue measure.

A deconvolution classifier

The first step consists in proposing an estimator for G?K . In the free-noise (direct) case, the
performances of ERM (empirical risk minimizer) algorithms have been for instance investigated
in [76]. The main idea is to construct an estimator of the risk RK(.) and then to minimize this
estimator over all possible subsets G ⊂ K. Given G ⊂ K, the corresponding risk RK(G) can be
estimated by

R̃n,m(G) =
1

n

n∑
i=1

1{X(1)
i ∈K/G}

+
1

m

m∑
j=1

1{X(2)
j ∈G}

.

Indeed, we have for instance

E
[
1{X(1)

i ∈G}

]
=

∫
G
f(x)dx, ∀i ∈ {1, . . . , n}, and ∀G ⊂ K.

Hence, R̃n,m(G) is an unbiased estimator of RK(G).

In the case where observations are described by the model (1.32), we can not just replace

the X
(j)
i by the Z

(j)
i . Indeed, the density associated to the Z

(1)
i (resp. Z

(2)
i ) corresponds to the

convolution product f ∗ η (resp. g ∗ η). Hence

Rn,m(G) =
1

n

n∑
i=1

1{Z(1)
i ∈K/G}

+
1

m

m∑
j=1

1{Z(2)
j ∈G}

P−→ 1

2

∫
K/G

f ∗ η(x)dx+
1

2

∫
G
g ∗ η(x)dx,

as n,m→ +∞. The right-hand side of the previous equation corresponds to the prediction risk,
and is in general different from RK(G).

In order to get round of this problem, the idea is to construct a function hG(.) such that for

all G ⊂ K, hG(Z
(j)
i ) will be close (in a sense which will be made precise later on) of 1{X(j)

i ∈G}
.

In other words, we have to introduce a deconvolution step in the ERM algorithm.
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Let K be a kernel and λ ∈ [0, 1]d a bandwidth. We can then denote by Kη the deconvolution
kernel defined as (see also Section 1.1.2)

F [Kη](t) =
F [K](t)

F [η](t/λ)
, ∀t ∈ Rd. (1.33)

Then, for all G ⊂ K, we can define the function hG(.) as

hG(x) =

∫
G

1

λ
Kη
(
z − x
λ

)
dx, ∀x ∈ Rd. (1.34)

The following lemma sheds light on the behavior of this functions. The proof is a straightforward
extension of the one proposed in (1.10).

Lemma 1 Let G ⊂ K. Then, for all j ∈ {1, 2}, i ∈ {1, . . . , nj} we have

E
[
hG(Z

(j)
i )/X

(j)
i

]
=

∫
G

1

λ
K

(
X

(j)
i − x
λ

)
dx := Kλ ∗ 1G(X

(j)
i ), ∀x ∈ Rd,

where the Z
(j)
i are defined in (1.32) and Kλ = λ−1K(./λ).

The main conclusion of Lemma 1 is that the function hG(.) may be useful in order to con-

struct an estimation of the risk. Indeed, it allows to remove the noise ε
(j)
i . Moreover, the term

Kλ ∗1G provides a good approximation of the indicatrice function 1G (see also Figure 2.1 for an
illsutration in a simple case). We will see bellow that the price to pay for the noise removal is a
larger variance than in the classical direct case, while we introduce bias when using a smoothed
indicatrice function.

At this step, we are now able to propose a classifier. For all G ⊂ K, define

Rn,m(G) =
1

2n

n∑
i=1

hK/G(Z
(1)
i ) +

1

2m

m∑
j=1

hG(Z
(2)
j ). (1.35)

Then, given a family G of subsets of K, we define Ĝn,m as

Ĝn,m = arg min
G∈G

Rn,m(G).

Remark that for all G ⊂ K, we have

E [Rn,m(G)] =
1

2

∫
K/G

1

λ
K

(
X

(1)
1 − x
λ

)
dx+

1

2

∫
G

1

λ
K

(
X

(2)
1 − x
λ

)
dx,

=
1

2

∫
Rd

∫
K/G

1

λ
K
(
y − x
λ

)
dxf(y)dy +

1

2

∫
Rd

∫
G

1

λ
K
(
y − x
λ

)
dxg(y)dy,

:=
1

2

∫
Rd
f(y)Kλ ∗ 1K/G(y)dy +

1

2

∫
Rd
g(y)Kλ ∗ 1G(y)dy,

:= RλK(G).

In this context, we hence use a biased ERM approach. The expectation of Rn,m(G) is not
RK(G), but instead RλK(G) as described in formula above. One of the main difficulty is then to
control this bias in an optimal way.

Bellow, we introduce some assumptions on the model.
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Figure 1.2: Expectation of the function hG in one dimension, when G = [0, 1] (dashed line for the
sinc kernel and dotted lines for the indicatrice kernel), for two different bandwidth (λ = 0.3 on
the left hand side, λ = 0.1 on the right hand side) and comparison with the indicatrice function
(continuous line).

Assumptions

In order to investigate the asymptotic of the excess risk, we will require some assumptions. First
of all, we have to characterize the difficulty of the inverse problem related to the presence of noise
measurements. In formula (1.33), we have already implicitly assumed that F [η](t) 6= 0. The
following assumption is more restrictive and characterizes the decay of this Fourier transform.

Noise assumption The density η satisfies η =
∏n
i=1 ηi, where ηi : R → R are probability

density functions. Moreover, there exist β = (β1, . . . , βd)
′ and C1, C2 positive constants such

that
C1

|t|βi
≤ |F [ηi](t)| ≤

C2

|t|βi
, ∀i ∈ {1, . . . , d}, ∀t ∈ R.

In other words, we require that the noise measurements are independent in each direction.
This is only a technical assumption that could be certainly removed, up to some technical alge-
bra. Concerning the behavior of the Fourier transforms of the marginal distributions, we assume
a polynomial decay. The related problem is then said to be mildly ill-posed.

The second assumption concerns the behavior of the function f − g at the boundary of G?K .
It has been introduced for the first time in a classification context by [76], but it finds its origin
in the level-set estimation theory.

Margin assumption There exists positive constants t0, c2, α such that for all 0 < t < t0

Q ({x ∈ K : |f(x)− g(x)| ≤ t}) ≤ c2t
α,
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where Q denotes the Lebesgue measure on Rd.

This margin assumption characterizes the difficulty to distinguish one observation having
label 0 to another having label 1 close to the boundary of G?K . Large values of α (in particular
α = +∞) correspond to the most favorable situations. On the other hand, small values of α are
related to difficult problems since both densities f and g are almost equal in a large neighbor-
hood of the boundary of G?K .

Typically, the last assumption in such a setting is a complexity assumption: it should measure
the difficulty to find the good set (classifier) in a given family of candidates. We have considered
two different kind of complexity assumptions. The first one is related the behavior of f − g
and can be considered as a smoothness assumption. To this end, we will introduce the class
Σd(γ, L) of isotropic Hölder continuous functions ν, having continuous partial derivatives up to
order dγe, the maximal integer strictly less than γ, and such that

|ν(y)− pν,x(y)| ≤ L‖x− y‖γ , ∀x, y ∈ Rd,

where pν,x(y) is the Taylor polynomial of ν of order bγc and point x and ‖.‖ stands for the
Euclidean norm on Rd.

Plug-in assumption There exists positive constants γ and L such that f − g ∈ Σd(γ, L).

This assumption is of plug-in type since it is often used to measure performances of classifier
of the form

Ĝ =
{
x ∈ K : f̂(x) ≥ ĝ(x)

}
,

where f̂ , ĝ are preliminary estimators of f and g. Such an assumption appears to be quite
natural if one look at the expression of the estimator Rn,m introduced in (1.35). Indeed, for all
G ⊂ K, we have

Rn,m(G) :=
1

n

n∑
i=1

hK/G(Z
(1)
i ) +

1

m

m∑
j=1

hG(Z
(2)
j ),

=
1

n

n∑
j=1

∫
K/G

1

λ
Kη

(
Z

(1)
j − x
λ

)
dx+

1

m

m∑
j=1

∫
G

1

λ
Kη

(
Z

(2)
j − x
λ

)
dx,

=

∫
K/G

 1

n

n∑
j=1

1

λ
Kη

(
Z

(1)
j − x
λ

) dx+

∫
G

 1

m

m∑
j=1

1

λ
Kη

(
Z

(2)
j − x
λ

) dx,

=

∫
K/G

f̂λ(x)dx+

∫
G
ĝλ(x)dx,

where for all x ∈ Rd,

f̂λ(x) :=
1

n

n∑
j=1

1

λ
Kη

(
Z

(1)
j − x
λ

)
, and ĝλ(x) :=

1

m

m∑
j=1

1

λ
Kη

(
Z

(2)
j − x
λ

)
.
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The both terms f̂λ and ĝλ correspond to the classical estimators of the densities f and g when
dealing with error-in-variable models (see [49], [36], [81] or Section 1.1.2 for more details). Hence,
this classification problem can be seen as a density estimation problem. Nevertheless, we will
see below that the minimax behavior of the bandwidth λ is quite different compared to usual
non-parametric problems (see for instance [88] or [17]). In a classification context, we will take
advantage of the margin assumption. Hence, the construction of an estimator of G?K in this
context does not simply reduce to a density estimation problem.

In the following, we will denote Gplug as the set of all G ⊂ K of the form

G = {x ∈ K : ν(x) ≥ 0} ,

where ν ∈ Σd(γ, L). Hence, each set is associated to a function ν ∈ Σd(γ, L), which plays the
role of a possible candidate for f − g. By the same way, we call Fplug the set of all pairs (f, g)
satisfying both the margin and plug-in assumptions.

The second complexity assumption that we have considered concerns geometric properties
of the set of interest G?K . For the sake of simplicity, we will concentrate on the case where
K = [0, 1]d. Then, we introduce the set of boundary fragments Gfrag defined as

Gfrag =
{
x ∈ [0, 1]d, 0 ≤ xd ≤ b(x1, . . . , xd−1), b ∈ Σd−1(γb, L)

}
, (1.36)

where Σd−1(γb, L) denotes the set of isotropic Hölder functions on Rd−1. We also denote by
F(α, γ) the set of all pairs (f, g) satisfying the margin assumption and such that

{x ∈ K : f(x) ≥ g(x)} ⊂ Gfrag.

In such a setting, the considered problem appears to be a non-parametric set estimation problem.
In particular, we will see that the control of the different involved quantities (bias in particular)
requires a specific treatment.

Excess risk with the plug-in assumption

For all δ > 0, using the notion of entropy (see for instance [77] or [90]) for Hölderian function
on compact sets, we can construct a δ-network Nδ on Σd(γ, L) restricted to [0, 1]d such that

• log(card(Nδ)) ≤ Aδ−d/γ ,

• For all h0 ∈ Σd(γ, L), we can find h ∈ Nδ such that ‖h− h0‖∞ ≤ δ.

In Loustau and Marteau (2013), we have associated to each ν := f − g ∈ Σd(γ, L), a set
Gν = {x : ν(x) ≥ 0} and defined the ERM estimator as:

Ĝλn,m = arg min
ν∈Nδ

Rλn,m(Gν), (1.37)

where δ = δn,m has to be chosen carefully (see Theorem 2 below). This procedure has been
introduced in the direct case by [76] and referred as an hybrid Plug-in/ERM procedure. The
following theorem describes the performances of Ĝλn,m.
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Theorem 2 Let Ĝλn,m the set introduced in (1.37) with

λj = (n ∧m)
− 1

γ(2+α)+2
∑d
i=1

βi+d , ∀j ∈ {1, . . . , d}, and δ = δn,m =

(∏d
i=1 λ

−βi
i√

n ∧m

) 2
2/γ+2+α

.

Suppose f−g ∈ Σ(γ, L) and that the noise assumption is satisfied with βi > 1/2, ∀i = 1, . . . d.
Consider the deconvolution kernel Kη defined in (1.8) where K = Πd

j=1Kj is a kernel of order
bγc with respect to Q, with compact supported Fourier transform. Then, for all α ≥ 0

lim
n,m→+∞

sup
(f,g)∈Fplug(Q)

(n ∧m)τd(α,β,γ)Ef,gd�(Ĝn, G
?
K) < +∞,

where

τd(α, β, γ) =



γα

γ(2 + α) + d+ 2

d∑
i=1

βi

for d� = d∆

γ(α+ 1)

γ(2 + α) + d+ 2
d∑
i=1

βi

for d� = df,g.

As γ increases, the associated rate becomes faster: classification is easier for smooth densities.
In the same spirit, large values of α provides faster rates while small values for the margin leads
to very difficult problems. Compared to the free noise case, we can see that the price to pay
for having error measurements is an additional term of the form

∑d
j=1 βj that increases the

difficulty of the problem.

This upper bound has been validated by a corresponding lower bound in Loustau and
Marteau (2013). This result is obtained in a slightly different framework, where we deal with
an other measure than the usual Lebesgue measure. For technical constraints, this lower bound
is valid only for small values of α.

In order to conclude this discussion, it is important to note that in some specific situations,
the above result provides fast rates for classification (i.e. faster that 1/

√
n). Up to my knowledge,

these fast rates where obtained for the first time in [76]. In our situation, fast rates occur when

αγ > d+ 2
d∑
j=1

βj . (1.38)

In particular, the fact that we deal with an error-in-variable model is compatible with such kind
of results. Nevertheless, this property has to be slightly nuanced. Indeed, the condition (1.38)
occurs for very restrictive situations. Finding very smooth function associated to large values
for α appears to be contradictory. Such examples can be provided when α is close to one. We
also mention that large values for α under the plug-in assumption requires particular behavior
for the measure Q... which are not satisfied in our paper (see Loustau and Marteau (2013a) for
more details in the case where Q does not correspond to the Lebesgue measure).
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Proof. We will not provide a complete proof for the above result, but only describe the most
important steps. For the sake of convenience, we assume that m = n in the following. By the
way, we will write Ĝn,m = Ĝn. First of all, remark that

df,g(Ĝn, G
?
K)

=

∫
Ĝn∆G?K

|f − g|,

=

∫
(f − g)

[
Kλ ∗ 1Ĝn −Kλ ∗ 1G?K)

]
+

∫
Ĝn∆G?K

|f − g| −
∫

(f − g)
[
Kλ ∗ 1Ĝn −Kλ ∗ 1G?K)

]
,

=

∫
(f − g)

[
Kλ ∗ 1Ĝn −Kλ ∗ 1G?K)

]
+

∫
(f − g)

[
Kλ ∗ {1Ĝn − 1G?K} − {1Ĝn − 1G?K}

]
,

:= T1 + T2.

First, we can study the behavior of the first term. Remark that thanks to (1.37)∫
(f − g)

[
Kλ ∗ 1Ĝn −Kλ ∗ 1G?K)

]
≤ Rn(G?K)−Rn(Ĝn) +

∫
(f − g)

[
Kλ ∗ 1Ĝn −Kλ ∗ 1G?K)

]
,

where we use the definition of Ĝn. Then, the right hand side of the previous equation appears
to be the sum of two independent and centered empirical processes. Using entropy properties
of the set Σ(γ, L) and the Bernstein inequality, we can control (with a great probability) this
process by a term depending on n and λ. In particular, we get that

T1 ≤ C

(
λ−β11 λ−β22√

n

)− 2(1+α)
2/γ+2+α

Vn, (1.39)

where Vn has controlled moments and C denotes a positive constant. This term can be seen as
a variance term.

Then, we have to provide a bound for the bias term T2. In the following, we set ν = f − g.
For all G1, G2 ∈ G, we get∫

(f − g) [Kλ ∗ {1G1 − 1G2} − {1G1 − 1G2}]

≤
∣∣∣∣∫ [∫ 1

λ
K
(
z − x
λ

)
f(z)dz − f(x)

]
[1(x ∈ K/G1)− 1(x ∈ K/G2)] dx

+

∫ [∫
1

λ
K
(
z − x
λ

)
g(z)dz − g(x)

]
[1(x ∈ G1)− 1(x ∈ G2)] dx

∣∣∣∣ ,
≤

∫
G1∆G2

|Kλ ∗ ν(x)− ν(x)| dx,

≤ ‖Kλ ∗ ν − ν‖∞d∆(G1, G2),

≤ Cd∆(G1, G2) [λγ1 + λγ2 ] ,

for some C > 0. Indeed, provided that ν ∈ Σ(γ, L) and K is a kernel of order l = bγc,

‖Kλ ∗ ν − ν‖∞ ≤ C [λγ1 + λγ2 ] . (1.40)
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Using the Young inequality

xyr ≤ ry + (1− r)x1/(1−r),

with r = α/(α+ 1), we get∫
(f − g) [Kλ ∗ {1G1 − 1G2} − {1G1 − 1G2}]

≤ (1− r)γ1/(1−r) [λ2
1 + λ2

2

] γ(1+α)
2 + γ−1/rdf,g(G1, G2). (1.41)

The end of the proof consists in finding a trade-off between the bias (1.41) and the ’variance’
(1.39) terms, which leads to the desired result.

�

An extended version of this result, with related discussions, is available in Loustau and
Marteau (2013a).

Excess risk with the Boundary fragments assumption

In this part, we deal with geometric constraints on the set G?K of interest: we assume that
G?K ∈ Gfrag which is defined in (1.36). In such a case, the complexity of the considered problem
is different from the one of the previous (plug-in) assumption. The following theorem proposes
a minimax lower bound on the excess risk.

Theorem 3 Let K = [0, 1]d and G = Gfrag. Suppose that the noise assumption is satisfied for
some β. Then we have:

lim inf
n→+∞

inf
Ĝn,m

sup
(f,g)∈F(α,γ)

(n ∧m)τd(α,β,γ)Ed�(Ĝn,m, G
?
K) > 0,

where the infinimum is taken over all possible estimators of the set G?K and

τd(α, β, γ) =



γα

γ(2 + α) + (d− 1)α+ 2α

d−1∑
i=1

βi + 2αβdγ

for d� = d∆

γ(α+ 1)

γ(2 + α) + (d− 1)α+ 2α
d−1∑
i=1

βi + 2αβdγ

for d� = df,g.

Clearly, the rates are different from the one obtained in the plug-in case. In particular, the
way where the coefficient β and α interact is different. We refer to Loustau and Marteau (2013b)
for a complete discussion on this result.

The control of the excess risk associated to the ERM classifier follows the same lines than in
the plug-in case, except some important details. Indeed, using the same algebra as in the first
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part, we get

df,g(Ĝn, G
?
K)

≤
∫

(f − g)
[
Kλ ∗ 1Ĝn −Kλ ∗ 1G?K)

]
−
∫

(f − g)
[
Kλ ∗ {1Ĝn − 1G?K} − {1Ĝn − 1G?K}

]
,

≤
∫

(f − g)
[
Kλ ∗ 1Ĝn −Kλ ∗ 1G?K)

]
+ 2 sup

G∈Gbf

∣∣∣∣∫ (f − g) [Kλ ∗ 1G − 1G]

∣∣∣∣ ,
:= S1 + S2.

Using a control of the entropy related to the set Gfrag, we can prove that

S1 ≤ C

(
Πd
i=1λ

−βi
i√
n

) 2γ(α+1)
γ(α+2)+(d−1)α

Ṽn, (1.42)

where Ṽn has controlled moments, and C denotes a positive constant. Remark that in this
setting, the bias is slightly different. Indeed, we can not use Fubini and try to take advantage
on the regularity of f − g since we only have constraint on the geometry of the set of interest.
As in the previous part, we have to control this bias term and to find a trade-off. To this end,
we have investigated different possible strategies.

We first provide a rough bound for the bias term. Then, we discuss some heuristic that may
provide a more convenient control for this quantity. For the sake of convenience, we deal in the
following with the case where d = 2. This discussion can easily be extended to the d-dimensional
case.

In a first time, we can simply remark that for all G ⊂ K,∫
(f − g) (Kλ ∗ 1G − 1G) =

∫
(f − g)(x)

(∫
R2

1

λ
K
(
x− z
λ

)
[1G(z)− 1G(x)] dz

)
dx,

=

∫
(f − g)(x)

(∫
R2

K (z) [1G(x− λz)− 1G(x)] dz

)
dx,

=

∫
R2

K (z)

∫
(f − g)(x) [1G(x− λz)− 1G(x)] dxdz,

≤ Q((G+ λ)∆G) ≤ C(λ1 + λ2), (1.43)

for some constant C, assuming for simplicity that K is compactly supported. If we equilibrate
the previous bound with the one obtained in (1.42), we get

Eθd∆(Ĝn,m, G
∗
K) ≤ Cn−κd(αβ,γ),

where

κd(α, β, γ) =
γα

γ(α+ 2) + α+ 2γ(α+ 1)(β1 + β2)
.

We get the following result which can be found in Loustau and marteau (2013b).
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Theorem 4 Let Ĝn the classifier introduced above where γ > d− 1. Assume that the kernel K
satisfies

sup
t∈Rd
|F [Kη](t)| ≤ C

d∏
i=1

λ−βii , and ‖Kη‖2 ≤ C
d∏
i=1

λ−2βi
i .

Then, there exists a positive constant C such that

Eθd∆(Ĝn,m, G
∗
K) ≤ Cn−κd(αβ,γ),

where

κd(α, β, γ) =
γα

γ(α+ 2) + (d− 1)α+ 2γ(α+ 1)
d∑
i=1

βi

.

This result does not match with the lower bound presented above. The main reason is that
we did not take advantage of the smoothness of the boundary b in the bound (1.43). Moreover,
we have provided a crude bound for f − g. Up to now, providing minimax rates of convergence
for the excess risk in this context remains for us an open problem. We are convinced that the
lower bound is optimal. In particular, we have not yet used the smoothness propetry of b.

Bellow, we present some heuristics that may improve the control of this bias term. An
investigation of the upper bound above indicates that an optimal control of the bias would
require an upper bound of order[(

d−1∑
i=1

λi

)γ
+ λd

]1+ 1
α

instead of

d∑
i=1

λi.

Using simple algebra (in dimension 2 for the sake of convenience), we can re-write the bias as∫
Rd

(f − g)(x) (Kλ ∗ 1G(x)− 1G(x)) dx

=

∫
R2

K(z)

∫
R

[∫ (b(x1+λ1z1)−λ2z2)+

0
(f − g)(x)1{x1+λ1z1∈[0,1]}dx2 −

∫ b(x1)

0
(f − g)(x)dx2

]
dx1dz.

In order to get a satisfying bound, different pathes could be investigated:

• The first problem concerns the localization of our data. Indeed, the bias term above
contains control on the couple (x1, x2) that significantly slow down the rate. Since our

data are noisy, we have indeed to estimate the fact that the variables X
(j)
i belongs or

not to the set of interest K. This problem could be avoided, assuming for instance that

the unobserved X
(j)
i belongs to K. All the previous analysis could hence be managed

conditionally on this event.

• Up to some technical constraints related to such an assumption, one may construct a
Taylor expansion of b(. + λ1z1) and try to control the behavior of the difference between
the two integrals. In this context, there is no hope of improvement unless we have some
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smoothness constraint on f − g in the 2nd direction. Provided such a property holds, one
may control∫

K(z)

∫ b(x1+λ1z1)+λ2z2

b(x1)
(f − g)(x)dx2dz by a term of order λγ1 + λ2,

taking advantage on both behavior of b and the kernel K. Even in this case, the upper
bound will not be optimal.

• Finally, we have in mind stronger assumption on the behavior of f − g at the boundary of
G?K . The exponent 1/α seems indeed strongly related to the fact that f − g is close to 0 in
the neighborhood of the boundary of the Bayes set. Nevertheless, the margin assumption
stated in [76] does not guarantee such a behavior. To this end, one may consider couple
(f, g) of the form

(f − g)(x) = ν(x1)(x2 − b(x1))1/α,

for some unknown function ν. The margin is uniform in such a case. One may then
investigate the behavior of the minimax excess risk in such a context.

All this discussion presents a way that may allow to verify whether the lower bound is optimal
or not. Nevertheless, it requires strong additional assumptions. This is not reasonable from a
mathematical point of view.

Conclusion
The case where we deal with geometric constraint (boundary fragment assumption) is far

from being completely understood. In particular, the control of the bias appears to be very
difficult. At this step, lower and upper bounds do not match, even with additional assumptions.
Hence, providing the minimax excess risk in this context remains an open problem.

We strongly believe that we did not find a convenient control of this bias. Our conjecture
is that the lower bound is true and that the considered ERM algorithm is not optimal in this
setting. In particular, as mentioned above, the deconvolution classifier can be considered as
some kind of plug-in classifier. Hence, there is few hope to obtain a control on the excess risk
with an hypothesis on the boundary of G?K instead of f − g.

1.2.3 Estimation for inverse problems

I have discovered statistical inverse problems through an estimation purpose. At the beginning
of my PhD, Laurent Cavalier proposed me to investigate performances of different adaptive
methods on the sequence space model (1.4). Since I am in Toulouse, I get the opportunity to
extend these results on different models. The section bellow provides a short overview of my
different contributions in this topic.

Adaptive algorithms

In this part, we deal again with the sequence space model (1.4) defined as

yk = bkθk + εξk, ∀k ∈ N,
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where the sequence of interest is θ = (θk)k∈N. Given a family of filters Λ, λ ∈ Λ and an associated
linear estimator θ̂λ (as described in (1.5)), we can compute the related quadratic risk

R(θ, λ) = Eθ‖θ̂λ − θ‖2 = Eθ
+∞∑
k=1

(λkb
−1
k yk − θk)2 =

+∞∑
k=1

(1− λk)2θ2
k + ε2

+∞∑
k=1

λ2
kb
−2
k .

In an ideal way, we would like to use the best possible filter among Λ, namely the filter λ0

defined as
λ0 = arg min

λ∈Λ
R(θ, λ). (1.44)

In practice, this filter (called oracle) is not available since it strongly depend on the unknown
parameter of interest. Nevertheless, we would like to approximate this term.

If we have an a priori knowledge on the underlying function f (for instance a smoothness
constraint), we can propose a choice for the filter. Indeed, assume for instance that θ ∈ Ea,2(R),
where the ellipsoid Ea,2(R) has been introduced in (1.19). Then

R(θ, λ) =

+∞∑
k=1

(1− λk)2a−2
k a2

kθ
2
k + ε2

+∞∑
k=1

λ2
kb
−2
k ≤ sup

k∈N
{(1− λk)2a−2

k }+ ε2
+∞∑
k=1

λ2
kb
−2
k .

Then, choosing λ1 such that

λ1 = arg min
λ∈Λ

{
sup
k∈N

(1− λk)2a−2
k + ε2

+∞∑
k=1

λ2
kb
−2
k

}
,

we get
R(θ, λ1) ≤ inf

λ∈Λ
sup

θ∈Ea,2(R)
R(θ, λ).

This is the minimax point of view, which have been used in a slightly different form in Sec-
tion 1.2.1 above. The main problem related to such kind of approaches is that it requires the
knowledge of the sequence a. This is strong assumption that is not satisfied in many practical
problems. To this end, it is necessary to consider adaptive algorithms, i.e. procedures that do
not use this sequence.

The idea that we will use is very close to the ERM scheme studied in Section 1.2.2 in a
smooth discriminant analysis context. Our aim is to approximate the oracle λ0 ... which is
unknown since it explicitly depends on θ. Nevertheless, this risk can be estimated by a given
random term U(λ, Y ) (whose construction will be specified later on) as described in the following
scheme.

λ0 - R(θ, λ)minimizes

6

estimates

U(Y, λ)λ? -minimizes

6

stable?
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At this step, we have to choose a family of filters and an estimator for the quadratic risk. I
have been interested in the following approaches.

• We can deal with a given regularization scheme: for instance we consider a spectral cut-off
or Tikhonov regularization λ = λ(t) for which we want to select an appropriate regulariza-
tion parameter t. In some sense, we have a structure on the family Λ. In such a case, we
want to approach the best possible risk using such a procedure. Concerning the estimation
of the risk, one can consider a penalized estimator Uθ(Y, t) defined as

Uθ(Y, t) =
+∞∑
k=1

(λ2
k − 2λk)b

−2
k y2

k + 2
+∞∑
k=1

λkb
−2
k + pen(t),

where pen(t) is a penalization term.

Different kind of penalization have been proposed in the literature. For instance, [25]
consider the case where pen(t) = 0, which corresponds to the URE (Unbiased Risk Es-
timation) approach. Alternative penalties are proposed in [12] or [1] for instance. In
Marteau (2010), I have been interested in the RHM (Risk Hull Minimization) approach.
This method has been introduced in [26] for spectral cut-off filters. It is based on the
following heuristic. When there is no signal in the observation, then the URE method
(pen(t) = 0) leads to an estimator of the risk defined as

U0(Y, t) = ε2
+∞∑
k=1

(λk(t)
2 − 2λk(t))b

−2
k ξ2

k + 2ε2
+∞∑
k=1

λk(t)b
−2
k .

In particular, it is possible to see that

Var(U0(Y, t)) = ε4
+∞∑
k=1

(λk(t)
2 − 2λk(t))

2b−4
k ,

which explodes for small values of t. Indeed, the sequence bk tends to 0 as k → +∞. The
main consequence is that the related data-driven parameter t? defined as

t? = arg min
t>0

U(Y, t),

is very unstable. The alternative proposed by [26] was to construct a hull for the l2 loss
in order to contain this variability, namely we define a term S(θ, λ) such that

Eθ sup
λ∈Λ

[
‖θ̂λ − θ‖2 − S(θ, λ)

]
≤ 0.

Then, we construct an estimator for S, which is equivalent to penalize the quadratic
risk. Performances for this approach have been investigated in Marteau (2010) for general
spectral regularization schemes.
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• The problem with the previous approach is that we are limited by the regularization scheme
that we have decided to use. For instance, if we deal with Tikhonov regularization, we can
prove (see [25] for more details) that the proposed estimator do as well as the oracle: in
other words, we mimic the behavior of the best possible Tikhonov estimator. In an ideal
way, we would like to get an oracle inequality over a wider family of filters: for instance
over all possible linear filters. In order to obtain such a result, the idea is to consider the
family of blockwise constant filters Λ? defined as

Λ? =
{
λ : λk ∈ [0, 1], λk = λKj ∀k ∈ [Kj ;Kj+1], j = 0, . . . , J − 1 and λk = 0, k > N

}
,

for some parameters J, (Kj)j=1..J and N , that describe the shape of the considered blocks.
It has been proved (see for instance [29]) that the oracle over Λ? is very close to the
one over the class of monotone filters. Hence, the family Λ? is a good candidate for the
construction of an adaptive estimator.

In [29] and [30], the authors apply the URE estimation method with a penalized estimator.
They obtain a filter of the form

λI,?j =


(

1− σ2
j (1+ϕj)

‖ỹ‖2
(j)

)
+

, if j = 1, . . . , J,

0 if j > J,

(1.45)

for some penalty (ϕj)j=1..J . Then, they obtain (under reasonable conditions) the following
oracle inequality

Eθ‖θI,? − θ‖2 ≤ (1 + ϕ(ε)) inf
λ∈Λ?

RI(θ, λ) + 8c1ε
2,

for some constant c1 and a function ϕ(.) verifying ϕ(ε)→ 0 as ε→ 0. In Marteau (2010) ,
I have investigated the link existing between such an approach and the RHM method. In
particular, the expectation of the considered estimator for the quadratic risk appears to
be a risk hull, up to some restrictions over the penalty ϕ.

Inference with noise in the operator

All the regularization algorithms presented above in different situations, heavily depend on the
structure of the operator. Nevertheless, in some particular cases, this operator appears to be
difficult to handle. Regularization with a completely unknown operator appears to be quite
difficult. In a slightly different setting, it has been proved by [80] that only logarithmic rates
of convergence can be expected in such a situation, whatever the smoothness assumptions set
on the function of interest. Nevertheless, some interesting results can be obtained in the cases
where the operator is partially known.

We start with the error in variable model considered above. Recall that in such a setting,
given observation

Zi = Xi + εi, ∀i ∈ {1, . . . , n},

where the Xi (resp. the εi) admits a density f (resp. η ) w.r.t. the Lebesgue measure, our aim
is to provide some inference on the density f of interest. As discussed in a previous section, the
density of the observation Zi corresponds to the convolution product f ∗ η: we are hence faced
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to a deconvolution problem. But what appends if η is not exactly known? Different setting have
been considered in the literature.

We can for instance mention the contribution of [19] where estimation of the density f , of
a related quadratic functional or goodness-of-fit testing is considered. In this paper, they use a
semi-parametric model: the Fourier transform of the noise density is assumed to verify

F [η](t) = exp (−|γt|s) ,

In particular, the authors assume that the parameter s is unknown, but that it belongs to a
known grid S over R+. In this setting, they provide algorithms that take into account this un-
certainty, and prove that the related performances do not significantly deteriorate. In particular,
classical rates of convergence are reached, up to a logarithmic loss.

Other approaches have been proposed in order to circumvent the lack of knowledge of the
density η. For instance, it is assumed in [34] that an additional sample of noise if available. One
observe both the (Zi)i=1...M and the sample (ε̃j)j=1...M where the ε̃j are i.i.d. random variables
having common density η. Using this additional sample, the authors construct a preliminary
estimator of η and then plug this estimator in the deconvolution kernel. Then, they investigate
the performances of the related procedure. In particular, it is proved that up to some constraint
on the sample size M , the (adaptive) estimator proposed in [34] attains classical rates of con-
vergence for estimation with l2 losses.

Now, we turn to the study of the sequence space model (1.1) when the involved operator is
partially observed. Even in this setting, there exists several situations for which the operator
involved is the observation is not completely known. Nevertheless, as considered in [27], estima-
tion is possible when only partial information on A is available. More precisely, they deal with
the model {

yk = bkθk + εξk,
xk = bk + σηk

∀k ∈ N, (1.46)

where the sequence (xk)k∈N corresponds to observation on the unknown sequence of eigenvalues
of the operator A, σ is a noise level and ηk a sequence of i.i.d. standard Gaussian random
variables (independent of the ξk).

In the model (1.46), we implicitly assume that the eigenvectors are known, which is sometimes
a strong assumption. Nevertheless, such a situation can for instance holds in the case of a
convolution operator

Af(.) =

∫ 1

0
g(t)f(t− .)dt,

for some convolution filter g. The eigenvectors of this operator correspond to the Fourier basis,
whatever the behavior of g. In particular, the model (1.46) is encountered when additional and
independent observations on the function g are available.

Several non-parametric estimators of the function f (i.e. the sequence θ) are of the form

f̂λ =
+∞∑
k=1

λkb
−1
k ykφk, (1.47)
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for some filter λ. Such an estimator is not available for the model (1.46) for which the sequence
(bk)k is unknown (remark that this sequence is also often involved in the construction of the
filters, see examples bellow for instance). This sequence can be replaced by (xk)k, but some
modifications are necessary.

First, since the sequence (bk)k tends to 0 as k → +∞ (A is a compact operator). The terms
xk will not be a good estimator for bk as soon as k is large enough. In order to get round of
this problem, the idea is to compare for all integer k, xk to a threshold depending on σ. In
particular, we will only consider index for which k ≤M where

M = inf {k : |xk| ≥ σ logτ (1/σ)} , (1.48)

for some τ ≥ 1. If k ≤ M , this means that |xk| ≥ σ log(1/σ), the r.h.s. term corresponding to
the standard deviation of a Gaussian random variable with variance σ: in such a case, there is
a great probability that xk contains some signal and not only noise. In the other hand, when
k > M , estimation might be complicated since the problem will not be regularized with the
good sequence. Hence, we use in practice the following estimator

f̂λ =
+∞∑
k=1

λkx
−1
k yk1{k≤M}φk.

Such an approach corresponds more or less to using a hard thresholding rule on the diagonal of
the (noisy) representation matrix M .

In a second time, the influence of the noise in the operator has to be precisely quantified:
this is in particular of first importance when considering model selection approaches (see the
discussion above for more details). In particular, one can remark that for all k ∈ N,

x−1
k yk = x−1

k bkθk + εx−1
k ξk,

= θk + εx−1
k ξk +

(
bk
xk
− 1

)
θk.

Using a Taylor expansion of the last term in the right hand side of the previous equation, we
get

bk
xk

=
bk

bk + σηk
= bk ×

[
1

1 + σb−1
k ηk

]
= bk ×

[
1 + σb−1

k ηk + σ2b−2
k ζ2

k

]
,

for some random variable ζk which can be controlled as soon as k ≤M with a great probability.
On such event, it is possible to prove that the last term is negligible w.r.t. the first one.
Therefore, with a great probability, we get that

x−1
k yk ' θk + εx−1

k ξk + σb−1
k θkηk, ∀k ∈ N. (1.49)

The inverse problem model with noise in the operator written under the form (1.49) can hence
be seen as a generalization of the sequence space model.

Inverse problems with noise in the operator, and more specifically the model (1.46) have
been widely investigated in the literature. In [44], properties of projection method on general
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bases are investigated: in the considered setting, the operator is identified with a matrix, whose
entries are independently observed with additional noise. [56] provides a similar study with a
wavelet-based Galerkin regularization approach. In the sequence space model, [27] study the
properties of the URE method in this context and derive an oracle inequality. Similar refined
contributions are proposed in [64] where the case σ >> ε is also considered.

In this context, I have investigated the performances of the penalized blockwise Stein’s
rule and the RHM method in respectively Marteau (2009) and Marteau (2010). The following
contributions have also been proposed in related models.

• As described in a Section 1.1.3, the shifted curves model can be written under the form
(1.14), namely, we observe

γ−1
k yk = θk +

ε√
n
γ−1
k ξk +

(
1− γ̃k

γk

)
θk, k ∈ Z.

This equation can be compared with (1.49). In this case, the control of γ−1
k yk is explicit:

it is not necessary to use a Taylor expansion since the noise appears in the numerator in
such a case. Indeed, we deal with a random inverse problems, for which the regularization
is performed via a deterministic operator. In particular, the risk associated to a given
linear filter can be explicitly computed.

Lemma 2 For any given nonrandom filter λ, the risk of the estimator θ̂(λ) can be decom-
posed as

R(θ, λ) =
∑
k∈Z

(λk − 1)2|θk|2︸ ︷︷ ︸
Bias

+
1

n

∑
k∈Z

λ2
k

ε2

|γk|2︸ ︷︷ ︸
V1

+
1

n

∑
k∈Z

[
λ2
k|θk|2

(
1

|γk|2
− 1

)]
︸ ︷︷ ︸

V2

(1.50)

In equation (1.50) above, the risk is decomposed in three terms. The two first one cor-
respond to the classical risk, while the third is associated to the fact that we do not
regularize with the good operator. In this context, we have proposed in Bigot et al. (2010)
an extension of the URE method, and we have derived a related oracle inequality.

• Similar investigations are proposed in the case where we want to estimate intensities of
non-homogeneous Poisson processes. In such a setting, we have proposed in Bigot et
al. (2013) an estimator based on the wave-D algorithm (see [66] for more details). In
particular, a precise study of the corresponding minimax rates of convergence is proposed,
with related upper and lower bounds.

• As explained in Section 1.1.4, the instrumental variable regression model appears to be an
interesting practical example of inverse problem with unknown operator. Indeed, recall
that in this context, we observe (Yi, Xi,Wi)i=1...n with

Yi = Tϕ(Wi) + Vi ∀i ∈ {1, . . . , n},
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where the noise (Vi)i=1...n is centered conditionally to the design (Wi)i=1...n and T is defined
as

T : L2
X → L2

W

ϕ 7→ Tϕ(.) = E[ϕ(X)/W = .],

In Loubes and Marteau (2010), we have assumed that the eigenvectors related to the
operator T are available (practical examples are provided in the corresponding paper).
These eigenvectors (φj)j and (ψj) corresponds to a basis of respectively L2

X and L2
W . In

this context, our aim is to estimate the sequence (φj)j∈N where for all j ∈ N,

ϕj = 〈ϕ, φj〉X = E[ϕ(X)φj(X)].

Since the triplet (φj , ψk, λj) corresponds to the singular value decomposition of T , we get
that

〈Tϕ, ψj〉W = 〈ϕ, T ?Tφj〉X = λj〈ϕ, φj〉X = λjϕj .

Hence, for all j ∈ N, the coefficients ϕj can be estimated by

ϕ̂j =
1

λ̂j
× 1

n

n∑
i=1

Yiψj(Wi),

where the λ̂i are introduced in Section 1.1.4. We eventually use an estimator of the form

ϕ̂m =

m∑
j=1

1

λ̂j
× 1

n

n∑
i=1

Yiψj(Wi)1j≤Mφj ,

where m is a regularization parameter whose value has to be specified and M is a term
similar to the one introduced in (1.48).

In Loubes and Marteau (2010), we propose an extension of the URE method and construct
a related oracle inequality. In particular, we build an adaptive estimator which appears to
be minimax up to log term for standard regularity constraints. This log is in our opinion
due to the fact that we estimate both the operator and the signal ϕ from the same sample.
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Chapter 2

Direct methods for inverse problems
and some perspectives in
nonparametric statistics

In this chapter I will not summarize recent contributions in the non-parametric statistical theory,
but rather try to discuss how are these results related. In particular, both testing and supervised
classification problems are not so far as it seems. The presented discussion has not been yet
published in this form, but contain elements that could be developed in the forthcoming years.

In a first time, we prove that the regularization of the problem is not necessary in a testing
purpose. In a second time, I will present some fields for which this principle could be extended.
In particular, we will focus on supervised binary classification and on estimation in Gaussian
white noise models. The last section of this chapter is devoted to a brief presentation of some
possible perspectives in non-parametric statistics.

2.1 Signal detection without regularization

2.1.1 Motivation

For the sake of brevity, we will deal in this section with the sequence model (1.4), where we
observe

yk = bkθk + εξk, ∀k ∈ N.
Recall that the sequence (b2k)k∈N corresponds to the eigenvalues of the operator A?A, the ξk are
i.i.d. random variables and ε is a positive noise level.

In a signal detection purpose, our aim is to assess whether we are observing some signal or
not. In other words, we want to test the hypothesis H0 : f = 0 against a non parametric alter-
native. This question has been developed in Chapter 1, where separation rates were investigated.

Since the operator A is compact, it is injective. In particular, b2k > 0 for all k ∈ N. Hence,
the two assertions ”f = 0” and ”Af = 0” are equivalent. It is then natural to ask whether
there might exist an other way to deal with this detection problem. Indeed, setting ν = Af , the
inverse problem model Y = Af + εξ introduced in (1.2) becomes

Y = ν + εξ.
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Providing inference on the function ν then appears to be a direct problem. Such kind of direct
model has been widely considered in the literature, in particular in a testing purpose (see for
instance [60] or [3]). The underlying question is then: could this detection problem be considered
as a direct signal detection problem?.

More formally, two testing problems are at hand. As explained in Chapter 1, we can inves-
tigate the inverse testing problem where one want to test

HIP
0 : f = 0, against HIP

1 : f ∈ Ea,2(R), ‖f‖ ≥ ρIP , (2.1)

Alternatively, one can adopt a direct approach where we want to test

HDP
0 : Af = 0, against HDP

1 : f ∈ Ea,2(R), ‖Af‖ ≥ ρDP . (2.2)

Both problems are similar except that the alternatives are not expressed in the same way (see
also [57]). The aim of this discussion is to establish some hierarchy between theses approaches.
In particular, we will address two different questions

• Is a test minimax for the direct problem also minimax for the inverse problem?

• Is a test minimax for the inverse problem also minimax for the direct problem?

We will see that the the answer to the first question is yes, while we can construct counter-
examples for the second one.

2.1.2 An heuristic discussion

Before providing formal results, we provide here a brief heuristic discussion. First of all, we
will precise the behavior of the sequence (bk)k and describe the considered smoothness in the
alternative (we will only deal with ellipsoids Ea,2(R) as described in (1.19)).

For the sake of brevity, we will only discuss the case where both sequences b and a possess
a polynomial behavior. Here and in the following, for a given sequence u, the notation uk ∼ kl

means that there exists a positive constant c? such that c−1
? kl ≤ uk ≤ c?kl for all k ∈ N.

Assumption A1. There exists s > 0 and t > 0 such that

bk ∼ k−t, and ak ∼ ks, ∀k ∈ N. (2.3)

By the way, we will only consider test based on a spectral cut-off regularization. All our re-
sults presented bellow have been extended in a more general framework (see Loubes and Marteau
(2013) or Marteau and Mathé (2013) for more details).

Since we can alternatively address both testing problems (2.1) or (2.2) , we have the choice
between two testing procedures ΦIP

α,D and ΦDP
α,D,, defined as

ΦIP
α,D = 1{∑D

k=1 b
−2
k (y2k−ε2)>tIPα,D} and ΦDP

α,D = 1{∑D
k=1(y2k−ε2)>tDPα,D}, (2.4)
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where tIPα,D (resp. tDPα,D) is the 1−α-quantile of the variable ε2
∑D

k=1 b
−2
k (ξ2

k−1) ( resp. ε2
∑D

k=1(ξ2
k−

1)). In this context, we can address the question of the best possible choice for the bandwidth
D. Some answers are provided below.

• Inverse case: Consider the test ΦIP
α,D defined in (2.4). A described in Chapter 1, this test

is powerful as soon as

‖θ‖2 ≥ Cα,β

R2a−2
D + ε2

√√√√ D∑
k=1

b−4
k

 .
Following Assumption A1, we can find a constant C such that

Cα,β

[
R2a−2

D + ε2
D∑
k=1

b−2
k

]
≤ C

[
D−2s + ε2D2t+1/2

]
.

In order to provide the smallest possible detection radius, the idea is to choose D such that
we minimize the right hand side of the previous inequality. The corresponding trade-off is
then obtained when

D−2s
IP ∼ ε

2D
2t+1/2
IP ⇒ DIP ∼ ε

− 2
2s+2t+1/2 . (2.5)

Then, we eventually get that

sup
θ∈Ea,2(R),‖θ‖>ρIP

Pθ(Φ
IP
α,D = 0) ≤ β, where ρIP = cα,βε

2s
2s+2t+1/2 , (2.6)

for some constant cα,β which can be specified. The term ρIP is the minimax separation
rate for HIP

0 on Ea,2(R).

• Direct case: We can use the same methodology for the direct test ΦDP
α,D introduced in

(2.4). The main difference is related to the degree of ill-posedness (here 0 since we consider
a direct problem) and the smoothness of the function Af . Concerning this issue, we can
remark that

+∞∑
k=1

b−2
k θ2

kb
2
ka

2
k =

+∞∑
k=1

θ2
ka

2
k ≤ R,

since θ ∈ Ea,2(R). In other words, (bkθk)k ∈ Ec,2(R) where ck = bkak. Following Assump-
tion A1, we can say that the smoothness indice of Af is t + s. Then, we can prove (see
for instance [3]) that the test ΦDP

α,D is powerful as soon as

‖Af‖2 ≥ Cα,β
[
R2c−2

D + ε2
√
D
]
,

for some constant C. The trade-off is obtained when

D
−2(s+t)
DP ∼ ε2D1/2

IP ⇒ DIP ∼ ε
− 2

2s+2t+1/2 . (2.7)

Then, we eventually get that

sup
bθ∈Ec,2(R),‖f‖>ρDP

Pθ(Φ
DP
α,D = 0) ≤ β, where ρDP = c̄α,βε

2(s+t)
2s+2t+1/2 , (2.8)

for some constant c̄α,β. The term ρIP is the minimax separation rate for HDP
0 on Ec,2(R).
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The main consequence of (2.6) and (2.8) is that the direct testing problem is easier than the
inverse testing problem in the sense that the separation rate is smaller. Nevertheless, the good
news is that the optimal (in the minimax sense) number of coefficients necessary to provide a
satisfying test is the same in both frameworks (see (2.5) and (2.7))! In other words, whatever
we will do with our sample, we will use the same amount of information. Hence, there is some
chance that a test designed for one of the considered framework provide interesting behavior in
the complementary case.

2.1.3 Direct tests are always minimax for the inverse testing problem

In this section, the goal is to show that every test minimax for HDP
0 over Ec,2(R) is also minimax

for HIP
0 over Ea,2(R). In particular, the regularization step does not appear to be necessary in a

testing purpose. This result is essentially based on the following lemma which has been proposed
in Laurent et al. (2011).

Lemma 3 Let γε a positive sequence such that γε → 0 as ε→ 0. The following embedding holds:{
f ∈ Ea,2(R), ‖f‖2 ≥ γε

}
⊂
{
f ∈ Ea,2(R), ‖Af‖2 ≥ µε

}
,

where µε = b2m(ε)γε and m(ε) is such that R2a−2
m(ε) ≤ γε.

Proof Let m ∈ N which will be chosen later and

f ∈
{
ν ∈ Ea,2(R), ‖ν‖2 ≥ γε

}
.

Then

‖Af‖2 =
∑
k∈N

b2kθ
2
k ≥

∑
k≤m

b2kθ
2
k ≥ b2m

∑
k≤m

θ2
k = b2m

(
‖f‖2 −

∑
k>m

θ2
k

)
.

Since f ∈ EXa,2(R) ∑
k>m

θ2
k ≤ a−2

m

∑
k>m

a2
kθ

2
k ≤ R2a−2

m .

Hence
‖Af‖2 ≥ b2m

(
γε −R2a−2

m

)
, as ε→ 0.

We conclude the proof choosing m = m(ε) such that R2a−2
m(ε) ≤ cγε, for some 0 < c < 1

independent of ε.

�

In the particular case case where

γε ∼ (ρIPε )2 ∼ ε
4s

2s+2t+1/2 ,

we get

R2a−2
m(ε) ≤ cγε ⇔ m(ε) ∼ γ−1/2s

ε ∼ ε−
2

2s+2t+1/2 ,

and thus
µε ∼ m(ε)−2βγε ∼ ε

4s+4t
2s+2t+1/2 ∼ (ρDPε )2.
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The term µε corresponds to the minimax separation rate on EKc,2(R). Hence, Lemma 3 provides
in this setting the following embedding{

f ∈ EHa,2(R), ‖f‖2 ≥ (ρIPε )2
}
⊂

{
f ∈ EHa,2(R), ‖Af‖2 ≥ C(ρDPε )2

}
. (2.9)

In this context, let Φα a level-α test minimax for HDP
0 on Ec,2(R). In particular, there exists a

constant C > 0 depending on α and β such that

sup
f∈EHa,2(R), ‖Af‖2≥C(ρDPε )2

Pf (Φα = 0) ≤ β.

Using the embedding (2.9) and the previous inequality, we can find a constant C such that

sup
f∈EHa,2(R), ‖f‖2≥(ρIPε )2

Pf (Φα = 0) ≤ sup
f∈EHa,2(R), ‖Af‖2≥C(ρDPε )2

Pf (Φα = 0) ≤ β.

In other words, the test Φα is minimax for HIP
0 on Ec,2(R). We have provided an optimal

detection procedure without regularization step. This result can be summarized in the following
proposition.

Proposition 4 Every level-α test minimax for HDP
0 on Ea,2(R) is also minimax for HIP

0 on
Ec,2(R) in the case where aj ∼ js and bj ∼ jt.

There exists several extensions to this results, considering for instance super-smooth func-
tions, severely ill-posed problems or alternative functional spaces (source conditions). In each
corresponding case, the proof follows essentially the same lines and will not be reproduced here.
For more details and extended discussions, we refer to Laurent et al. (2010), Loubes and Marteau
(2013) or Marteau and Mathé (2013)

The main conclusion of the above result is that regularization is not necessary in a signal
detection purpose. Indeed, in such a setting, the goal is not to describe as precisely as possible
the signal contained in the observations, but rather to provide a qualitative information, namely
to say if there is signal or not. In practice, such a result has to be slightly nuanced.

• This is clearly an asymptotic claim: we adopt a minimax point of view and the discussion
only make sense if we assume that ε→ 0.

• We do not provide a sharp control of the constants involved in the separation rates. We
refer for instance to [60], [61] and [62] for more details on this topic.

Nevertheless, up to these restrictions, it appears that direct tests provide an interesting behavior
in an inverse framework.

2.1.4 Inverse tests fail for signal detection in the direct case

In the previous section, we have seen that direct testing strategies appear to perform well in an
inverse problem context. We will see in this part that the reverse is not true, namely that we
can find testing procedure minimax for HIP

0 on Ea,2(R) but that are not minimax for HDP
0 on
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Ea,2(R). In particular, we have to exhibit a testing procedure, ε0 > 0 and a function f1 ∈ Ea,2(R)
such that

‖Af‖ ≥ C?ρDPε ∀ε > 0, but Pf (Φα = 0) > β,

for all 0 < ε < ε0, whatever the value of the constant C?.

This question has been addressed in Laurent et al. (2011). Let f1 ∈ X the function defined
as

〈f, φk〉2 := θ2
k =

{
C1ε

2
√
D?, if k = 1,

0 else,

where D? = DIP ∼ DDP is defined in (2.5) and (2.7). Recall that Lemma 3 assesses the
following embedding{

f ∈ Ea,2(R), ‖f‖2 ≥ (ρIPε )2
}
⊂
{
f ∈ Ea,2(R), ‖Af‖2 ≥ (ρDPε )2

}
.

The reciprocal of this lemma does not work. Indeed, we have

‖Af1‖2 ∼ θ2
1 ∼ (ρDPε )2,

but
‖f1‖2 ∼ (ρDPε )2 << (ρIPε )2,

as ε→ 0. Let
ΦIP
α,D? = 1{

∑D?

j=1 b
−2
j (y2j−σ2)>tIP

α,D?
} := 1{T ?D>t

IP
α,D?

},

the test introduced in (2.4). Thanks to results obtained in Section 2.1.2, this test is known to
be minimax HIP

0 for EHa,2(R). In particular

Pθ(Φ
IP
α,D? = 0) ≤ β, as soon as ‖θ‖ ≥ Cα,βρIPσ .

We will show that for all C1 and β, there exists ε0 such that for all ε < ε0

Pf1(ΦIP
α,D? = 0) > β.

We use the following upper bound on Pf1 (Φα = 1):

Pf1
(
ΦIP
α,D? = 1

)
= Pf1

 D?∑
j=1

b−2
j (y2

j − σ2) > gα,D?

 ,

≤ Pf1 (T ?D − Ef1(T ?D) > gα,D? − Ef1(T ?D)) ,

≤ Pf1
(
T ?D − Ef1(T ?D) > gα,D? − θ2

1

)
,

≤
[

Var(T ?D)

gα,D? − θ2
1

]2

,

Then, recall from Proposition 2 that

gα,D? ' Cασ2

 D?∑
j=1

b−4
j

1/2

>> θ2
1 = C1σ

2
√
D?, as ε→ 0.
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Hence, we can find C0 such that

Pf1
(
ΦIP
α,D? = 1

)
≤

[
C0σ

2(
∑D?

j=1 b
−4
j )1/2

gα,D? − θ2
1

]2

≤ 1− β

for C? and ε−1 large enough.

The test ΦIP
α,D? is not powerful for HDP

0 on Ec,2(R). It is constructed in order to contain
observations with large variances and is too conservative for our problem. Once again, a similar
discussion can be provided for different kind of smoothness constraints, degree of ill-posedness
and functional spaces (source conditions). We refer to our results in Laurent et al. (2010),
Loubes and Marteau (2013) and Marteau and Mathé (2013) for more details.

Conclusion

If we summarize the previous results, direct tests possess a good behavior for inverse problems
but the reverse is not true. We can indeed construct testing procedures, minimax for the inverse
problem but that will fail for the direct problem. Such procedures are often designed in order
to control large variances. Indeed, the testing procedure Φα,D? used above is associated to the
statistics

TD =
D∑
k=1

b−2
k (y2

k − 2), where Var(TD) = ε4
D∑
k=1

b−4
k ,

up to constant. Since the sequence (b2k)k∈N tends to 0, this variance can explodes for large values
fo D. Such kind of test hence appears to be too conservative in order to deal with the ’direct’
problem where typically the variance is quite smaller.

As a conclusion, we can recommend to use direct test in the framework considered in this
chapter. Indeed, even if there is a loss of accuracy in the constants, such procedures appears to
be robust w.r.t. the way where we are measuring error.

2.2 Some strategies for binary supervised classification

2.2.1 Analogies with testing theory

The aim of this section is to show that there is strong analogies between signal detection for
inverse problems and binary classification. At this step, this discussion is quite informal. No
precise results will be presented but rather a perspective discussion. All this section will be the
core of our future investigations in this topic.

Before discussing the way where the inverse problem can be considered in smooth discrim-
inant analysis with error in variable, we give just few words on analogies between tests and
classification. Recall that in the classical smooth discriminant analysis problem (noise free

case), we deal with two samples S1 = (X
(1)
1 , . . . , X

(1)
n ) and S2 = (X

(2)
1 , . . . , X

(2)
n ) where the X

(1)
i

(resp. the X
(2)
i ) are assumed to admit a density f (resp. g) w.r.t. the Lebesgue measure on Rd.
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Given a new incoming observation X, our aim is then to decide whether X ∼ f of X ∼ g. This
decision is associated to a classifier, i.e. a set G ⊂ K. The corresponding error is then measured
by the risk RK(G) defined as

RK(G) =
1

2

∫
K/G

f(x)dx+
1

2

∫
G
g(x)dx,

=
1

2
PX∼f (X 6∈ G) +

1

2
PX∼g(X ∈ G).

Remark that this problem may be in fact translated to a testing problem where one want to test

Ha : X ∼ f, against Hb : X ∼ g.

In this context, contrary to the testing problems investigated above, there is no hierarchy between
the hypotheses Ha and Hb. Then, each classifier (set) G can in fact be associated to a testing
procedure ΦG where

ΦG = 1X∈G.

The corresponding risk RK(G) being in such a case related to the sum of the first and second
kind errors. Once again, we do not favor any hypothesis: each error is associated to the same
weighting 1/2.

In this setting, the main difference with the classical testing framework is that it is not pos-
sible to ensure a prescribe level for the risk. Indeed, the risk associated to the oracle (the Bayes
classifier) does not depend on the sample size (and hence does not tends to 0). As described
above, the main task in this context consists in constructing a set Ĝn,m whose corresponding
risk will be as close as possible of the smallest possible one. In other words, we want to control
the excess risk.

The analogy between classification and the test theory has already been briefly discussed in
the literature. We mention for instance [72] or more recently to Laurent et al. (2013) in an
unsupervised classification context (see also Section 2.4 below).

2.2.2 A direct or indirect problem?

Now, we turn to the case where we have at our disposal two noisy samples S1 = (Z
(1)
1 , . . . , Z

(1)
n )

and S2 = (Z
(2)
1 , . . . , Z

(2)
n ) with

Z
(j)
i = X

(j)
i + ε

(j)
i , ∀j ∈ {1, 2},

and where the ε
(j)
i are i.i.d. random variables, that admits a density η w.r.t. the Lebesgue

measure.

In Loustau and Marteau (2013a) and Loustau and Marteau (2013b), we have implicitly as-
sumed that the new incoming observation X was free of noise. In term of modeling, this is not
the only possible approach. Indeed, three different point of views are at hand:
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(a) The new incoming observation contains measurement error, namely we observe Z = X + ε
where the density of X w.r.t. the measure Q belongs to {f, g} and the variable ε admits the
density η w.r.t. the Lebesgue measure on Rd. We wish to provide the best possible classifier
for Z. If we use the formalism introduced in Section 2.2.1 above, the corresponding problem
amounts to test

HDP
a : Z ∼ f ∗ η, against HDP

b : Z ∼ g ∗ η. (2.10)

The testing problem is a direct problem, which has already been considered by [76]. In
such a setting, assumptions (smoothness, margin) are set on the couple (f ∗ η, g ∗ η).

(b) The new incomming observation is free of noise, namely we directly observe the variable
X. In this case, this amounts to test

HIP
a : X ∼ f, against HIP

b : X ∼ g.

This is an inverse problem, which require a deconvolution step. This case has been consid-
ered in Loustau and Marteau (2013a) and Loustau and Marteau (2013b) where minimax
excess risks are provided in different settings.

(c) The new incoming observation is noisy as in the case (a), but we want to approximate G?K .
This can be motivated by the fact that we want to understand the link between the spatial
position of a variable and its affiliation to one of the two available labels (i.e. X ∼ f or
X ∼ g). Once again, we consider in such a case the testing problem

HIP
a : X ∼ f, against HIP

b : X ∼ g. (2.11)

The main difference in this setting is related to the strategy that we can adopt in order
to take our decision. Indeed, we can still estimate the optimal set (classifier) G?K by

Ĝn,m as described in one of the section above. Nevertheless, we can not use the classifier
ΦG = 1{X∈Ĝn,m} since the variable X is not directly observed. Instead, on can try for

instance to use a classifier based on the functions hG,λ introduced in (1.34) in the following
way

ΦG = 1{
hĜn,m,λ(Z)>1/2

}. (2.12)

The corresponding risk of such a classifier is not RK(G) in this case and should be precisely
investigated.

The point of view (b), which has up to now retain our attention can be considered as an
intermediate case between the direct (a) and indirect (c) point of views. The main advantage
of this model (b) is that we are allowed to take into account noisy measurement, but the error
is measured in the same way (through the risk RK(G)).

If one want to get round of this noisy classification problem, the next step is to provide
a complete study of the model (c) which appears to be more realistic. A particular attention
should be paid on the risk associated to the classifier (2.12), which appears to be

R̃K(Ĝn,m) =
1

2
Pf

(
hĜn,m,λ(Z) ≤ 1/2

)
+

1

2
Pg

(
hĜn,m,λ(Z) > 1/2

)
.

47



2.3. ALTERNATIVE WAYS TO MEASURE ERRORS C. MARTEAU

Such a quantity seems to be difficult to handle, since the function f involve a deconvolution
step. Hence, specific algebra should be proposed in order to solve this problem.

Provided that this study can be achieved, the remaining question will be: What is the best
possible strategy? Indeed, if one get two noisy sample and a noisy observation, should we try
to invert the problem (i.e. to include different deconvolution steps in order to remove errors, or
directly work with the noisy sample (in a [76] manner)? This is an interesting open question.
By the way, we are faced to some new difficult theoretical problems. For instance, provided that
the couple (f, g) satisfies the margin assumption, what can be said on the couple (f ∗ η, g ∗ η).
The answer is certainly not obvious since the margin assumption is a local (spatial) constraint,
while convolution has effects on the frequency domain.

2.3 Alternative ways to measure errors

The main conclusion of Section 2.1 is that if a test is designed for the direct setting, then it
will be minimax for the inverse setting. As mentioned above, using such a principle provides a
robust method, that works both in direct and indirect setting. The most interesting property is
that the reverse is not true.

Hence, a natural question arrises: Can this principle be extended to other settings than test-
ing theory? The case of binary classification has been discussed in the previous section. As
explained, there is a lot of work to do in order to get round of this question...

Nevertheless, there is a topic that could provide interesting properties: estimation in Gaus-
sian white noise. Indeed, as a consequence of the results obtained in the testing theory, a change
in the test design can lead to a more robust procedure. The following heuristic is very close to
the one developed in the testing theory.

Minimax rates in the Gaussian white noise model

The same kind of methodology could be perhaps extended to the estimation/prediction task.
Indeed, consider the Gaussian white noise model

yk = bkθk + εξk, ∀k ∈ N,

which can be re-written as

yk = νk + εξk, ∀k ∈ N,

where νk = bkθk. In this context, two different tasks can be achieved:

• The estimation approach. Our aim is to provide an estimator for the sequence θ
(i.e. the function f). If one consider projection (spectral cut-off) regularization, we get
estimator θ̂N of the form

θ̂N =
N∑
k=1

b−1
k θk,
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for some N ∈ N, with corresponding quadratic risk R(θ,N) defined as

R(θ,N) := Eθ‖θ̂N − θ‖2 =
∑
k>N

θ2
k + ε2

N∑
k=1

b−2
k .

For the sake of convenience, we will assume in the following that f ∈ Ea,2(R) with ak ∼ ks
and bk ∼ k−t. In this context, we get

sup
θ∈Ea,2(R)

R(θ,NIP ) ≤ C
(
RN−2s

IP + ε2N2t+1
IP

)
∼ ε

4s
2s+2t+1 , provided NIP ∼ ε−

2
2s+2t+1 . (2.13)

In particular, the term ε
4s

2s+2t+1 corresponds to the minimax rates of convergence over the
ellipsoid Ea,2(R). Now, the problem with the bandwidth NIP introduced in (2.13) is that
it explicitly depends on the smoothness index s which is unknown in several practical
problems. As described in Section 1.2.3, it is necessary to use adaptive algorithm. For the
sake of convenience, we will focus on the URE approach. In this context, one use

N̂ := arg min
N∈N

U(Y,N), where U(Y,N) = −
N∑
k=1

b−2
k y2

k + 2ε2
N∑
k=1

b−2
k . (2.14)

Performances of this adaptation algorithm are for instance investigated in [25], and sharp
oracle inequalities are provided.

• The prediction approach. In this context, our aim is to provide the best possible
estimation of the parameter ν (i.e. of the function Af). This problem appears to be
a direct problem, which has been widely investigated in the literature. If one consider
projection estimator of the form

ν̂N =
N∑
k=1

ykψk,

for some N ∈ N, we get a corresponding quadratic risk defined as

RDP (θ,N) := Eθ‖ν̂N − ν‖2 =
∑
k>N

b2kθ
2
k + ε2N.

Then,

sup
θ∈Ea,2(R)

RDP (θ,NDP ) ≤ C
(
RN

−2(s+t)
DP + ε2NDP

)
∼ ε

4(s+t)
2s+2t+1 ,

provided

NDP ∼ ε
2

2s+2t+1 , (2.15)

as ε → 0. Once again, we can propose in this context a data driven parameter choice for
the bandwidth NDP . The URE algorithm leads to

Ñ := arg min
N∈N

V (Y,N), where V (Y,N) = −
N∑
k=1

y2
k + 2ε2N.

Sharp oracle inequalities are also available in this context.
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As in a testing context, it appears that the same number of coefficients is required whatever
the kind of inference (i.e. estimation or prediction) is performed with our sample. In other
words, we use exactly the same amount of information in a minimax setting. Below, we propose
an heuristic algorithm, which is inspired by this property.

An heuristic algorithm and some numerical simulations

In Section 2.1, we have seen that it was necessary to invert the data in order to determine if
there is signal or not in the observation. It may be perhaps possible to extend this idea to
estimation. Since in this context, we want to provide an quantitative study, the inversion step is
unavoidable if one want to recover the sequence θ. Nevertheless, the adaptation algorithm may
be improved. Indeed, thanks to (2.13) and (2.15), the minimax bandwidth are of same order for
both estimation and prediction. Moreover, the variance of the risk estimator U(Y,N) is quite
large:

Var(U(Y,N)) = Cε4
N∑
k=1

b−4
k ∀N ∈ N,

for some constant C. Hence, in many cases, the URE algorithm (2.14), leads to very unstable
results. On the other hand, we can remark that

Var(V (Y,N)) = ε4N << Var(U(Y,N)),

for large values of N , since bk → 0 as k → +∞.

This motivates the following estimation procedures. We consider the adaptive estimator f?

defined as

f? =

Ñ∑
k=1

b−2
k y2

kψk, (2.16)

where Ñ is the direct adaptive bandwidth. In other words, given A : X → Y a compact operator,
we estimate the function f ∈ X using a bandwidth designed on Y.

Such an approach may certainly lead to pertinent adaptive estimation strategies, at least
from a minimax point of view. From now on, minimax results in this context are not available.
Some difficult theoretical problems are at hand. In particular, one has to prove that Ñ is close
to N̂ with a large probability. This is not obvious. Nevertheless, investigation on theoretical
properties of f? will be at the heart of our forthcoming investigations.

In order to motivate this algorithm, we provide a brief numerical comparison of the different
methods presented above. Once again, we did not obtain yet theoretical results. The aim of
this experimental study is only to show that adaptive inverse estimation with direct data-driven
parameters could provide interesting perspectives.

Below, we consider the sequence θa defined as

θak =
0.1× a

1 + (k/6)6
, ∀k ∈ N.
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For all a ∈ {0, . . . , 50}, we investigate the performances of the URE algorithm and the estimator
(2.16) when ε = 0.1. When consider alternatively two different degrees of ill posedness: bk = k−1

and bk = k−2 for all k ∈ N. Then, each considered estimator f̂ is compared to the spectral cut-off
oracle via the quantity

infN∈N E‖f̃N − f‖2

E‖f̂ − f‖2
,

where f̃N denotes the projection estimator associated to a given N ∈ N. If this ratio is close to 1,
this means that f̂ is close to the oracle. Small values for this quantity indicate poor performances.

Remark that the function θa has been introduced in [26], which was devoted to the investi-
gation of the risk hull method. Since this method appears to be a benchmark in this setting, it
it is included to our numerical study. Results are summarized in Figure 2.1 bellow.
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Figure 2.1: Comparison of adaptive estimation algorithms (continuous line for the URE method,
dashed line for ’direct’ URE method and dotted lines for the RHM algorithm), for two different
degrees of ill posedness (bk = k−1 on the left hand side, bk = k−2 on the right hand side).

We can remark that in both cases, the URE algorithm does not provide satisfying perfor-
mances: in most cases, it is far away from the oracle. As discussed above, this is essentially due
to the fact that the variance of the risk estimator U(Y,N) is too large, hence leading to very
unstable recovery. Since the f? is based on a direct approach, it provides a better behavior (for
this numerical study). In particular, we can see that for large values of a, it is comparable to
the RHM method introduced in [26]. The only cases where this algorithm is not pertinent is
when there is a small amount of signal in the observation (a close to 0).

In order to provide an honest comparison, one should better penalize the risk estimator
V (Y,N) in order to avoide larges values of N . For instance, one could apply the direct RHM
method that has also been considered in [26] in order to choose the bandwidth N and then plug
this data-driven estimator in the inverse operator.
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Conclusion

In this section, we have presented situations where direct methods may provide interesting
outcomes. In particular, we have discussed cases where one want to provide some inference on
a function f ∈ H, when dealing with an inverse problems associated to an operator

A : H → K.

The main conclusion of this chapter is that it is possible to measure the error associated to our
problem in an other space than H. This principle is used for tests, where the alternative is
expressed over K, or in estimation where the bandwidth N is chosen in K.

At this step, there is several paths that could be investigated:

• investigation of the theoretical performances of the direct URE algorithm,

• error measurements in intermediate spaces,

• similar investigations in the error-in-variable model...

2.4 Some perspectives in non-parametric statistics

In this section, we discuss some additional topics that could be investigated in the forthcoming
years.

Unsupervised classification and tests

In Laurent et al. (2013) we have addressed a mixture detection problem in dimension 1. In
particular, given an univariate sample S = {X1, . . . , Xn} having an unknown density f , our aim
was to test

H0 : f = φ(.− µ), against H1 : f = (1− ε)φ(.− µ1) + εφ(.− µ2), (ε, µ1, µ2) ∈ F , (2.17)

where ε, µ, µ1 and µ2 are unknown parameters, while the common shape φ is assumed to be
known. In other words, we want to determine whether the sample of interest is drawn from a
single population having a density φ (up to a location parameter) or if it includes a sub-population
having the same shape φ. In such a case, the parameters ε and µ2 correspond respectively to
size proportion and location parameters for this sub-population. We refer to [73] among others
for practical examples of such a modeling.

The testing problem (2.17) has been widely considered last ten years. We mention for in-
stance the contributions of [2], [50], [59], [39] or [21] in the particular case where µ = µ1. In
most of these papers, an asymptotic study of the power of the proposed tests is provided. In
particular, asymptotic conditions are set on the triplet (ε, µ1, µ2), which ensure (optimal) sepa-
ration of both hypotheses H0 and H1.

In Laurent et al. (2013), our aim was to describe as precisely as possible the contain of the
alternative F in both asymptotic and non-asymptotic contexts. Moreover, we did not want to
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fix the mean µ under H0. Hence, we have considered a translation model. We have proposed
a testing procedure based on the ordered statistics X(1) < · · · < X(n). In particular, we can
remark that

• the spacing of these order statistics are free with respect to the mean under H0. For some
k < l ∈ {1, . . . , n}, the mean value affects the spatial position of a given X(k), but not
X(l) −X(k).

• the distribution of the variables X(l) −X(k) is known under H0.

• it has a different behavior under H1, provided k and l are well-chosen.

Our testing procedure is based on theses properties. Assume that n ≥ 2 and consider the subset
Kn of {1, 2, . . . , n/2} defined as

Kn = {2j , 0 ≤ j ≤ [log2(n/2)]}.

Our test statistics is defined as

Ψα := sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
, (2.18)

where, for all u ∈]0, 1[, qu,k is the (1− u)-quantile of X(n−k+1) −X(k) under the null hypothesis
and

αn = sup
{
u ∈]0, 1[,PH0

(
∃k ∈ Kn, X(n−k+1) −X(k) > qu,k

)
≤ α

}
.

The terms qαn,k and αn can be approximated (via Monte-Carlo simulations for instance) under
the assumption that the Xi’s have common density φ.

The following result highlights the non-asymptotic behaviour of the testing procedure Ψα.
The corresponding proof and an extended non-asymptotic study can be found in Laurent et al.
(2013).

Theorem 5 Let α, β ∈]0, 1[ be fixed and assume that µ2 − µ1 ≤ M for some constant M > 0.
Then, there exists C = C(α, β,M) > 0 such that

inf
ψα

sup
ε(µ2−µ1)2>C/

√
n

Pf (ψα = 0) ≥ β.

Moreover, there exists c = c(α, β,M) > 0 such that

sup
ε(µ2−µ1)2>c

√
log log(n)/

√
n

Pf (Ψα = 0) ≤ β,

where the test Ψ is introduced in (2.18).

Following Theorem 5, testing is impossible as soon as µ2 − µ1 is bounded and ε(µ2 − µ1)2 <
C/
√
n for some constant C. By the same way, we have provided a corresponding upper bound

for the test Ψα. Remark that upper and lower bounds match up to a log term. This is due
to the adaptation scheme that we use in the construction of our test. This logarithm can be
removed up to some slight technical modifications.

We now turn to the study of the asymptotic performances of our procedure. Two different
asymptotic behaviors are often encountered in the literature (which can be partly deduced from
Theorem 5), namely
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• the sparse regime where

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

√
2r log(n), with

1

2
< δ < 1 and 0 < r < 1.

• the dense regime where

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

n−r, with 0 < δ ≤ 1

2
and 0 < r <

1

2
.

In this context, the following results sheds light on the asymptotic performances of our procedure.
Once again, the proof and an extended discussion (with numerical simulations) can be found in
Laurent et al. (2013).

Theorem 6 In the dense regime, the detection boundary is r∗(δ) = 1
4 −

δ
2 : the detection is

possible when r < r∗(δ) = 1
4 −

δ
2 (for n large enough, the power of our test is greater than 1−β).

In the sparse regime, assume that r > r∗(δ) with

r∗(δ) =


δ − 1

2 if 1
2 < δ < 3

4

(1−
√

1− δ)2 if 3
4 ≤ δ < 1

.

Then, setting f(.) = (1− ε)φG(.− µ1) + εφG(.− µ2), we have, for n large enough,

Pf (Ψα = 0) ≤ β.

In the dense regime, we do not recover the existing results in the literature. This is essentially
due to the fact that the mean under H0 is unknown. In the sparse regime, the separation
’conditions’ are the same when the mean µ under H0 is unknown. In this case, our procedure
provides a similar behavior compared to the state of the art (Higher-Criticism and Likelihood
ratio tests in particular, see [39] for instance).

In this context, several possible extensions, motivated by some difficulties encountered in
practical applications, are at hand:

• In a first time, a possible heteroscedasticity of the data should be considered. Indeed, the
variance under H0 and in the two component of the mixtures under H1 are assumed to be
equal to 1. In an ideal way, one want to deal instead with general variances σ, σ1, σ2 and
to investigate the corresponding separation rules.

• The multivariate setting could be also a challenging problem. In particular, the simplicity
of our procedure which is based on the spacing of the ordered statistics may allow such a
generalization.

• Up to now, we have only considered the situation where we oppose two models: translation
model against a two component mixture model. Generalization of the investigation to
higher component degrees may be quite interesting, even if it requires to establish a precise
methodology.
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Shifted curves classification

In Section 1.1.3, we have investigated a binary classification problem (more precisely a problem
of discriminant analysis). This study has been performed in finite dimensional case, in the sense
that the variable of interest where assumed to belong to Rd for some fixed d.

Nevertheless, interesting practical applications concerns functional data: one would like to
classify curves instead of vectors. For instance, in [9], the author considers real data, correspond-
ing to ECG signals (a measure of the heart electrical activity). An example is provided where
two different kind of signal are considered: signal related to healthy people, and arrhythmic
ECG which are often associated to ill people. In this last paper, the estimation point of view is
adopted. Nevertheless, one might want to discriminate different kind of ECG profiles, provided
a learning sample is available: this is a curve classification problem.

More formally, one could deal with the following model. We observe two different groups of

curves (X
(1)
1 , ..., X

(1)
n ) and (X

(1)
1 , ..., X

(1)
n ) where

dX
(j)
i (t) = fj(t− τi)dt+ σdWi,j(t), ∀i ∈ {1, . . . n}, j ∈ {1, 2},

where the Wi,j denotes independent Brownian motions and f1, f2 unknown functions. Then,
given a new observation,

dX(t) = f(t− τi)dt+ σdWi,j(t),

the goal would be to determine whether the corresponding curve belongs to the first or to the
second group, i.e. whether f is equal to f1 or f2.

Different strategies could be investigated in this context. Following [8], one could project the
data in a finite d-dimensional space and then apply classical classification rule on this projection.
A particular attention should be payed to the control of the excess risk, and to a control of the
bias following the asymptotics in n and σ.

Binary supervised classification with error in variable

In order to conclude this discussion, one could mention that there is many possible improvement
to propose in supervised binary classification with error in variable (see Section 2.2). As discussed
above, the ERM procedure that we have proposed appears to be sometimes outperformed in some
specific situations. By the way, several algorithms provide interesting algorithmic behaviors: k-
nearest neighborhoods, SVM, and so on... A special attention could hence be payed to the
behavior of these procedures in this inverse problem context.
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[9] J. Bigot. Fréchet means of curves for signal averaging and application to ecg data analysis.
Preprint.

[10] J. Bigot and S. Gadat. A deconvolution approach to estimation of a common shape in a
shifted curves model. Ann. Statist., 38(4):2422–2464, 2010.

[11] J. Bigot, F. Gamboa, and M. Vimond. Estimation of translation, rotation, and scaling
between noisy images using the fouriermellin transform. SIAM Journal on Imaging Sciences,
2:614–645, 2009.
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VII - Denis Diderot, 2006.

66



67


	Outline of the manuscript
	Some contributions in non-parametric statistical inverse problems
	Statistical inverse problems
	Gaussian white noise model
	Error-in-variables model
	Shifted curves model
	Econometric models

	Different contributions in these models
	Signal detection for inverse problems
	Supervised classification with error-in-variables
	Estimation for inverse problems


	Direct methods for inverse problems and some perspectives in nonparametric statistics
	Signal detection without regularization
	Motivation
	An heuristic discussion
	Direct tests are always minimax for the inverse testing problem
	Inverse tests fail for signal detection in the direct case

	Some strategies for binary supervised classification
	Analogies with testing theory
	A direct or indirect problem?

	Alternative ways to measure errors
	Some perspectives in non-parametric statistics

	Summary of my different contributions
	Short CV
	Bibliography

