
Journal of Statistical Planning and Inference 139 (2009) 1821 -- 1835

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.e lsev ier .com/ locate / jsp i

On the stability of the risk hull method for projection estimators

C. Marteau∗

Institut de Mathématique, Université de Toulouse, INSA - Département GMM, 135 avenue de Rangueil, 31 077 Toulouse Cedex 4, France

A R T I C L E I N F O A B S T R A C T

Article history:
Received 28 March 2007
Received in revised form
24 June 2008
Accepted 3 September 2008
Available online 5 October 2008

Keywords:
Oracle inequality
Projection estimation
Risk hull
Singular value decomposition

We consider in this paper the regularization byprojection of a linear inverse problem Y=Af+��
where � denotes aGaussianwhite noise,A a compact operator and � >0 a noise level. Compared
to the standard unbiased risk estimation (URE) method, the risk hull minimization (RHM) pro-
cedure presents a very interesting numerical behavior. However, the regularization in the
singular value decomposition setting requires the knowledge of the eigenvalues of A. Here,
we deal with noisy eigenvalues: only observations on this sequence are available. We study
the efficiency of the RHM method in this situation. More generally, we shed light on some
properties usually related to the regularization with a noisy operator.
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1. Introduction

Let H and K two separable Hilbert spaces and A a linear operator acting from H to K. Our aim is to recover a function f ∈ H
from noisy measurement:

Y = Af + �� (1.1)

for some noise � and 0 < � <1. The operator A is supposed to be compact. The problem is ill-posed: the solution of (1.1) does
not continuously depend on the data. Only approximations, obtained via regularization methods are available. Here and in the
sequel, statistical inverse problems are considered: � is supposed to be a Gaussian white noise (see Hida (1980) for more details).
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The regularization of ill-posed inverse problems has been studied in both numerical and statistical areas. For a survey, we
refer for instance to Engl et al. (1996) or Korostelev and Tsybakov (1993). We may also mention Johnstone and Silverman (1990)
concerning tomography, Fan (1991) and Johnstone et al. (2004) for deconvolution problems or Golubev (2004) concerning the
Dirichlet problem for the Laplace equation.

A regularizationmethod is characterized by a regularization operator and a parameter choice rule. This rulemay be associated
to some a priori information on the solution as regularity, �2-norm, existence of jump, and so on. However, data-driven choice
rules are preferable since these informations are in most cases unknown.

The well-known unbiased risk estimation (URE) procedure has been widely studied (see Section 2 for some references on
the subject). Sharp results have been obtained concerning the performances of this algorithm. However, the stochastic processes
involved in this method are not always well controlled. This phenomenon leads to a very unstable procedure, in particular when
dealing with ill-posed inverse problems.

In this context, Cavalier and Golubev (2006) proposes a new data-driven parameter choice rule for projection (also called
spectral cut-off) estimators: the risk hull minimization (RHM) method. The principle is to construct a criteria taking into account
the variability of the problem. The risk hull method presents a very interesting theoretical and numerical behavior. It can also be
easily implemented using Monte-Carlo approximations.

Any regularization method requires some informations on the operator A. Cavalier and Golubev (2006) assumed a complete
knowledge of the spectral decomposition of A. However, in many problems and areas, the operator may only be numerically
approximated or independently observed. In this case, these approximations could be used instead of the “true” operator.
Nevertheless, it is not clear that such an approachmay lead to a similar efficiency. In the last decade,many authorswere interested
in this question. We mention for instance Efromovich and Koltchinskii (2001), Cavalier and Hengartner (2005), Hoffmann and
Rei� (2008) or Cavalier and Raimondo (2005). The underneath aim is to provide an accurate understanding of linear inverse
problems. The following question naturally arises: `does the RHM method is still efficient with noise in the operator?' In this
paper, we give a positive answer.Moreover, we present some usual properties related to regularizationwith noise in the operator.

This paper is organized as follows. In Section 2, we recall the main properties of the RHM method and we propose an
estimator using noisy measurements of the operator. Section 3 contains the main theorem, some numerical simulations and a
brief discussion on the results. Proofs and technical lemmata are gathered in Sections 4 and 5.

2. The risk hull method

2.1. Statement of the problem

The function f has to be recovered from the noisy observation (1.1). The singular value decomposition (SVD) is a classical
tool. Let A� be the adjoint of A. The operator A�A is compact and self-adjoint with strictly positive eigenvalues (b2k)k�1. The set of
eigenfunctions (�k)k�1 is assumed to be orthonormal. For all k ∈ N, set �k = b−1

k A�k. Model (1.1) can then be expressed in the
sequence space form:

〈Y ,�k〉 = yk = bk�k + ��k, k ∈ N, (2.1)

where �k = 〈f ,�k〉 for all k ∈ N. The �k are i.i.d. standard Gaussian random variables, since the set (�k)k�1 is also orthonormal.
In the L2 sense, recovering the function f is equivalent to recover the sequence � = (�k)k�1.

Since the operator A is compact, the sequence of eigenvalues (b2k)k�1 converges to 0 as k → +∞. The problem is ill-posed:
the solution does not continuously depend on the data Y. For large values of k, the term bk�k is attenuated compared to the noise
��k. This is the main difficulty of regularization. In this context, the projection estimation is a very simple and natural method.
Let N ∈ N be fixed. The associated projection estimator (also called spectral cut-off) is defined by

�̂N =
N∑

k=1

b−1
k yk�k.

It is equivalent to

�̂N
k =

{
b−1
k yk if k�N,

0 else,

where �̂N
k = 〈�̂N ,�k〉. The choice of the bandwidth N is a trade-off between a good accuracy and a control of the noise in the data.

It is related to the quadratic risk:

R(�,N) = E�‖�̂N − �‖2 =
∑
k>N

�2
k + �2

N∑
k=1

b−2
k . (2.2)

Our purpose is to construct a data-driven bandwidth N�, not depending on some a priori informations on f. We compare the risk
of the associated estimator �� to

R(�,N0) = inf
N

E�‖�̂N − �‖2.
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The bandwidth N0 is called the oracle. We want to construct the best possible adaptive bandwidth N� in the sense that R(�,N�)
should be as close as possible to R(�,N0). In the particular casewhere R(�,N�) converges to the oracle risk as � → 0, the bandwidth
N� asymptotically corresponds to the best possible choice.

2.2. Data-driven choices for the bandwidth

Several data-driven procedures have been proposed for solving this problem. Some of them are based on the well-known URE
method. The principle is as follows: given a sequence �, we would like to select the best possible bandwidth, i.e. the oracle N0.
Such a choice can only be approximated since R(�,N) depends on �. Hence, define

Ñ = argmin
N∈N

U(N, y) with U(N, y) = −
N∑
l=1

b−2
k y2k + 2�2

N∑
k=1

b−2
k . (2.3)

The quantityU(N, y) is a natural estimator for the quadratic risk. Thismethodwas studied in Cavalier et al. (2002), and sharp oracle
inequalities have been obtained. However, the numerical simulations are not always satisfying. Indeed, b−1

k yk ∼ N(�k, �2b
−2
k ) for

all k ∈ N. Since we deal with ill-posed inverse problems, the variance of the unbiased risk estimator is very large. This explains in
part the difficulties of the URE method. The bandwidth selection (2.3) allows large choices for the parameter N when the oracle
N0 is typically small. We refer to Cavalier and Golubev (2006) for a complete discussion and some numerical simulations.

In this context, Cavalier and Golubev (2006) introduced a new data-driven bandwidth choice rule called the RHM method.
The principle is rather intuitive. Instead of the quadratic risk R(�,N), consider the loss:

l(�,N) = ‖�̂N − �‖2 =
+∞∑

k=N+1

�2
k + �2

N∑
k=1

b−2
k �2

k . (2.4)

Due to the ill-posedness of the problem, the variance of the last term in the right-hand side of (2.4) is very large. The URE
procedure is based on the average behavior of l(�,N): the variability of the problem is neglected. This explains also the instability
of the URE method.

Since the sequence (�k)k∈N is unknown, construct a hull for the loss, i.e. a deterministic quantity V(�,N) fulfilling, for all �:

E� sup
N∈N

[l(�,N) − V(�,N)]�0.

Then estimate andminimize V(�,N) instead of R(�,N). This approach has been studied both from theoretical and numerical point
of view. This procedure clearly improves the URE performances.

2.3. Inverse problem with noisy operator

The eigenvalues of the operator A are explicitly involved in the construction of the hull of Cavalier and Golubev (2006). This
is the case for all the regularization methods constructed in the SVD framework. In many situations, A is not well known or only
up to a parameter. Consider for instance a convolution operator with kernel K. It may be interesting to invert the problem using
only numerical approximations or independent observations on K. This problematic is closely related to the framework of blind
deconvolution, which has given rise to a considerable amount of literature. We may mention for instance Bertero et al. (1998) or
Pruessner and O'Leary (2003).

In this paper, for all k ∈ N, we deal with the data:

{
yk = bk�k + ��k,
xk = bk + ��k,

(2.5)

where the �k are i.i.d. standard Gaussian random variables independent of (�k)k�1 and ��0 is a noise level.
The regularization of inverse problems with a noisy operator has already been considered. In the model selection context,

Cavalier and Hengartner (2005) obtained a sharp oracle inequality with an estimator based on the URE method. In a different
setting, we mention also the work of Efromovich and Koltchinskii (2001), Cavalier and Raimondo (2005) or Marteau (2006).

The joint asymptotic of �,� is very important. Here and in the sequel, we assume that � = O(�) as � → 0. Hoffmann and Rei�
(2008) also considered the case �?�. They proved that the rate of convergence in such a situation only depends on �. This could
be certainly generalized in our framework, but with longer proofs.

Using directly (xk)k�1 instead of (bk)k�1 is a natural but naive idea. Due to the ill-posedness of the problem, the sequence
(bk)k�1 converges to 0 as k → +∞. For large values of k, there is mainly noise in xk: this is a problemwhen estimating b−1

k . Hence,
define the following stopping rule:

M = min
{
k�T0 : |xk|��log3/2

1
�

}
− 1, (2.6)
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where T0 ensures thatM is not too large. For example, choose T0 =�−2. The quantityM is stochastic but can be controlled. Cavalier
and Hengartner (2005) proved that

M0 <M<M1,

with a large probability, where

M0 = min
{
k : |bk|��log2

1
�

}
, (2.7)

and

M1 = min
{
k : |bk|�� log

1
�

}
. (2.8)

From Lemma 5 in Section 4, xk is close to bk with a large probability for k�M. For k >M, there is too much noise in xk in order to
provide a good quality of estimation. Hence, we will only estimate the first M coefficients of the sequence (�k)k∈N. This can be a
problem in some particular cases: see Section 3 for a complete discussion.

We are now ready to construct an estimator of �. For all N ∈ N, define

U0(N) = inf{t >0 : E	N1{	N � t} ��2} with 	N = �2
N∑

k=1

b−2
k (�2

k − 1).

Theorem 2 of Cavalier and Golubev (2006) provides that the quantity

V
(�,N) =
+∞∑

k=N+1

�2
k + �2

N∑
k=1

b−2
k + (1 + 
)U0(N) + C��2



(2.9)

is a risk hull for all 
 >0, i.e.

E� sup
N

[l(�,N) − V
(�,N)]�0,

where l(�,N) is defined in (2.4) and C� denotes a positive constant independent of �. Cavalier and Golubev (2006) proposes to
minimize the following estimator of V
(�,N):

V
(y,N) = −
N∑

k=1

b−2
k y2k + 2�2

N∑
k=1

b−2
k + (1 + 
)U0(N). (2.10)

Since the sequence (bk)k�1 is unknown here, consider instead

V
(x, y,N) = −
N∑

k=1

x−2
k y2k + 2�2

N∑
k=1

x−2
k + (1 + 
)U0(N, x), (2.11)

where

U0(N, x) = inf{t >0 : Ex	̃N 1{	̃N � t} ��2}, 	̃N = �2
N∑

k=1

x−2
k (�2

k − 1),

and Ex denotes the conditional expectation on the sequence (xk)k�1. We prove in Section 3 that the estimator:

�� =
N�∑
k=1

x−1
k yk�k, (2.12)

associated to the bandwidth

N� = arg min
N�M

V
(x, y,N) (2.13)

is a relevant choice from theoretical and numerical point of view.
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The risk hull constructed in Cavalier and Golubev (2006) is in fact a penalized URE method. The penalty is chosen in order to
contain the stochastic terms in (2.3) and (2.4). This penalty is directly computable via Monte-Carlo approximations.

In the inverse problems framework, different penalizations have been proposed by, for instance, Golubev (2004), Loubes et al.
(2005) or Loubes and Ludena (2007). In the direct case (i.e. when A denotes the identity operator), we may also mention Barron
et al. (1999) or Birgé and Massart (2001).

3. Theoretical results and simulations

3.1. Main result

Let v a given real sequence and r ∈ R. Here and in the sequel, we write v ∼ (kr)k�1 if we can find d0 and d1 positive constants
fulfilling: d0kr �vk�d1kr for all k ∈ N.

Fromnow,we assume a polynomial decay for the eigenvalues of the operator: (bk)k�1 ∼ (k−�)k�1 for some��0. The problem
is said to be mildly ill-posed.

For all N ∈ N, define

R
(�,N) =
+∞∑

k=N+1

�2
k + �2

N∑
k=1

b−2
k + (1 + 
)U0(N). (3.1)

The two associated oracle bandwidths are

N̄0 = arg inf
N

R
(�,N) and Ñ0 = arg inf
N�M

R
(�,N). (3.2)

The proof of the following theorem is given in Section 5.

Theorem 1. Let �� the estimator defined in (2.12) and (2.13). Assume that (bk)k∈N ∼ (k−�)k∈N for some � >0. There exist positive
constants �0, C0, C1 and  such that ∀� ∈ (0, �0] and 
 >1:

E�‖�� − �‖2� (1 + ��(�)) inf
N

R
(�,N) + C1
�2

�4�+1

(
1 + �2

�2
‖�‖2

)2�+1

+ C1�2

(
 − 1)
+ �(�) + �, (3.3)

where � = C0M1(1 + ‖�‖2) exp(−log1+ 1/�), ��(�) vanishes as �,� → 0 and

�(�) =
M0∨N̄0∑
k=M0

�2
k + �2

M0∨N̄0∑
k=M0

b−2
k + (1 + 
)[U0(N̄0 ∨ M0) − U0(M0)]. (3.4)

By convention
∑a

a = 0 and a ∨ b = max(a, b) for all a, b >0.

Our results always holdwith the polynomial hypotheses of Cavalier andGolubev (2006). However, for the sake of convenience,
we prefer to use simpler assumptions concerning the sequence (bk)k∈N.

The risk of our estimator is close to the best possible one (the oracle). This result differs from Theorem 1 of Cavalier and
Golubev (2006) by some residual terms depending of � and on the norm of f. For large values of ‖�‖, the quality of estimation
will then be rather bad. This fact is not a specificity of the risk hull method. Such a residual term appears in all the situations
where noisy measurements of the operator are involved. We refer for instance to the proofs of Cavalier and Hengartner (2005),
Efromovich and Koltchinskii (2001), Hoffmann and Rei� (2008) or Marteau (2006). This phenomenon is in fact rather simple.
When � = 0, we use the data

b−1
k yk = �k + �b−1

k �k, (3.5)

in order to estimate each coefficient �k. With noise in the operator, we use instead:

x−1
k yk = x−1

k (bk�k + ��k) = ak�k + �x−1
k �k = �k + �x−1

k �k + (ak − 1)�k,

where ak = x−1
k bk. With a large probability, Lemma 5 provides that (ak − 1) is close to �b−1

k �k and xk is of order bk for k�M.
Therefore, from a heuristic point of view:

x−1
k yk = �k + �b−1

k �k + �b−1
k �k�k, ∀k�M. (3.6)

The variance of x−1
k yk is then of order �2b−2

k + �2�2
kb

−2
k . It increases with the norm of �. Noise in the operator leads to a new

perturbation in the datawith variance depending on ‖�‖. The associated error term is not always negligible. Thiswill be illustrated
via numerical simulations.
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The terms � and �(�) are usually associated to the regularization with a noisy operator. The term �(�) corresponds to the
residual ofR
(�, N̄0) truncated at orderMwhere N̄0 is the oracle defined in (3.2). It vanishes ifM0 > N̄0. The behavior of this termhas
been studied in Cavalier and Hengartner (2005). Under some reasonable constraints, it is negligible from aminimax point of view.

The quantity � is exponentially decreasing as � → 0. We can expect that this term will not have a great influence on the
performances of ��.

3.2. Numerical simulations

This section illustrates inequality (3.3) via some numerical simulations. In this paper, we are interested in both the RHM
stability and the regularization with a noisy operator. We focus on the restrictions resulting from the presence of noise in the
operator. In particular, we are interested in the link between the performances of �� and the respective values of ‖�‖, � and �.
These restrictions are certainly the same, whatever the parameter choice rule. Our aim is not to provide a comparison between
the RHMmethod and some alternative adaptive procedures, but rather to shed light on the consequences of (3.6).

In the sequel, we consider the family of functions:

�a
k = a

1 + (k/W)m
, k ∈ N, (3.7)

where a is called amplitude, W bandwidth and m smoothness. Clearly, it is impossible to provide a complete numerical study
and we have to restrict ourselves to some particular families of function. Set (3.7) can easily be handled. The parameters a andm
have a direct influence on the quantities of interest.

From now, fixW =m=6. The results for different values are essentially the same and will not be reproduced here. The quality
of an estimator �̄ is measured by its oracle efficiency:

r�(�, �̄) = infNE�‖�̂N − �‖2
E�‖�̄ − �‖2

= E�‖�̂N0 − �‖2
E�‖�̄ − �‖2

. (3.8)

Let �̃ the estimator of Cavalier and Golubev (2006) and Ñ the associated bandwidth.We are interested in the comparison between
r�(�,�

�) and r�(�, �̃). We also compare the mean bandwidth E�[N�] and E�[Ñ] to the oracle N0. These quantities are computed via
the Monte-Carlo method with 10000 replications.

The relation between the oracle efficiency of �� and (�2/�2)‖�‖2 is also rather interesting. This term is associated to the noise
in the operator. In (2.12), we use x−1

k instead of b−1
k in order to estimate each coefficient �k. The associated residual error is in fact

linked to

d�(x,�) = E�‖�� − �‖2 − E�‖�̂� − �‖2, (3.9)

where

�̂
� =

N�∑
k=1

b−1
k yk�k,

and N� is defined in (2.13). This residual error will be compared to the oracle risk.
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Fig. 1. Efficiency of the RHMmethod for � = 2.
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Fig. 3. Behavior of the residual term.

From now, fix � = 0.01 and consider two different levels of noise in the eigenvalues: � = �/10 and �. Each case is studied with
�=2 (bk =k−2 for all k ∈ N). Results are presented in Figs. 1–3, on the l.h.s. for the case �= �/10 and on the r.h.s. for the case �= �.

When the noise in the operator is significantly small (� = �/10), the numerical behavior of the RHM method is rather close to
the case � = 0 for a ∈ [0; 5]. The bandwidth choice is unaffected. The term d�(x,�) has no influence on the quality of estimation.
It is clearly negligible compared to the oracle risk.

Results for the case � = � are rather different. If a is too large (or equivalently ‖�‖), the quality of estimation is really affected
by the noise �. Two different explanations are available. First, replacing b−1

k by x−1
k affects the risk when k is large. The quantity

d�(x,�), associated to the residual term (�2/�2)‖�‖2 in (3.3), is not negligible for large values of a. It is of order of the optimal risk
(r.h.s. of Fig. 3).

The second problem is related to the stopping rule M. It is smaller than the oracle bandwidth N0 for large values of ‖�‖ (r.h.s.
of Fig. 2). Since N� �M, the number of estimated coefficients of � is not sufficient. The corresponding error is associated to �(�)
in Theorem 1. This explain in part why we do not consider estimation for larger value of � than 0.01. Never more than 4 or 5
coefficients are estimated. In this case, all the procedures will produce more or less similar results.
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3.3. Conclusion

The control of the norm of � is crucial when dealing with a noisy operator. This can be explained in part by (3.6). The noise in
the operator leads to a new perturbation in the observations. It would be interesting to develop methods taking into account this
particularity.

The term �(�) is also rather important. It is related to the respective values of M0 and N0. If N0 is too large compared to
M0, we cannot estimate a sufficient number of coefficients �k. Fortunately, in most cases, N0/M0 → 0 as �,� → 0. In some
sense, recovering the eigenvalues (bk)k∈N is easier than the sequence �. The regularization with noise in the operator is clearly
asymptotic (in an oracle point of view). This is rather different than for the case � = 0. All these properties are not specific to the
RHM method but rather to the regularization with noise in the operator.

We conclude this paperwith a short discussion on the parameter 
. In Cavalier and Golubev (2006), it seems that the condition

 >1 is too restrictive. Indeed, acceptable bounds of the risk are available for � = 0 and 0 <
�1. For � >0, the setting is a little
bit different. In this case, the condition 
 >1 enables us to control the difference between U0(N) and U0(N, x) (see Lemma 3 and
inequality (5.13)). The noisy penalty is large enough to contain the stochastic term in V
(x, y,N). The RHM procedure is stable.

4. Technical lemmas

From now, we consider � =O(M1 exp[−log1+1/�]) as � → 0. Therefore, we often write � + � = �. The resulting constant C0
in Theorem 1 is the sum of all the constants appearing in the proof. For all N ∈ N, introduce also the term:

�(N) = sup
k=1,. . .,N

�2b−2
k , (4.1)

and the event:

B=
M⋂
k=1

{�|b−1
k �k|��

√
2 − 1}, (4.2)

where 1/
√
2 < � <1. On this event, ak = x−1

k bk is close to 1 uniformly in k�M. Moreover, Lemma 5 provides that P(Bc) decreases
exponentially fast as � → 0. Hence, xk can easily be controlled with a large probability for k�M.

Lemma 1. Let �� defined in (2.12) and (2.13). There exists �� → 0 as � → 0 fulfilling:

E�‖�� − �‖2� (1 + ��)E�l(�,N
�) + Cc2�‖�‖2 �2

�2
E��(N�) + �,

where C >0, c� = log4/3 1/� and l(�,N�) is defined in (2.4).

Proof. For all k ∈ N, set ak = x−1
k bk. By simple algebra:

E�‖�� − �‖2 = E�

⎡
⎣+∞∑
k=1

(��
k − �k)

2

⎤
⎦= E�

⎡
⎣ N�∑
k=1

(x−1
k yk − �k)

2

⎤
⎦+ E�

⎡
⎣ +∞∑
k=N�+1

�2
k

⎤
⎦

= E�

⎡
⎣ N�∑
k=1

(ak�k + �x−1
k �k − �k)

2

⎤
⎦+ E�

⎡
⎣ +∞∑
k=N�+1

�2
k

⎤
⎦

= E�

⎡
⎣ N�∑
k=1

{�2
k(1 − ak)

2 + �2x−2
k �2

k + 2�(ak − 1)�kx
−1
k �k}

⎤
⎦+ E�

∑
k>N�

�2
k .

Using (2.4),

E�‖�� − �‖2 − E�l(�,N
�) = E�

⎡
⎣ N�∑
k=1

�2
k(1 − ak)

2

⎤
⎦+ E�

⎡
⎣ N�∑
k=1

�2b−2
k (a2k − 1)�2

k

⎤
⎦+ 2�E�

⎡
⎣ N�∑
k=1

(1 − ak)�kx
−1
k �k

⎤
⎦

= A1 + A2 + A3. (4.3)

Begin with the study of A1:

(1 − ak)
21B = (�b−1

k �k)
2

(1 + �b−1
k �k)

2 1B�c�2b−2
k �2k 1B. (4.4)
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Introduce c� = log4/3 1/�. Using (4.4), Lemma 5 and the inequality N� �M, we obtain

A1 = E�

N�∑
k=1

�2
k(1 − ak)

2 = E�

⎡
⎣ N�∑
k=1

�2
k(1 − ak)

21B

⎤
⎦+ E�

⎡
⎣ N�∑
k=1

�2
k(1 − ak)

21Bc

⎤
⎦

� C‖�‖2E�

⎡
⎣ sup
i=1,. . .,N�

�2

b2i
�2i

⎤
⎦+ CM1‖�‖2 e−log1+ 1/� �c‖�‖2c� �2

�2
E�

[
�(N�)

]+ � (4.5)

for some  >0, slightly smaller than in Lemma 5. We have used the large deviation inequality:

P

⎛
⎝ sup

i=1,. . .,N�

�2i > c�

⎞
⎠ �M1P(|�1| >

√
c�) + e−log1+ 1/� �C e−log1+ 1/�. (4.6)

By the same way, using (ii) of Lemma 5:

A2 =
∣∣∣∣∣∣E�

N�∑
k=1

�2b−2
k (a2k − 1)�2

k

∣∣∣∣∣∣ �E�

⎡
⎣ N�∑
k=1

�2b−2
k �2

k

∣∣∣∣∣
(

−2
�
bk

�k + 6
�2

b2k
�2k

)∣∣∣∣∣
⎤
⎦+ �

� c
√
c�

log 1/�
E�

⎡
⎣ N�∑
k=1

�2b−2
k �2

k

⎤
⎦+ ��c

(
log−1/3 1

�

)
E�[l(�,N

�)] + �. (4.7)

To finish the proof, apply the elementary inequality 2ab�Ba2 + B−1b2 to

A3 = 2�

∣∣∣∣∣∣E�

N�∑
k=1

(1 − ak)�kx
−1
k �k

∣∣∣∣∣∣ �BA1 + cB−1E�
[
l(�,N�)

]+ �.

Using (4.3)–(4.7), we eventually obtain the lemma, when choosing for instance B = c�. �

Lemma 2. Assume (bk)k�1 ∼ (k−�)k�1 for some ��0. Let V�(�,N�) and �(N�) the quantities defined in (2.9) and (4.1). For all B>0
and � >0,

E��(N�)�BE�V�(�,N�) + C�2B−2�

for some constant C >0 independent of �.

Proof. Let B>0 be fixed:

E��(N�) = E� sup
k=1,. . .,N�

�2b−2
k ,=E� sup

k=1,. . .,N�

�2b−2
k 1{

B−1supk � N� �2b−2
k <

∑N�

k=1�2b
−2
k

}

+ E� sup
k=1,. . .,N�

�2b−2
k 1{

B−1supk � N� �2b−2
k �

∑N�

k=1�2b
−2
k

}

� B�2E�

N�∑
k=1

b−2
k + C�2B−2�, �BE�V�(�,N�) + C�2B−2�. �

Lemma 3. There exists 1 > g� >0 such that,

E sup
k�M

[U0(k) − (1 + g�)U0(k, x)]�C�2 + �,

and g� → 0 as � → 0.

Proof. Apply Lemma 1 of Cavalier and Golubev (2006) to U0(k, x), conditioning on the sequence (xk)k�1. There exists k0 >0
depending only on the sequence (bk)k∈N, such that for allM>k> k0,

U0(k, x)√
2�̃k

1B�

√√√√log

(
�̃k

2��4

)
1B, (4.8)

where �̃k = �4
∑k

s=1x
−4
s . Indeed, on the event B defined in (4.2), xk is of order bk for all k�M. The polynomial hypotheses of

Cavalier and Golubev (2006) are satisfied by the sequence (xk)k�1. Lemma 1 of the related paper can directly be applied.
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Define also�k = �4
∑k

s=1b
−4
s and Kk =	k/

√
2�k. Let k�k0 be fixed. We first show that on the eventB, U0(k) <2U0(k, x). Remark

that

U0(k) <2U0(k, x)1B ⇔ 1BEx	k1{	k �2U0(k,x)} < �2 ⇔ 1BExKk1{Kk �2U0(k,x)/
√

2�k} <
�2√
2�k

.

Using (4.2) and (4.8),

2U0(k, x)√
2�k

1B = 2U0(k, x)√
2�̃k

√
�̃k√
�k

1B�
1
�2

√√√√log

(
�̃k

2��4

)
1B. (4.9)

Denotes by u1(k, x) the last term in the r.h.s. of (4.9). From the above equation, it suffices to show

1BExKk1{Kk �u1(k,x)} <
�2√
2�k

. (4.10)

Let t >0, possibly depending on the sequence (xk)k�1. Integrating by parts:

1BExKk1{Kk � t} =
[
tPx(Kk� t) +

∫ +∞

t
Px(Kk > u) du

]
1B, (4.11)

where Px denotes the conditional probability on the sequence (xk)k�1. Each Kk can be approximated by a standard Gaussian
random variable on small intervals. Indeed, for all m>0, conditioning on the sequence (xk)k�1, there exists a measure Pmk
verifying:

max
t0 �u� t1

|Pmk (u) − �(u)|1B�
C�2t21√
2k�k

1B,

where � is the density of a standard Gaussian random variable and

|Px(Kk > u) − Pmk (u)|1B�
C

km/2
1B.

See Cavalier and Golubev (2006) for more details. Using (4.11), for all t1� t,

ExKk1{Kk � t}1B =
[
tPx(Kk� t) +

∫ t1

t
Px(Kk > u) du +

∫ +∞

t1
Px(Kk > u) du

]
1B

�

[
tPmk (t) +

∫ t1

t
Pmk (u) du +

∫ +∞

t1
Px(Kk > u) du + Ct1

km/2

]
1B

�

[
t�(t) +

∫ +∞

t
�(u) du + t1 max

t�u� t1
|Pmk (u) − �(u)| +

∫ +∞

t1
Px(Kk > u) du + Ct1

km/2

]
1B. (4.12)

Replacing t by u1(k, x), and integrating by parts,

ExKk1{Kk �u1(k,x)}1B�

[
1√
2�

e−u1(k,x)
2/2 +

∫ +∞

t1
Px(Kk > u) du + t1 max

u1(k,x)�u� t1
|Pmk (u) − �(u)| + Ct1

km/2

]
1B

= T1 + T2 + T3 + T4.

Begin with the majoration of T1:

T1 = 1√
2�

e−u1(k,x)
2/21B�c

�4/2�4

�1/2�4
k

= o

(
�2√
2�k

)
as k → +∞. (4.13)

Indeed 1/
√
2 < � <1. For the study of T2, write

Kk =
k∑

s=1

d2s (�
2
s − 1),

where d2s = �2
s /
√
2�k for all s ∈ {1, . . . , k}. A large deviation inequality provides

Px(Kk > u)� exp

⎡
⎣− u2

4(
∑k

s=1d
4
s + umax

s=1,. . .,k
d2s )

⎤
⎦= exp

[
− u2

2 + 4u�2
k /
√
2�k)

]
� exp(−u/6)
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for all u>1. Choose t1 = (6u1(k, x)
2 ∧ 1) to obtain

T2�

∫ +∞

6u1(k,x)
2
e−u/6 du1B�C exp[−u1(k, x)

2] = o

(
�2√
2�k

)
as k → +∞. (4.14)

Indeed, the behavior of the sequence (bk)k∈N ensures√
log

(
k
2�

)
�u1(k, x)1B�C

√
log(k). (4.15)

With this choice of t1 and (4.15), we can easily obtain a bound for the remainder terms T3 and T4:

T3 = t1 max
t�u� t1

|Pmk (u) − �(u)|1B�
C�2u1(k, x)

6√
2k�k

1B = o

(
�2√
2�k

)
as k → +∞. (4.16)

To finish, choosing large enoughm,

T4 = o

(
�2√
2�k

)
as k → +∞. (4.17)

Hence, we can find k1 independent of � and � verifying

U0(k, x)1B >
U0(k)
2

, ∀k�k1.

Now, let k�k1:

U0(k)�C�2.

Indeed, k1 is independent of �. Then remark

E sup
k�M

[U0(k) − 2U0(k, x)]1Bc � sup
k�M

[U0(k)] × P(Bc) + ���. (4.18)

Indeed, looking at the proof of Lemma 1 of Cavalier and Golubev (2006), we can find a convenient bound for U0(k), k�M1.
ApproximatingM1 by �−2/(2�+1), it is then easy to see that (4.18) is satisfied.

Lemma 3 is verified for g� = 1. Nevertheless, the proof can easily be improved. Indeed, using Taylor expansion of Lemma
5, �̃k/�k → 1, as � → 0. Using this property in (4.9) and following the same methods, one obtain the lemma by choosing an
appropriate g�. �

Lemma 4. For all integer N, define

g(N, y) = E�

⎡
⎣ N∑
k=1

(1 − a2k)b
−2
k y2k + �2

N∑
k=1

(a2k − 1)b−2
k

⎤
⎦+ (1 + 
)E{U0(N, x) − U0(N)}. (4.19)

Let N̄0 and Ñ0 defined in (3.2). There exists �� → 0 as � → 0 and C >0 such that, for all � >0:

E�g(Ñ0, y)� (�� + �)E�[R
(�, Ñ0)] + �R
(�, N̄0) + C�2
1

�4�+1

(�
�

‖�‖
)4�+1

+ C�2 + �.

Proof. Let Ñ measurable w.r.t. a sequence (�k)k∈N of i.i.d. standard Gaussian random variables. For all N ∈ N and � >0, inequality
(4.31) of Cavalier and Golubev (2006) provide that

E�

Ñ∑
k=1

�b−1
k �k�k��

⎛
⎝∑

k>N

�2
k + �2

N∑
k=1

b−2
k

⎞
⎠+ �E�

⎛
⎝∑

k>Ñ

�2
k + �2

Ñ∑
k=1

b−2
k

⎞
⎠+ C�2

�2�+1
. (4.20)

Using Lemma 5 and (4.20):

E�

⎡
⎣ Ñ0∑
k=1

(1 − a2k)b
−2
k y2k

⎤
⎦ �E�

⎡
⎣ Ñ0∑
k=1

�
bk

�kb
−2
k y2k

⎤
⎦ �C

(
log−1/3 1

�

)
E�

⎡
⎣ Ñ0∑
k=1

�2b−2
k

⎤
⎦+ E�

⎡
⎣ Ñ0∑
k=1

�
�
�2
k�b

−1
k �k

⎤
⎦+ �

� (�� + �)E�[R
(�, Ñ0)] + �R
(�, N̄0) + C�2
1

�4�+1

(
1 + �

�
‖�‖

)4�+1
+ �,
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with �� = log−1 1/�. Then,

E�

⎡
⎣ Ñ0∑
k=1

(a2k − 1)b−2
k

⎤
⎦ �CE�

⎡
⎣ Ñ0∑
k=1

{
�
bk

|�k| + �2

b2k
�2k

}
�2b−2

k

⎤
⎦+ �, � log−1/3

(
1
�

)
E�

⎡
⎣ Ñ0∑
k=1

�2b−2
k

⎤
⎦+ �.

We eventually apply Lemma 3 to complete the proof. �

The following lemma was introduced in Cavalier and Hengartner (2005).

Lemma 5. For all k ∈ N, set ak = x−1
k bk and consider the Taylor expansions:

(i) ak = 1 − �
bk

�k + �2

b2k
�2k�k,1,

(ii) a2k = 1 − 2
�
bk

�k + 6
�2

b2k
�2k�

2
k,2,

where �k,1 and �k,2 are random variables. On the eventB, �k,1 and �k,2 are uniformly bounded. Moreover:

P(Mc)�CM0 e−log1+1/� and P(Bc)�CM1 e−log1+ 1/�,

whereM= {M0 <M<M1}. The constants  and C are positive and independent of �.

Proof. The proof is given in Cavalier and Hengartner (2005). �

5. Proof of Theorem 1

From Theorem 2 of Cavalier and Golubev (2006), the quantity

V�(�,N) =
+∞∑

k=N+1

�2
k + �2

N∑
k=1

b−2
k + (1 + �)U0(N) + C��2

1
�

is a risk hull for all � >0. Hence,

E� sup
N

[l(�,N) − V�(�,N)]�0.

In particular

E�l(�,N
�)�E�V�(�,N�). (5.1)

Moreover, using (2.13)

V
(x, y,N�)�V
(x, y,N), ∀N�M. (5.2)

The proof of Theorem 1 consists in writing V
(x, y,N�) in terms of V�(�,N�) and then using (5.1), (5.2) and Lemma 1.
Let N� defined in (2.13), 
 >1 and � >0.

V
(x, y,N�) − V�(�,N�) = −
N�∑
k=1

x−2
k y2k + 2�2

N�∑
k=1

x−2
k + (1 + 
)U0(N�, x) −

∑
k>N�

�2
k − �2

N�∑
k=1

b−2
k − (1 + �)U0(N�) − C��2

1
�

= −
N�∑
k=1

x−2
k y2k + �2

N�∑
k=1

x−2
k −

∑
k>N�

�2
k − �2

N�∑
k=1

b−2
k (1 − a2k) − C��2

1
�

+ [(1 + 
)U0(N�, x) − (1 + �)U0(N�)], (5.3)

where ak = bk/xk for all k ∈ N. Remark that

−
N�∑
k=1

x−2
k y2k + �2

N�∑
k=1

x−2
k −

∑
k>N�

�2
k = − �2

N�∑
k=1

x−2
k (�2

k − 1) − 2
N�∑
k=1

�kx
−2
k bk��k −

N�∑
k=1

a2k�
2
k −

∑
k>N�

�2
k

= − �2
N�∑
k=1

x−2
k (�2

k − 1) − 2�
N�∑
k=1

�kx
−2
k bk�k − ‖�‖2 −

N�∑
k=1

(a2k − 1)�2
k . (5.4)
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Now,we use inequality (ii) of Lemma 5 in order to bound the sums containing the terms ak in (5.3) and (5.4). These sums represent
the error made when using x−2

k instead of b−2
k . A string of inequalities similar to the proof of Lemma 1 reveals that

E�

N�∑
k=1

(a2k − 1)�2
k �Cc�‖�‖2 �2

�2
E��(N�) − 2E�

⎡
⎣ N�∑
k=1

�b−1
k �2

k�k

⎤
⎦+ �, (5.5)

where c� = log4/3 1/�. Moreover,

�2E�

N�∑
k=1

b−2
k (1 − a2k)���E�V�(�,N�) + �, (5.6)

where �� → 0 as � → 0. Indeed, Lemma 5 and (4.6) provide that ak → 1 uniformly in k�M on the eventB. Then use (5.3)–(5.6)
to obtain

(1 − ��)E�V�(�,N�)�‖�‖2 + C��2
1

�
+ Cc�

�2

�2
‖�‖2E��(N�) + E�

⎡
⎣V
(x, y,N�) + �2

N�∑
k=1

x−2
k (�2

k − 1) + 2�
N�∑
k=1

�kakx
−1
k �k

− {
(1 + 
)U0(N�, x) − (1 + �)U0(N�)

}− 2�
N�∑
k=1

b−1
k �k�

2
k

⎤
⎦+ �. (5.7)

Remark that

−2�E�

N�∑
k=1

b−1
k �k�

2
k = 2�E�

N�∑
k=1

b−1
k �̄k�

2
k ,

where �̄k ∼ N(0, 1). Let N̄0 defined in (3.2). Using (4.20), for all �1 >0,

−2E�

N�∑
k=1

�b−1
k �k�

2
k ��1

⎛
⎝ +∞∑

k=N̄0+1

�2
k +

N̄0∑
k=1

�2b−2
k

⎞
⎠+ C�2

1

�4�+1
1

(
1 + �

�
‖�‖

)4�+1
+ �1E�

⎛
⎝ +∞∑

k=N�+1

�2
k + �2

N�∑
k=1

b−2
k

⎞
⎠

� �1E�V�(�,N�) + �1R
(�, N̄0) + C�2
1

�4�+1
1

(
1 + �

�
‖�‖

)4�+1
. (5.8)

Now using (5.2), V
(x, y,N�)�V
(x, y,N) for all N�M. In particular, this inequality is true for N = Ñ0 where

Ñ0 = arg inf
N�M

R
(�,N), (5.9)

and R
(�,N) is defined in (3.1) for all N ∈ N. The bandwidth Ñ0 is stochastic. It depends on the sequence (xk)k�1. Nevertheless,
since (xk)k∈N and (yk)k∈N are independent,

E�V
(x, y, Ñ0) = − E�

⎡
⎣ Ñ0∑
k=1

x−2
k y2k

⎤
⎦+ 2�2E�

⎡
⎣ Ñ0∑
k=1

x−2
k

⎤
⎦+ (1 + 
)E�U0(Ñ0, x)

= E�

⎡
⎣−

Ñ0∑
k=1

�2
k +

Ñ0∑
k=1

b−2
k + (1 + 
)U0(Ñ0)

⎤
⎦+ E�[g(Ñ0, y)]

= − ‖�‖2 + E�R
(�, Ñ0) + E�g(Ñ0, y), (5.10)

where, for all N ∈ N,

g(N, y) = E�

⎡
⎣ N∑
k=1

(
1 − a2k

)
b−2
k y2k + �2

N∑
k=1

(
a2k − 1

)
b−2
k

⎤
⎦+ (1 + 
)E�

{
U0(N, x) − U0(N)

}
. (5.11)

Using inequalities (5.7)–(5.11), we obtain, for all N�M:

(1 − �1 − ��)E�V�(�,N�)�E�[R
(�, Ñ0)] + �2E�

⎡
⎣ N�∑
k=1

x−2
k

(
�2
k − 1

)⎤⎦+ 2E�

⎡
⎣ N�∑
k=1

�kak�x
−1
k �k

⎤
⎦

+ C�2
1

�4�+1
1

(
1 + �

�
‖�‖

)4�+1
− E�

{
(1 + 
)U0(N�, x) − (1 + �)U0(N�)

}

+ Cc�
�2

�2
‖�‖2E�

[
�(N�)

]+ E�

[
g(Ñ0, y)

]
+ �1R
(�, N̄0) + C��2

1
�

+ �.
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Then apply Lemmas 2, 4 and (4.20). For all �2 > �1 >0 and 0 <B<1,

(1 − �1 − B − ��)E�V�(�,N�)� (1 + 2�2 + ��)E�R
(�, Ñ0) + C�2
1

�4�+1
1

(
1 + �

�
‖�‖

)4�+1
+ �2(1 − �2)E�

N�∑
k=1

x−2
k (�2

k − 1)

− E�{(1 + 
)U0(N�, x) − (1 + �)U0(N�)} + �2E�l(�,N
�) + �2B−2�

(
�2

�2
‖�‖2

)2�+1

+ 2�1R
(�, N̄0) + C��2
1

�
+ �. (5.12)

Now consider the term

T = �2(1 − �2)E�

N�∑
k=1

x−2
k (�2

k − 1) − E�
{(
1 + 
)U0(N�, x) − (1 + �)U0(N�

)}
.

This represents the main difficulty of the proof. Indeed, inequality (4.24) of Cavalier and Golubev (2006) establishes that for all
� >0,

E� sup
k

{	k − (1 + �)U0(k)}�
C�2

1
�

.

This result can be generalized to the quantity T, conditioning on the sequence (xk)k�1. Lemma 3 provides that there exists g�
verifying

E� sup
N�M

[U0(N) − (1 + g�)U0(N, x)]�C�2 + �

for some C >0. Conditioning on the sequence (xk)k�1, we obtain the following bound:

T� (1 − �2)E�

[
	̃N� − 
 − � − (1 + �)g�

1 − �2
U0(N�, x)

]
+ C�2 + ��

(1 − �2)
2C�2

1
(
 − �(1 + g�) − g� + �2 − 1)+

+ C�2 + �. (5.13)

If the term g� is negative, we can easily find � and �2 able to control the residual term in (5.13). The choice is the same as in
Cavalier and Golubev (2006). Now, if g� is positive and cannot be controlled, any acceptable bound for (5.13) is available. The
noisy penalty U0(N�, x) is too small to contain the stochastic term in V
(x, y,N�). Fortunately, Lemma 3 ensures that g� <1. Choose

1 > �2 > g�. (5.14)

Since 
 − 1 >0, set

� = 
 − 1
2(1 + g�)

.

With this choice of parameters, there exists C independent of � such that T�C�2/(
−1)+. Now, setting B=�1, use (5.1) and (5.13)
to obtain

(1 − �2 − 2�1 − ��)E�l(�,N
�)� (1 + 2�2 + ��)E�R
(�, Ñ0) + 2�1R
(�, N̄0) + C�2

1

�4�+1
1

(
1 + �2

�2
‖�‖2

)2�+1

+ C�2

(
 − 1)
+ �,

since 
 is greater then 1. Whatever the value of �2, the parameter �1 can be chosen sufficiently small in order to provide that

1 − �2 − 2�1 − �� >0,

since for a fixed C >0, �� can be construced so that �� <C. Then remark that

E�R
(�, Ñ0) = E� inf
N�M

R
(�,N)� inf
N

R
(�,N) + �(�) + �.

We eventually apply Lemmas 1 and 2 with B = �1 to obtain

E�‖�� − �‖2� (1 + ��)
(1 + �� + 2�2)

(1 − 2�1 − �2 − ��)
R
(�, N̄0) + C�2

(
 − 1)+
+ C�2

1

�2�+1
1

(
1 + �2

�2
‖�‖2

)2�+1

+ �(�) + �

for some 1 > � >0, where �� is defined in Lemma 1. In order to conclude the proof, set for example �2 = √
g� in (5.14). �
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