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Abstract: We are concerned with minimax signal detection. In this set-
ting, we discuss non-asymptotic and asymptotic approaches through a uni-
fied treatment. In particular, we consider a Gaussian sequence model that
contains classical models as special cases, such as, direct, well-posed inverse
and ill-posed inverse problems. Working with certain ellipsoids in the space
of squared-summable sequences of real numbers, with a ball of positive ra-
dius removed, we compare the construction of lower and upper bounds for
the minimax separation radius (non-asymptotic approach) and the min-
imax separation rate (asymptotic approach) that have been proposed in
the literature. Some additional contributions, bringing to light links be-
tween non-asymptotic and asymptotic approaches to minimax signal, are
also presented. An example of a mildly ill-posed inverse problem is used
for illustrative purposes. In particular, it is shown that tools used to derive
‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions,
and vice-versa.

In order to enhance our understanding of these two minimax signal
detection paradigms, we bring into light hitherto unknown similarities and
links between non-asymptotic and asymptotic approaches.
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1. Introduction

We consider the following Gaussian sequence model (GSM),

Yj = bjθj + ε ξj , j ∈ N, (1.1)

where N = {1, 2, . . .} is the set of natural numbers, b = {bj}j∈N > 0 is a known
sequence, θ = {θj}j∈N ∈ l2(N) is the unknown signal of interest, ξ = {ξj}j∈N is
a sequence of independent standard Gaussian random variables, and ε > 0 is a
known parameter (the noise level). The observations are given by the sequence
Y = {Yj}j∈N from the GSM (1.1) and their joint law is denoted by Pθ. Here,
l2(N) denotes the space of squared-summable sequences of real numbers, i.e.,

l2(N) =

⎧⎨⎩θ ∈ RN : ‖θ‖2 :=
∑
j∈N

θ2j < +∞

⎫⎬⎭ .
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The GSM (1.1) arises in many well-known situations. For instance, consider the
Gaussian white noise model (GWNM)

dXε(t) = Af(t)dt+ ε dW (t), t ∈ V, (1.2)

where A is a known linear operator acting on a Hilbert space H1 with values in
another Hilbert space H2, f(·) ∈ H1 is the unknown response function that one
wants to detect or estimate, W (·) is a standard Wiener process on V ⊆ R and
ε > 0 is a known parameter (the noise level). For the sake of simplicity, we only
consider the case when A is injective (meaning that A has a trivial nullspace)
and assume that V = [0, 1], H1 = L2(V ), U ⊆ R and H2 = L2(U).

• (direct problem) Let A = I (the identity operator). Let {φj}j∈N be an
orthonormal basis on L2(V ). Transforming the GWNM (1.2) with A = I

into the Fourier domain, the GSM (1.1) arises with Yj =
∫ 1

0
φj(t)dXε(t),

θj =
∫ 1

0
φj(t)f(t)dt, ξj =

∫ 1

0
φj(t)dW (t) and bj = 1, for all j ∈ N.

• (well-posed inverse problem) Let A be a self-adjoint operator that admits
an eigenvalue-eigenfunction decomposition (bj , ϕj)j∈N, in the sense that

Aϕj = bjϕj , j ∈ N,

where bj > b0, for some b0 > 0, for all j ∈ N. Thus, the GSM (1.1) arises

with Yj =
∫ 1

0
ϕj(t)dXε(t), θj =

∫ 1

0
ϕj(t)f(t)dt, ξj =

∫ 1

0
ϕj(t)dW (t) and

bj > b0 > 0, for all j ∈ N. In this case, the GWNM (1.2) corresponds to a
so-called well-posed inverse problem. Possible examples of such decompo-
sitions arise with, e.g., differential or Sturm-Liouville operators.

• (ill-posed inverse problem) In most cases of interest, however, A is a com-
pact operator (see, e.g., Chapter 2 of [7]). In particular, it admits a singular
value decomposition (SVD) (bj , ψj , ϕj)j∈N, in the sense that

Aϕj = bjψj , A�ψj = bjϕj , j ∈ N,

where A� denotes the adjoint operator of A – note that (b2j )j∈N and (ϕj)j∈N

are, respectively, the eigenvalues and the eigenfunctions of A�A. Thus,

the GSM (1.1) arises with Yj =
∫ 1

0
ψj(t)dXε(t), θj =

∫ 1

0
ϕj(t)f(t)dt,

ξj =
∫ 1

0
ψj(t)dW (t) and bj > 0 (since A is injective), for all j ∈ N. In

this case, the GWNM (1.2) corresponds to a so-called ill-posed inverse
problem since the inversion of A�A is not bounded. Possible examples of
such decompositions arise with, e.g., convolution or Radon-transform op-
erators. The effect of the ill-posedeness of the model is clearly seen in the
decay of (the singular values) bj towards 0 as j → +∞. As j → +∞, bjθj
gets weaker and it is then more difficult to estimate or detect the sequence
θ = {θj}j∈N.

From the above discussion, it is evident that one can undertake statistical
inference based on observations either from the GSM (1.1) or from the (equiva-
lent) GWNM (1.2). Estimation in these models has received much attention over
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the last decades; optimality results (in the minimax sense) have been given for
various loss functions and sequence/function spaces. Many methods have been
considered including kernel, local polynomial, spline, projection and wavelet
methods (see, e.g., [27], [10], [25], [6], [19]).

On the other hand, signal detection has received less attention. Minimax
signal detection in the GSM (1.1) with bj = 1 for all j ∈ N has been studied in
[8] and in detail in the seminal work of [13], [14] and [15] (see also [18]). This work
uses an asymptotic framework, that is, the noise level ε > 0 is allowed to converge
to zero. A corresponding non-asymptotic framework, that is, for any fixed value
of the noise level ε > 0, has been studied in [1] and [2]. Non-asymptotic and
asymptotic studies for minimax signal detection in the GSM (1.1) with bj > 0
for all j ∈ N have been recently considered in [17] and [22], respectively, in order
to study minimax signal detection in ill-posed inverse problems. Despite the fact
that the minimax signal detection problem is the same in the aforementioned
studies, the final aims and the methodologies involved sometimes differ.

Bearing in mind the different issues and tasks involved, our aim below is to
provide a unified treatment for non-asymptotic and asymptotic approaches to
minimax signal detection in the GSM (1.1). In particular, we look for common
ground between them that will enhance our understanding of these two existing
minimax signal detection paradigms. This paper is organized as follows. Section
2 considers minimax signal detection from both non-asymptotic and asymptotic
point of views. Section 3 discusses the construction of upper and lower bounds
of the minimax separation radius (non-asymptotic approach) and the minimax
separation rate (asymptotic approach) in a unified treatment, and points out
several similarities. Section 4 brings into light hitherto unknown links between
non-asymptotic and asymptotic approaches to minimax signal detection. It also
contains an example of a mildly ill-posed inverse problem for illustrative pur-
poses. In particular, it is shown that tools used to derive ‘asymptotic’ results
can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. Finally,
Section 5 draws some concluding remarks and provides an avenue for future
research.

Throughout the paper, we use the following notations. For all x, y ∈ R,
δx(y) = 1 if x = y and δx(y) = 0 if x �= y. Also, x ∧ y := min{x, y} and
(x)+ := max{0, x}. Given two collections (cε)ε>0 and (dε)ε>0 of real numbers,
cε ∼ dε means that there exist 0 < κ0 ≤ κ1 < ∞ such that κ0 ≤ cε/dε ≤ κ1

for all ε > 0. In the same spirit, given two sequences (cj)j∈N and (dj)j∈N of
real numbers, cj � dj means that there exist 0 < κ0 ≤ κ1 < ∞ such that
κ0 ≤ cj/dj ≤ κ1 for all j ∈ N. Finally, the abbreviation oε(1) (resp. Oε(1)) will
refer to a collection tending to 0 (resp. bounded) as ε tends to 0. When it is not
important to make the dependance on the noise level ε > 0 explicit, we write
simply o(1) (resp. O(1)).

2. Minimax signal detection

Statistical estimation is concerned with a quantitative question. Instead, we
address below a qualitative question: given observations from the GSM (1.1),
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our aim is to compare the underlying (unknown) signal θ ∈ l2(N) to a (known)
benchmark signal θ0, i.e., to test

H0 : θ = θ0 versus H1 : θ − θ0 ∈ F , (2.1)

for some given θ0 and a given subspace F . The statistical setting (2.1) is known
as goodness-of-fit testing when θ0 �= 0 and as signal detection when θ0 = 0.

Remark 2.1. Given observations from the GWNM (1.2), the test (2.1) is re-
lated to the test

H0 : f = f0 versus H1 : f − f0 ∈ F̃ , (2.2)

for a given benchmark function f0 and a given subspace F̃ . In most cases,
F̃ contains functions f ∈ L2(V ) that admit a Fourier series expansion with
Fourier coefficients θ belonging to F (see, e.g., [18], Section 3.2). In these cases,
the problems (2.1) and (2.2) are equivalent.

The choice of the set F is important. Indeed, it should be rich enough in
order to contain the true θ. At the same time, if it is too rich, it will not be
possible to control the performances of a given test due to the complexity of the
problem. The common approach for such problems is to impose both a regularity
condition (which characterizes the smoothness of the underlying signal) and an
energy condition (which measures the amount of the underlying signal).

Concerning the regularity condition, we will work with certain ellipsoids in
l2(N). In particular, we assume that θ ∈ Ea(R), the set Ea(R) being defined as

Ea(R) =

⎧⎨⎩θ ∈ l2(N),
∑
j∈N

a2jθ
2
j ≤ R

⎫⎬⎭ ,

where a = (aj)j∈N denotes a non-decreasing sequence of positive real numbers
with aj → +∞ as j → +∞, and R > 0 is a constant. The set Ea(R) can be
seen as a condition on the decay of θ. The cases where a increases very fast
correspond to θ with small coefficients. In such a case, the corresponding signal
can be considered as being ‘smooth’.

Without loss of generality, in what follows, we set R = 1. In order to simplify
the notation, we will write Ea instead of Ea(1).

Regarding the energy condition, it will be measured in the l2(N)-norm. In
particular, given rε > 0 (called the radius), which is allowed to depend on the
noise level ε > 0, we will consider θ ∈ Ea such that ‖θ‖ > rε. Given a smoothness
sequence a and a radius rε > 0, the set F can thus be defined as

F := Θa(rε) = {θ ∈ Ea, ‖θ‖ ≥ rε} . (2.3)

Since θ0 and bj > 0, j ∈ N, are known, and assuming that θ0 ∈ Ea, without loss
of generality, given observations from the GSM (1.1), we restrict ourselves to
the hypothesis testing setting (2.1) with θ0 = 0 (i.e., signal detection).

In summary, given observations from the GSM (1.1), we will be dealing with
the following signal detection problem

H0 : θ = 0 versus H1 : θ ∈ Θa(rε), (2.4)
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where Θa(rε) is defined in (2.3). The sequence a being fixed, the main issue
for the problem (2.4) is then to characterize the values of rε > 0 for which
both hypotheses H0 (called the null hypothesis) and H1 (called the alternative
hypothesis) are ‘separable’ (in a sense which will be made precise later on).

In the following, a (non-randomized) test Ψ := Ψ(Y ) will be defined as a
measurable function of the observation Y = (Yj)j∈N from the GSM (1.1) having
values in the set {0, 1}. By convention, H0 is rejected if Ψ = 1 and H0 is not
rejected if Ψ = 0. Then, given a test Ψ, we can investigate

• the type I (first kind) error probability defined as

αε(Ψ) := P0(Ψ = 1), (2.5)

which measures the probability of rejecting H0 when H0 is true (i.e., θ =
0); it is often constrained as being bounded by a prescribed level α ∈]0, 1[,
and

• the maximal type II (second kind) error probability defined as

βε(Θa(rε),Ψ) := sup
θ∈Θa(rε)

Pθ(Ψ = 0), (2.6)

which measures the worst possible probability of not rejecting H0 when
H0 is not true (i.e., when θ ∈ Θa(rε)); one would like to ensure that it is
(asymptotically) bounded by a prescribed level β ∈]0, 1[.

For simplicity in our exposition, we will restrict ourselves to α-level tests, the
value of α ∈ ]0, 1[ being fixed.

Definition 2.1. A test Ψα is called an α-level test if

αε(Ψα) ≤ α.

Given the trivial test Ψα := α ∈ ]0, 1[, which does not depend on any obser-
vation, and extending the definition of a (non-randomized) test to a randomized
test1, it is easily seen that

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α) ∈ [0, 1− α], for all α ∈]0, 1[

(see, e.g., [18], pp. 10-11).

Definition 2.2. A minimax hypothesis testing problem

H0 : θ = 0 versus H1 : θ ∈ G,

for some set G (with 0 �∈ G), is called trivial if

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(F , Ψ̃α) = 1− α for all α ∈]0, 1[,

1a measurable function Ψ := Ψ(Y ) of the observation Y = (Yj)j∈N from the GSM (1.1)
with values in the interval [0, 1]: the null hypothesis is rejected with probability Ψ(Y ) and it is
not rejected with probability 1−Ψ(Y ). In this case, αε(Ψ) := E0(Ψ(Y )) and βε(Θa(rε),Ψ) :=
supθ∈Θa(rε)

Eθ(1−Ψ(Y ))).
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and is called asymptotically trivial if

inf
Ψ̃α:αε(Ψ̃)≤α

βε(F , Ψ̃α) = 1− α+ oε(1) for all α ∈]0, 1[.

The regularity and energy conditions imposed above, when taken together,
i.e., when F is given by (2.3), result (provided the radius rε > 0 is ‘well-chosen’)
in a non-trivial or an asymptotically non-trivial minimax signal detection prob-
lem (2.4). This means, in particular, that both hypotheses H0 and H1 are, in
some sense, separable in such a framework. Two different points of view, the
so-called non-asymptotic and asymptotic minimax signal detection approaches,
are at hand, that have been respectively developed in, e.g., [1], [2], [22] and [17].
We elaborate on both approaches in the subsequent sections.

2.1. The non-asymptotic approach

Let α, β ∈]0, 1[ be given, and let Ψα be an α-level test.

Definition 2.3. The separation radius of an α-level test Ψα over the class Ea
is defined as

rε(Ea,Ψα, β) := inf {rε > 0 : βε(Θa(rε),Ψα) ≤ β} ,

where the maximal type II error probability βε(Θa(rε),Ψα) is defined in (2.6).

In some sense, the separation radius rε(Ea,Ψα, β) corresponds to the smallest
possible value of the available signal ‖θ‖ for which H0 and H1 can be ‘separated’
by an α-level test Ψα with prescribed type I and maximal type II error proba-
bilities, α and β, respectively.

Definition 2.4. The minimax separation radius r̃ε := r̃ε(Ea, α, β) > 0 over the
class Ea is defined as

r̃ε := inf
Ψ̃α:αε(Ψ̃α)≤α

rε(Ea, Ψ̃α, β). (2.7)

The minimax separation radius r̃ε corresponds to the smallest radius rε > 0
such that there exists some α-level test Ψ̃α for which the maximal type II error
probability βε(Θa(rε), Ψ̃α) is not greater than β.

It is worth mentioning that Definitions 2.3 and 2.4 are valid for any fixed
ε > 0 (i.e., it is not required that ε → 0). The performances of any given test
Ψα is easy to handle in the sense that the type I error probability αε(Ψα)
is bounded by α (i.e., Ψα is an α-level test), and that the dependence of the
minimax separation radius r̃ε with respect to given α and β can be precisely
described.

In practice, given an α-level test Ψα, it might be appropriate to compare its
separation radius rε(Ea,Ψα, β) to the minimax separation radius r̃ε. Hence, the
following definition is in order (see, e.g., [1], [22]).
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Definition 2.5. An α-level test Ψα is said to be powerful over the class Ea if
there exists a constant C ≥ 1 such that, for all ε > 0,

βε(Θa(Cr̃ε),Ψα) ≤ β,

or, equivalently,
rε(Ea,Ψα, β) ≤ Cr̃ε,

for any given β ∈]0, 1[.
According to Definition 2.5, for every ε > 0, the separation radius rε(Ea,Ψα,

β) of a powerful α-level test Ψα is of the order (up to a constant) of the minimax
separation radius r̃ε. In some sense, a powerful test appears to be rate-optimal.

We present below a general strategy for obtaining the minimax separation
radius r̃ε (that implicitly also produces a powerful α-level test Ψα). Given an
ellipsoid Ea, one has to find a radius r�ε > 0 such that

(Lower bound) r̃ε ≥ r�ε ,

and to construct a specific α-level test Ψα for which

(Upper bound) rε(Ea,Ψα, β) ≤ Cr�ε ,

for some (explicitly obtained) constant C ≥ 1. It can be then easily seen that

r�ε ≤ r̃ε ≤ Cr�ε .

More precisely,

Lower bound: It is enough to bound from below the following quantity

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α),

for some radius rε := r�ε > 0. Indeed, if

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(r
�
ε), Ψ̃α) ≥ β, (2.8)

for some r�ε > 0, then
r̃ε ≥ r�ε .

Upper bound: We first construct an α-level test Ψα. Then, we are looking for
a radius rε > 0 such that, uniformly over all θ ∈ Ea,

‖θ‖ > rε ⇒ Pθ(Ψα = 0) ≤ β.

It is then evident that

βε(Θa(rε),Ψα) ≤ β implying that rε(Ea,Ψα, β) ≤ rε. (2.9)

Finally, if rε ≤ Cr�ε for some C ≥ 1, it then follows immediately that

rε(Ea,Ψα, β) ≤ Cr�ε .
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Fig 1. According to the lower bound (2.8), minimax signal detection is not possible inside the
circle with center 0 and radius r�ε . According to the upper bound (2.9), for any given α ∈]0, 1[,
the maximal type II error probability βε(Θa(rε),Ψα) of an α-level test Ψα can be controlled
by a prescribed level β ∈]0, 1 − α[ outside the circle with center 0 and radius Cr�ε , for some
C ≥ 1. The ‘optimal frontier’ is determined by the circle with center 0 and radius r̃ε (i.e., the
minimax separation radius).

(Note that the α-level test Ψα constructed above is powerful according to Defi-
nition 2.5.)

Figure 1 illustrates the areas where, according to Definitions 2.3–2.5, minimax
signal detection can, or cannot, be possible.

We stress at this point that the quantity

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α)

which had to be bounded from below in the above discussion is precisely the
minimax type II error probability to be introduced in the asymptotic approach
that we elaborate in the following section.

2.2. The asymptotic approach

Let α ∈]0, 1[ be fixed and let rε > 0 be a given radius.

Definition 2.6. The minimax type II error probability is defined as

βε,α(Θa(rε)) := inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α).



262 C. Marteau and T. Sapatinas

Given a radius rε > 0, the minimax type II error probability βε,α(Θa(rε))

characterizes the minimax testing performances over all α-level tests Ψ̃α for
signal detection problem (2.4). In other words, it corresponds to the lowest
maximal type II error probability over the set Θa(rε). In particular, one would
like to identify the different possible values of the radius rε > 0 such that the
minimax type II error probability βε,α(Θa(rε)) tends to 0 or to a constant or
to 1, as ε tends to 0.

Definition 2.7. The term r̄ε := r̄ε(Ea, α) > 0 is called the minimax separation
rate if, for any given rε > 0,

βε,α(Θa(rε)) = 1− α+ oε(1) if
rε
r̄ε

→ 0 as ε → 0,

and
βε,α(Θa(rε)) = oε(1) if

rε
r̄ε

→ +∞ as ε → 0.

The minimax separation rate r̄ε identifies, in some sense, the frontiers be-
tween detectable and undetectable signals. In other words, it means that, for
small ε > 0, one can detect all θ ∈ Θa(rε) for which the ratio rε/r̄ε is large.
On the other hand, if, for small ε > 0, the ratio rε/r̄ε is small, it is then impos-
sible to distinguish H0 from H1 with small maximal type II error probability
βε,α(Θa(rε)).

In practice, given an α-level test Ψα, it might be useful, for small ε > 0,
to compare its maximal type II error probability βε(Θa(rε),Ψα) to the mini-
max type II error probability βε,α(Θa(rε)). Hence, the following definition is
appropriate.

Definition 2.8. An α-level test Ψα is said to be

(i) asymptotically minimax consistent if, for any given rε > 0,

βε(Θa(rε),Ψα) = oε(1) if
rε
r̄ε

→ +∞ as ε → 0.

(ii) asymptotically minimax if, for any given rε > 0,

βε(Θa(rε),Ψα) = βε,α(Θa(rε)) + oε(1).

Regarding Definition 2.8, given an α-level test Ψα, item (i) provides a weak
condition in the sense that, for small ε > 0, one can detect all θ ∈ Θa(rε) for
which the ratio rε/r̄ε is large. On the other hand, item (ii) refers to a strong
condition in the sense that one needs to asymptotically attain the minimax type
II error probability βε,α(Θa(rε)).

In this setting, the point of view is asymptotic. The performance of any
testing procedure is investigated as ε tends to 0. Nevertheless, such a point of
view allows, sometimes, a precise description of the asymptotic value for the
minimax separation rate r̄ε. In particular, one can, in some cases, determine
sharp asymptotics of Gaussian type for the minimax type II error probability
βε,α(Θa(rε)).
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Definition 2.9. The minimax type II error probability βε,α(Θa(rε)) is said to
possess a sharp asymptotic of Gaussian type if it has an asymptotic Gaussian
shape, i.e., if there exists a function ν(rε) ∈ ]−∞,Φ−1(1− α)] (that should be
determined later on) such that

βε,α(Θa(rε)) = Φ(ν(rε)) + oε(1),

where Φ denotes the distribution function of the standard Gaussian distribution.

Sharp asymptotics of Gaussian type for the minimax type II error proba-
bility βε,α(Θa(rε)) have been observed in particular settings (see e.g., [18] and
references therein).

We present below a general strategy for obtaining the minimax separation
rate r̄ε and sharp asymptotics of Gaussian type for the minimax type II error
probability βε,α(Θa(rε)). Given an ellipsoid Ea, this amounts to investigate the
construction of both lower and upper bounds on βε,α(Θa(rε)).

Lower bound: Find a radius rε,1 > 0 such that, for any given rε > 0,

βε,α(Θa(rε)) ≥ 1− α+ oε(1) if
rε
rε,1

→ 0 as ε → 0.

If possible, one may also want to determine the shape of βε,α(Θa(rε)), i.e., to
find a function ν1(rε) ∈ ]−∞,Φ−1(1− α)] such that, for any given rε > 0,

βε,α(Θa(rε)) ≥ Φ(ν1(rε)) + oε(1).

Upper bound: Given an α-level test Ψα, find a radius rε,2 > 0 such that, for
any given rε > 0,

βε(Θa(rε),Ψα) = oε(1) if
rε
rε,2

→ +∞ as ε → 0.

Additionally, one may again want to determine the shape of βε(Θa(rε),Ψα), i.e.,
to find a function ν2(rε) ∈ ]−∞,Φ−1(1− α)] such that, for any given rε > 0,

βε(Θa(rε),Ψα) ≤ Φ(ν2(rε)) + oε(1).

If the α-level test Ψα is such that rε,1/rε,2 = Oε(1), then, obviously, r̄ε/rε,1 =
Oε(1). It means that, according to Definition 2.7, either rε,1 or rε,2 correspond to
the minimax separation rate r̄ε. Furthermore, in the case when ν1(rε)/ν2(rε) =
1+oε(1), then, according to Definition 2.9, we get sharp asymptotics of Gaussian
type for the minimax type II error probability βε,α(Θa(rε)), with ν(·) = ν1(·).

Figure 2 illustrates the areas where, according to Definition 2.7, minimax
signal detection can, or cannot, be possible. It also illustrates, according to Def-
inition 2.9, the area where sharp asymptotics of Gaussian type for the minimax
type II error probability βε,α(Θa(rε)) are feasible.
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Fig 2. The interval [0, A] (resp. [B,+∞[) illustrates the area where rε
r̄ε

→ 0 (resp. rε
r̄ε

→
+∞) as ε → 0, i.e., where the minimax type II error probability βε,α(Θa(rε)) satisfies
βε,α(Θa(rε)) = 1 − α + oε(1) (resp. βε,α(Θa(rε)) = oε(1)) (see Definition 2.7). The in-
terval [A,B] determines the frontier for the minimax separation rate r̄ε. In particular, inside
this area, sharp asymptotics of Gaussian type (solid curve) for βε,α(Θa(rε)) are feasible, i.e.,
there exists a function ν(rε) ∈ ]−∞,Φ−1(1− α)] such that βε,α(Θa(rε)) = Φ(ν(rε)) + oε(1)
(see Definition 2.9).

2.3. A brief motivation

Although the minimax signal detection problem (2.4) is the same for both ap-
proaches (non-asymptotic and asymptotic), the way the optimality of the con-
sidered testing procedures is measured differs.

In the non-asymptotic setting, the statistician sets in advance some prescribed
values α, β ∈]0, 1[. Then, the goal is to find ‘optimal’ (non-asymptotic) separa-
tion conditions for H0 and H1 that allow a precise (non-asymptotic) control of
the type I error probability and maximal type II error probability by α and β,
respectively. On the other hand, in the asymptotic setting, the aim is slightly
different. Given any rε > 0, the goal is to measure the best possible associated
maximal type II error probability of an (asymptotically) α-level test and to
(asymptotically) determine whether it tends to 1− α or to 0, as the noise level
ε tends to 0.

In order to study the signal detection problem (2.4), from a minimax point
of view, different testing methodologies have been developed over the years
that strongly depend on the two considered signal detection paradigms. We
refer to, e.g., [1], [21], [22], for the non-asymptotic paradigm, and to, e.g., [13],
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[14], [15], [18], [17], for the asymptotic paradigm. Unsurprisingly, the results
in these studies are coherent (i.e., the associated minimax separation radii r̃ε
and minimax separation rates r̄ε are asymptotically equivalent, as ε tends to 0).
Indeed, one can formally prove (using the respective definitions) that r̃ε/r̄ε =
Oε(1) as ε → 0.

In the sequel, we propose a unified treatment for the study of the minimax
separation radius r̃ε (non-asymptotic approach) and the minimax separation
rate r̄ε (asymptotic approach). We compare the construction of their lower and
upper bounds and point out similarities in both settings (Sections 3 and 4).
In particular, tools constructed in the non-asymptotic paradigm can be used
in order to draw conclusions in the asymptotic paradigm and vice-versa. In
other words, one can perform asymptotic analysis for non-asymptotic testing
procedures and investigate non-asymptotic performances for asymptotic testing
procedures. This will be demonstrated later, when explicit sequences a = (aj)j∈N

and b = (bj)j∈N are at hand (see Section 4.3).

3. Control of the lower and upper bounds

3.1. Control of the lower bounds

One of the main issues of minimax signal detection is to establish lower bounds
for the minimax separation radius r̃ε (non-asymptotic approach) and the mini-
max separation rate r̄ε (asymptotic approach). In both approaches, this amounts
to determine the values of the available signal for which H0 and H1 cannot be
separated with prescribed minimax type II error probability βε,α(Θa(rε)).

More formally, we are interested to bound from below the minimax type II
error probability βε,α(Θa(rε)). In particular, an interesting question is to investi-
gate the smallest possible value of the radius rε > 0 for which βε,α(Θa(rε)) can
be, following the non-asymptotic or asymptotic approaches, (asymptotically)
lower bounded by β ∈ ]0, 1− α[ or tends to 1− α.

A possible way to achieve this goal is to consider a (prior) probability measure
π on the set associated with H1, i.e., a probability measure π on the set Θa(rε)
(see, e.g., [1], [18]). Then, it is easily verified that

βε,α(Θa(rε)) ≥ inf
Ψ̃α:αε(Ψ̃α)≤α

Pπ(Ψ̃α = 0)

= inf
Ψ̃α:αε(Ψ̃α)≤α

[
P0(Ψ̃α = 0) + Pπ(Ψ̃α = 0)− P0(Ψ̃α = 0)

]
≥ inf

Ψ̃α:αε(Ψ̃α)≤α

[
1− α−

∣∣∣Pπ(Ψ̃α = 0)− P0(Ψ̃α = 0)
∣∣∣]

≥ 1− α− sup
A: P0(A)≤α

|Pπ(A)− P0(A)|

≥ 1− α− sup
A∈A

|Pπ(A)− P0(A)|

= 1− α− V (Pπ,P0),
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where
V (Pπ,P0) := sup

A∈A
|Pπ(A)− P0(A)|

denotes the total variation norm between the probability measures P0 and
Pπ =

∫
Pθ dπ(θ)), and A denotes the σ-field of the underlying probability space.

Assuming that Pπ is absolutely continuous with respect to P0, using first the
Scheffé Theorem (see, e.g., [25], Lemma 2.1) and then the Cauchy-Schwarz in-
equality, it can be seen that

V (Pπ,P0) := sup
A∈A

|Pπ(A)− P0(A)|

=
1

2

∫ ∣∣∣∣dPπ

dy
(y)− dP0

dy
(y)

∣∣∣∣ dy
=

1

2

∫ ∣∣∣∣dPπ

dP0
(y)− 1

∣∣∣∣ dP0(y)

≤ 1

2

(
E0(|Lπ(Y )− 1|2)

)1/2
,

where Lπ(Y ) denotes the likelihood ratio between the two measures Pπ and
P0, and E0 denotes the expectation with respect to P0. Combining the above
arguments, we obtain the following lower bound

βε,α(Θa(rε)) ≥ 1− α− 1

2

(
E0[L

2
π(Y )]− 1

)1/2
. (3.1)

The construction of the lower bound for the minimax type II error probability
βε,α(Θa(rε)) developed in (3.1) heavily relies on the construction of a prior π on
the set Θa(rε). Given some sequence θ = (θj)j∈N, which will be made explicit
below, we consider the symmetric prior π defined as

π =
∏
j∈N

πj with πj =
1

2
(δ−θj + δθj ) ∀ j ∈ N. (3.2)

(Note that π(Θa(rε) = 1.) Since the ξj are standard Gaussian random vari-
ables, we get, after some technical algebra (see [1] p. 596 or [17], supplementary
material, Section 11.1), that

E0[L
2
π(Y )] =

∏
j∈N

cosh(b2jθ
2
j/ε

2) ≤ exp

⎛⎝ 1

2ε4

∑
j∈N

b4jθ
4
j

⎞⎠ := exp(u2
ε,θ). (3.3)

It is worth pointing out that the construction of the lower bound for the
minimax separation radius r̃ε (non-asymptotic approach) and the minimax sep-
aration rate r̄ε(asymptotic approach) are then both related to the study of either
E0[L

2
π(Y )] or its corresponding upper bound (3.3).

Two different interesting regimes at this point can be immediately deduced:

• First, E0[L
2
π(Y )] tends to 1 as ε → 0. In such a case, the minimax type II

error probability βε,α(Θa(rε)) is asymptotically lower bounded by 1− α,
i.e., βε,α(Θa(rε)) ≥ 1− α+ oε(1).
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• Second, E0[L
2
π(Y )] can be upper bounded by a constant. In this case,

the minimax type II error probability βε,α(Θa(rε)) is also lower bounded
by a constant. An interesting situation corresponds to the case where
E0[L

2
π(Y )] ≤ 1+4(1−α−β)2 for some β ∈]0, 1−α[. Then, βε,α(Θa(rε)) ≥

β.

Moreover, a more delicate study of the term u2
ε,θ := 1

2ε4

∑
j∈N

b4jθ
4
j in (3.3) al-

lows, under certain conditions to be made precise later on, to study sharp asymp-
totics of Gaussian type for the minimax type II error probability βε,α(Θa(rε)).

We discuss below the two different strategies that have been investigated in
the literature.

3.1.1. Non-asymptotic control

The following control has been proposed by [1] in the direct setting and it has
been generalized to the inverse setting by [22]. The main idea consists of finding
an explicit sequence θ0 = (θ0j )j∈N and a radius rε > 0 which satisfy the following
three requirements:

• ‖θ0‖ ≥ rε,

• exp
(

1
2ε4

∑
j∈N

b4j (θ
0
j )

4
)
= 1 + 4(1− α− β)2,

• θ0 ∈ Ea.
To this end, one can consider, for instance, the sequence θ0 defined as

θ0j :=
rεε

2b−2
j(

ε4
∑D

k=1 b
−4
k

)1/2 ∀ j ∈ {1, . . . , D} and θ0j = 0 ∀ j > D, (3.4)

for some (finite) parameterD ∈ N (called the bandwidth), that possibly depends
on ε > 0.

It is evident that ‖θ0‖ = rε. Furthermore, taking into account (3.3), we get

E0[L
2
π(Y )] ≤ exp

⎛⎝ 1

2ε4

∑
j∈N

b4j (θ
0
j )

4

⎞⎠ = exp

[
r4ε

2ε4
∑D

j=1 b
−4
j

]
= 1+4(1−α−β)2,

(3.5)
as soon as

r2ε = r2ε,D := c(α, β)ε2

√√√√ D∑
j=1

b−4
j ,

where
c(α, β) = (2 ln(1 + 4(1− α− β)2))1/4 > 0. (3.6)

In order to conclude, it remains to choose an appropriate D ∈ N such that
θ0 ∈ Ea. To this end, note that∑

j∈N

a2j (θ
0
j )

2 ≤ a2D

D∑
j=1

(θ0j )
2 = a2Dr2ε,D ≤ 1 as soon as r2ε,D ≤ a−2

D .
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Hence, if we define

r2ε,� := sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦ , (3.7)

we get, using (3.1)-(3.5),

βε,α(Θa(rε,�)) ≥ β,

which means that the minimax separation radius r̃ε satisfies

r̃ε ≥ rε,�.

This corresponds to a non-asymptotic lower bound on the minimax separa-
tion radius r̃ε. The main advantage of such a bound is that it provides a precise
description of the area where minimax signal detection is impossible with pre-
scribed values α, β ∈]0, 1[.

3.1.2. Asymptotic control

In the previous (non-asymptotic) approach, the main idea was to construct an
explicit sequence θ and to control E0[L

2
π(Y )]. In the asymptotic approach, one

instead starts from (3.3) and find the smallest possible value of u2
ε,θ for which

θ ∈ Θa(rε). In other words, the idea is to choose a sequence θ̄ := θ̄(rε) as the
solution of the following extremal problem

θ̄(rε) := arginf θ∈Θa(rε)

{
u2
ε,θ :=

1

2ε4

∑
k∈N

b4kθ
4
k

}
. (3.8)

In the following, we will denote the solution of the extremal problem (3.8) as

uε(rε) := uε,θ̄(rε) := infθ∈Θa(rε)

{
1

2ε4

∑
k∈N

b4kθ
4
k

}
. (3.9)

This idea has been in particular developed in the series of papers [13], [14],
[15], or, more recently, in [17], in an inverse problem framework. The cases of
interest correspond to the setting where u2

ε(rε) either tends to zero or is bounded
by a constant. In that case, one can find the solution of uε(rε) in (3.9) using,
for instance, the standard methodology of Lagrange multipliers.

Let α ∈]0, 1[ be fixed. We immediately see from (3.1) and (3.3) that if uε(rε) =
oε(1), then

βε,α(Θa(rε)) ≥ 1− α+ oε(1). (3.10)

The interesting situation, however, arises when uε(rε) = Oε(1). It allows a
more accurate study to asymptotically precise the shape of the minimax type
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II error probability βε,α(Θa(rε)). In particular, if uε(rε) = Oε(1), it can be
established that

ln(Lπ(Y )) = −u2
ε(rε)

2
+ uε(rε)ξε + ζε, (3.11)

where ξε → ξ ∼ N (0, 1) and ζε → 0 (in P0-probability) as ε → 0 distribution
(see Section 4.3.1 of [18] or the proof of Theorem 4.1 of [17], supplementary
material, Section 11.1). By a standard change of probability measure, it follows
that

βε,α(Θa(rε)) ≥ Eπ(1− ψ�) = E0(exp(ln(Lπ(Y )))(1− ψ�)),

where ψ� is the likelihood ratio test defined as ψ� = 1{ln(Lπ(Y ))>t�1−α} with t�1−α

being the (1−α)-quantile of the distribution of ln(Lπ(Y )) under H0. Hence, in
view of (3.11), it is easily seen that

t�1−α = −u2
ε(rε)

2
+ uε(rε)t1−α + oε(1),

where t1−α refers to the (1−α)-quantile of the standard Gaussian distribution.
Moreover, using the mean value theorem, it follows that

βε,α(Θa(rε)) ≥ Eπ(1− ψ�) = E0(exp(ln(Lπ(Y )))(1− ψ�))

= Φ(t1−α − uε(rε)) + oε(1). (3.12)

(Note that, in the particular case where rε > 0 satisfies uε(rε) = t1−α−tβ , then,
it is immediately seen that βε,α(Θa(rε)) ≥ β + oε(1).)

Remark 3.1. It is worth mentioning that one cannot determine at this point the
radius rε,1 > 0 (considered in the general strategy of Section 2.2 for constructing
lower bounds), unless the sequences a = (aj)j∈N and b = (bj)j∈N are explicitly
given. We refer to, e.g., [17] for more details or to Section 4.3 where a mildly
ill-posed inverse problem is treated for illustrative purposes.

In the following section, we investigate upper bounds on the minimax sepa-
ration radius r̃ε (non-asymptotic approach) and upper bounds on the minimax
separation rate r̄ε (asymptotic approach). In the latter setting, we also provide,
under mild conditions, sharp asymptotics of Gaussian type for the minimax type
II error probability βε,α(Θa(rε)).

3.2. Control of the upper bounds

3.2.1. A general testing methodology

In this section, we construct appropriate tests and investigate the associated
separation radius (non-asymptotic approach) and the maximal type II error
probability (asymptotic approach). Starting from signal detection problem (2.4),
the underlying question is to decide whether we observe a signal or not. To
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this end, a possible approach is to construct an estimator d̂ of d := ‖θ‖2 or
d := ‖bθ‖2. Indeed, the assertions “θ = 0” and “bθ = 0” are equivalent since
the sequence b = {bj}j∈N is assumed strictly positive. We refer to [21] for an
extended discussion on that subject. Then, one can use the following decision
rule:

• if d̂ is large enough (larger than a prescribed threshold which should be
precisely quantified), we reject H0,

• If d̂ is smaller than this threshold, we do not reject H0.

In order to estimate ‖θ‖2 (resp. ‖bθ‖2), one can first construct a preliminary
estimator of θ (resp. bθ) and then take its squared norm. This idea has been
widely investigated. We point out that, in general, the preliminary estimators
cannot be directly plugged in order to estimate ‖θ‖2 (resp. ‖bθ‖2). Indeed, mini-
max estimation and minimax testing are essentially two different problems, see,
e.g., [18], Sections 1.4.4 and 2.10. Nevertheless, ideas and methodologies in min-
imax estimation can inspire the construction of appropriate minimax testing
procedures.

In the following, we focus on the construction of linear estimators based on
observations from the GSM (1.1). Let ω = (ωj)j∈N be a filter, i.e., a sequence
taking values in the interval [0, 1]. Then, one can estimate ‖θ‖2 by the following
estimator

‖̂θ‖2 =
∑
j∈N

ωjb
−2
j (y2j − ε2). (3.13)

or, in the same spirit, estimate ‖bθ‖2 by the following estimator

‖̂bθ‖2 =
∑
j∈N

ωj(y
2
j − ε2). (3.14)

Various possible filters ω = (ωj)j∈N are available in the literature. Among them,
one can mention, e.g., spectral cut-off filters (see Section 3.2.2), Tikhonov fil-
ters, Ingster filters (see Section 3.2.3) or filters based on other regularization
approaches. For more details regarding available regularization methods, we re-
fer, e.g., to [3], [7] and [18].

Having an estimator ‖θ‖2 (resp. ‖bθ‖2) of the form (3.13) (resp. (3.14)),

denoted by d̂, we can construct an associated test Ψα,ω as

Ψα,ω = 1{d̂>tα,ω},

where tα,ω is a threshold that (asymptotically) controls the type I error proba-
bility αε(Ψα,ω).

It is important to point out at this point that, having an (asymptotically)
α-level test Ψα,

• (non-asymptotic approach) one can try to determine the smallest possible
separation radius rε,0 := rε(Ea,Ψα, β) > 0 such that the maximal type II
error probability βε(Θa(rε,0),Ψα) is at most β, for any prescribed α, β ∈
]0, 1[,
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• (asymptotic approach) one can investigate the asymptotic behavior of the
maximal type II error probability βε(Θa(rε),Ψα), for any given rε > 0
and any prescribed α ∈]0, 1[.

Our aim below is,

1. to construct appropriate tests that reach (at least up to a constant) the
lower bounds established in Sections 3.1.1 and 3.1.2 (Sections 3.2.2 and
3.2.3),

2. to bring into light hitherto unknown links between non-asymptotic and
asymptotic approaches to minimax signal detection (see Section 4).

As mentioned previously, there exist several possible available filters. We
focus below on two different kind of filters investigated in, e.g., [22] and [17],
namely, spectral cut-off and Ingster filters, respectively.

3.2.2. Non-asymptotic control: Spectral cut-off filters

Our aim is to propose an α-level test Ψα such that

rε(Ea,Ψα, β) ≤ Crε,�,

for some C ≥ 1, where rε,� > 0 has been introduced in (3.7). In such a case,
this will mean that lower and upper bounds for the minimax separation radius
r̃ε > 0 match together, up to a constant.

According to the previous discussion, the suggested test will be based on an
estimation of ‖θ‖2 (using (3.13)). More formally, given a bandwidth D ∈ N, we
define

ΨD,P := 1{
∑D

j=1 b−2
j (y2

j−ε2)>t1−α,D}

:= 1{TD,P>t1−α,D}, (3.15)

where

TD,P :=

D∑
j=1

b−2
j (y2j − ε2) (3.16)

and t1−α,D denotes the (1 − α)-quantile of TD,P under H0, i.e., the (1 − α)-

quantile of the random variable ε2
∑D

j=1 b
−2
j (ξ2j − 1).

Due to the definition of t1−α,D, the spectral cut-off test ΨD,P is an α-level
test. Indeed,

αε(ΨD,P ) := P0 (ΨD,P = 1) = P0 (TD,P > t1−α,D)

= P

⎛⎝ε2
D∑

j=1

b−2
j (ξ2j − 1) > t1−α,D

⎞⎠ = α.
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Fig 3. Illustrative comparison of the (1 − α)-quantile t1α,D and the β-quantile tβ,D(θ) for
a fixed bandwidth D ∈ N. The left hand side curve displays the density of the test statistic
TD,P :=

∑D
j=1 b

−2
j (y2j − ε2), defined in (3.16), under H0, while the one on the right hand

side displays the density of the same test statistics TD,P under H1. The shaded areas are
determined by the corresponding (1−α)-quantile t1−α,D (vertical lines) and β-quantile tβ,D(θ)
(horizontal lines).

Now, we turn to the control of the maximal type II error probability
βε(Θa(rε),ΨD,P ). To this end, denote by tβ,D(θ) the β-quantile of TD,P un-
der H1, i.e., the term satisfying

Pθ (TD,P ≤ tβ,D(θ)) = β.

Then, for a given θ ∈ Ea, in order to prove that

Pθ(ΨD,P = 0) := Pθ (TD,P ≤ t1−α,D) = Pθ

⎛⎝ D∑
j=1

b−2
j (y2j − ε2) ≤ t1−α,D

⎞⎠ ≤ β,

it suffices to show that

t1−α,D ≤ tβ,D(θ). (3.17)

Figure 3 provides, for a fixed bandwidth D ∈ N, a heuristic illustration for
the comparison (3.17) between the (1 − α)-quantile t1−α,D and the β-quantile
tβ,D(θ) of the test statistic TD,P , defined in (3.16). In order to compare these
two terms formally, we use the following proposition.

Proposition 3.1. Let TD,P be the test statistic defined in (3.16), and let t1−α,D

and tβ,D(θ) be its (1 − α)-quantile under H0 and β-quantile under H1. Then,
there exists a constant (explicitly computable) C(α) > 0 such that

t1−α,D ≤ C(α)ε2

⎛⎝ D∑
j=1

b−4
j

⎞⎠1/2

,



A sample document 273

and

tβ,D ≥
D∑

j=1

θ2j − 2
√
ln(1/β)

√√√√ε4
D∑

j=1

b−4
j + 2ε2

D∑
j=1

b−2
j θ2j .

The proof of Proposition 3.1 can be found in [22] (see the construction of the
upper and lower bounds in the proof of their Proposition 2). In particular, the
control of t1−α,D and tβ,D(θ) is based on deviation inequalities of appropriate
independent weighted-χ2 random variables.

Using (3.17) and Proposition 3.1, one can easily see that

t1−α,D ≤ tβ,D(θ)

if and only if

D∑
j=1

θ2j ≥ C(α)ε2

⎛⎝ D∑
j=1

b−4
j

⎞⎠1/2

− 2
√

ln(1/β)

√√√√ε4
D∑

j=1

b−4
j + 2ε2

D∑
j=1

b−2
j θ2j ,

which, in turn, holds true as soon as

D∑
j=1

θ2j ≥ C(α, β)ε2

√√√√ D∑
j=1

b−4
j , (3.18)

where, setting xγ = ln(1/γ), for all γ ∈]0, 1[,

C(α, β) =
√

2xβ +
√
2(xα + xβ) +

√
2
(√

xα +
√
xβ

)1/2
> 0 (3.19)

(see [22] for more details). The condition (3.18) ensures that

Pθ(ΨD,P = 0) ≤ β.

The main drawback of (3.18) is that it is expressed in terms of a lower bound

on
∑D

j=1 θ
2
j instead of ‖θ‖2. However, since θ ∈ Ea, it follows that

∑
j>D θ2j ≤

a−2
D . Hence,

∀ θ ∈ Ea, ‖θ‖2 ≥ C(α, β)ε2

√√√√ D∑
j=1

b−4
j +a−2

D ⇒ Pθ(ΨD,P = 0) ≤ β. (3.20)

Moreover, we point out that the term in the left hand side of (3.20) corresponds
to the sum of two antagonistic quantities. Since our aim is to obtain the weakest
possible bound on the energy condition, we choose a bandwidth D := D� ∈ N

such that

βε(Θa(r
�
ε),ΨD�,P ) := sup

θ∈Θa(r�ε )

Pθ(ΨD�,P = 0) ≤ β,
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where

(r�ε)
2 := inf

D∈N

⎡⎣C(α, β)ε2

√√√√ D∑
j=1

b−4
j + a−2

D

⎤⎦ . (3.21)

Finally, thanks to (3.7) and (3.21), the values of rε,� and r�ε are coherent.
In Section 4, we show that, under some weak conditions on the sequences
a = (aj)j∈N and b = (bj)j∈N, non-asymptotic lower and upper bounds for the
minimax separation radius r̃ε match, up to a constant.

3.2.3. Asymptotic control: Ingster filters

We consider a different approach, since the testing procedure will be based on
an estimation of ‖bθ‖2 (using (3.14)). We will deal with a specific kind of filter
which has been, to the best of our knowledge, introduced by Yuri I. Ingster in
a series of papers (see, e.g., [13], [14], [15], [18]).

Let θ̄ = θ̄(rε) ∈ Θa(rε) be the solution of the extremal problem (3.8). Then,
we define the Ingster filters ωrε = (ωj,rε)j∈N as

ωj,rε =
b2j θ̄

2
j√

2
∑

k∈N
b4kθ̄

4
k

∀ j ∈ N. (3.22)

As discussed in Section 3.2.1, one can use a test of the form

Ψrε,I := 1{
∑

j∈N
ωj,rε (y

2
j−ε2)>ε2 t1−α}

= 1{
∑

j∈N
ωj,rε ((yj/ε))2−1)>t1−α}

:= 1{Trε,I>t1−α}, (3.23)

where

Trε,I =
∑
j∈N

ωj,rε

((yj
ε

)2
− 1

)
, (3.24)

and t1−α denotes the (1− α)-quantile of a standard Gaussian random variable.
Since Trε,I = ξε, where ξε is the quantity appeared in (3.11), from the proof

of the corresponding lower bounds, it follows that Trε,I → ξ ∼ N (0, 1) (in P0

probability) as ε → 0. Hence, we immediately see that,

αε(Ψrε,I) = Φ(t1−α) + oε(1) = α+ oε(1). (3.25)

(This means that Ψrε,I is, asymptotically, an α-level test.)
We now consider the corresponding maximal type II error probability

βε(Θa(rε),Ψrε,I). The following cases are of particular interest:

• uε(rε) = oε(1). According to (3.10), βε,α(Θa(rε)) ≥ 1 − α + oε(1). It
is then impossible to distinguish H0 from H1, meaning that, according
to Definition 2.2, we have an asymptotically trivial test. Thus, it is not
needed to further study this case.
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• uε(rε) = Oε(1). In this case, under the mild condition supj∈N ωj,rε = oε(1),
we establish a sharp asymptotic of Gaussian type for βε(Θa(rε),Ψrε,I).

• uε(rε) → ∞ as ε → 0. In this case, we establish that βε(Θa(rε),Ψrε,I) =
oε(1).

To this end, simple algebra leads to the following expressions of the expecta-
tion and the variance of the test statistics Trε,I :

Eθ[Trε,I ] = ε−2
∑
j∈N

ωj,rεb
2
jθ

2
j , Varθ[Trε,I ] = 1 + 4ε−2

∑
j∈N

ω2
j,rεb

2
jθ

2
j . (3.26)

Introduce the standardized random variable T̃rε,I defined as

T̃rε,I =
Trε,I − Eθ[Trε,I ]√

Varθ[Trε,I ]
,

where the Eθ[Trε,I ] and Varθ[Trε,I ] have been computed in (3.26). Define

ω0,rε := sup
j∈N

b2j θ̄
2
j√

2
∑

k∈N
b4kθ̄

4
k

:= sup
j∈N

ωj,rε , (3.27)

where θ̄ = θ̄(rε) ∈ Θa(rε) is the extremal sequence, i.e., the solution of the ex-
tremal problem (3.8). (Note that, using (3.27), 1 ≤ Varθ[Trε,I ] ≤ 1 +
4ω0,rε Eθ[Trε,I ].)

In order to proceed, we need the following proposition.

Proposition 3.2. Let Trε,I be the test statistic defined in (3.24) Let h(rε, θ) :=
Eθ[Trε,I ], where Eθ[Trε,I ] is computed in (3.26). Then

inf
θ∈Θa(rε)

h(rε, θ) = uε(rε).

The proof of Proposition 3.2 can be found in [17], supplementary material,
Lemma 11.1.

Case 1 (uε(rε) = Oε(1)) Following the proof of Theorem 4.1 of [17], supplemen-
tary material, Section 11.1, using Lyapunov’s conditions and (3.26), it follows
that, as soon as ω0,rε = oε(1),

• T̃rε,I is asymptotically standard Gaussian under Pθ.
• Varθ[Trε,I ] = 1 + oε(1).

Therefore, we get that

Pθ(Ψrε,I = 0) = Pθ

(
T̃rε,I ≤ t1−α − Eθ[Trε,I ]√

Varθ[Trε,I ]

)
= Φ(t1−α − Eθ[Trε,I ]) + oε(1).

Using Proposition 3.2, we arrive at
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βε(Θa(rε),Ψrε,I) = sup
θ∈Θa(rε)

Pθ(Ψrε,I = 0)

= sup
θ∈Θa(rε)

Φ(t1−α − Eθ[Trε,I ]) + oε(1)

:= sup
θ∈Θa(rε)

Φ(t1−α − h(rε, θ)) + oε(1)

= Φ

(
t1−α − inf

θ∈Θa(rε)
h(rε, θ)

)
+ oε(1)

= Φ (t1−α − uε(rε)) + oε(1). (3.28)

Therefore, using (3.28), we get that

βε,α(Θa(rε)) ≤ βε(Θa(rε),Ψrε,I)

= Φ(t1−α − uε(rε)) + oε(1). (3.29)

(Note that, in the particular case that rε > 0 satisfies uε(rε) = t1−α − tβ , it is
immediately seen that βε,α(Θa(rε)) ≤ β + oε(1).)

Case 2 (uε(rε) → +∞ as ε → 0) Using Proposition 3.2 and (3.26), it follows
that, for all θ ∈ Θa(rε),

Eθ[Trε,I ] := h(rε, θ) ≥ inf
θ∈Θa(rε)

h(rε, θ) = uε(rε) → +∞ as ε → 0.

Therefore, using Markov’s inequality,

βε(Θa(rε),Ψrε,I) := sup
θ∈Θa(rε)

Pθ(Ψ = 0)

= sup
θ∈Θa(rε)

Pθ

(
T̃rε,I ≤ t1−α − Eθ[Trε,I ]√

Varθ[Trε,I ]

)

≤ sup
θ∈Θa(rε)

Pθ

(
|T̃rε,I | ≥

Eθ[Trε,I ]− t1−α√
Varθ[Trε,I ]

)

≤ sup
θ∈Θa(rε)

Varθ[Trε,I ]

(t1−α − Eθ[Trε,I ])
2

≤ sup
θ∈Θa(rε)

1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2

∼ 1

infθ∈Θa(rε) h(rε, θ)
:=

1

uε(rε)
= oε(1). (3.30)

Remark 3.2. It is worth mentioning that one cannot determine at this point the
radius rε,2 > 0 (considered in the general strategy of Section 2.2 for constructing
upper bounds). This more or less amounts to solving the equation uε(rε,2) =
Oε(1) as ε → 0. This cannot be accomplished unless the sequences a = (aj)j∈N

and b = (bj)j∈N are explicitly given. We refer again to, e.g., [17] for more details
or to Section 4.3 where an example of a mildly ill-posed inverse problem is
treated for illustrative purposes.
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Below, we first formalize the results for the lower and upper bounds presented
above and explain their meaning for practical purposes (Section 4.1). We then
bring into light hitherto unknown links between non-asymptotic and asymptotic
approaches to minimax signal detection (Section 4.2 and Section 4.3).

4. Connections between non-asymptotic and asymptotic frameworks

4.1. General results

In Section 3, lower and upper bounds on the minimax separation radius r̃ε and
the minimax type II error probability βε,α(Θa(rε)) were independently treated.
In the following theorems, these results are gathered in unified manners.

We first focus our attention to the non-asymptotic paradigm.

Theorem 4.1. (Non-asymptotic framework) Assume that Y = (Yj)j∈N are
observations from the GSM (1.1), and consider the signal detection problem
(2.4) with F defined in (2.3). Let α, β ∈ ]0, 1[ be given. Then, for every ε > 0,
the minimax separation radius r̃ε is controlled by

sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦ ≤ r̃2ε ≤ inf
D∈N

⎡⎣C(α, β)ε2

√√√√ D∑
j=1

b−4
j + a−2

D

⎤⎦ ,

(4.1)
where the constants c(α, β) and C(α, β) are respectively given in (3.6) and
(3.19).

In order to shed some light on the meaning of (4.1), the following comments
are in order:

• One cannot ensure that both lower and upper bounds on the minimax
separation radius r̃ε in (4.1) match, unless (weak) conditions on the se-
quences a = (aj)j∈N and b = (bj)j∈N are at hand. A discussion on that
point is provided below (see Theorem 4.1).

• Nevertheless, we point out that these bounds are coherent since they in-

volve the same quantities, namely, a−2
D and ε2

√∑D
j=1 b

−4
j , for any given

bandwidth D ∈ N, as well as positive constants c(α, β) and C(α, β), de-
pending on α and β only.

• A careful look into the discussion presented in the previous section indi-
cates that the term a−2

D can be related to a (in fact an upper bound on
the) ‘bias’ term in the sense that it measures the amount of signal that is
missed using the spectral cut-off test ΨD,P (see, e.g., (3.18)). Recall that
the sequence a = (aj)j∈N characterizes the smoothness of the underlying
signal θ. Obviously, the smoother the signal of interest, the easier the test-
ing problem in the sense that the minimax separation radius r̃ε becomes
smaller.

• In the same spirit, ε2
√∑D

j=1 b
−4
j can be related to a ‘standard deviation’

term that corresponds to the estimation of the term ‖θ‖2 using the spectral
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cut-off test ΨD,P . When bj = 1, for all j ∈ N, (i.e., the direct problem) this

term is of order ε2
√
D. This particular case has been discussed in detail

in [1], Section 3. On the other hand, the case when bj → 0 as j → +∞,
corresponds to ill-posed inverse problems. In this case, the signal detection
problem becomes harder in the sense that the minimax separation radius
r̃ε strongly depends on the decay of the sequence b = (bj)j∈N towards 0
and becomes larger than the corresponding one in the direct problem.

In summary, in order to precisely compute the minimax separation radius
r̃ε, explicit sequences of a = (aj)j∈N and b = (bj)j∈N are needed to control the
trade-off between the two antagonistic terms, i.e., the ‘bias’ and the ‘standard

deviation’ terms, a−2
D and ε2

√∑D
j=1 b

−4
j , respectively. This will be elaborated

in Section 4.3 below, where an example of a mildly ill-posed inverse problem is
used for illustrative purposes.

We now turn our attention to the asymptotic paradigm.

Theorem 4.2. (Asymptotic framework) Assume that Y = (Yj)j∈N are observa-
tions from the GSM (1.1), and consider the signal detection problem (2.4) with
F defined in (2.3). Let a radius rε > 0 be fixed, and let α ∈ ]0, 1[ be given. Let
uε(rε) and ω0,rε denote the solution of the extremal problem defined in (3.9)
and the term introduced in (3.27), respectively.

(a) If
uε(rε) = oε(1),

then
βε,α(Θa(rε)) = 1− α+ oε(1).

(b) If
uε(rε) = Oε(1) and ω0,rε = oε(1),

then
βε,α(Θa(rε)) = Φ(t1−α − uε(rε)) + oε(1).

(c) If
uε(rε) → +∞ as ε → 0,

then
βε,α(Θa(rε)) = oε(1).

It is evident from Theorem 4.2 that the minimax signal detection prob-
lem in the asymptotic framework essentially reduces to the study of the ex-
tremal problem (3.8). Indeed, the corresponding solution given in (3.9) governs
both the lower and the upper bounds on the minimax type II error probabil-
ity βε,α(Θa(rε)). The three different regimes mentioned in Theorem 4.2 are of
particular interest and require at this step some additional explanations:

• If uε(rε) = oε(1), then, according to Definition 2.2, an asymptotically
non-trivial minimax hypothesis testing problem is not possible. In other
words, it is impossible to distinguish between H0 and H1.
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• If uε(rε) = Oε(1) and ω0,rε = oε(1), then one can precisely describe
the shape of the minimax type II error probability βε,α(Θa(rε)) since
it possesses a sharp asymptotic of Gaussian type. It is also evident that
βε,α(Θa(rε)) ∈ ]0, 1 − α[. This means that the minimax signal detection
problem is asymptotically non-trivial (i.e., βε,α(Θa(rε)) > 0) but that H0

and H1 can be asymptotically always separated (i.e., βε,α(Θa(rε)) < 1−
α). Note that in this particular case that uε(rε) = Oε(1) and ω0,rε = oε(1),
the Ingster test Ψrε,I defined in (3.23) is asymptotically minimax accord-
ing to Definition 2.8.

• If uε(rε) → +∞ as ε → 0, then the minimax type II error probability
βε,α(Θa(rε)) = oε(1). In particular, the test Ψrε,I constructed in (3.23)-
(3.24) asymptotically always separates H0 from H1.

Remark 4.1. Theorem 4.2 does not treat the case where

uε(rε) = Oε(1) and ω0,rε �→ 0 as ε → 0. (4.2)

In such a case, the lower bound (3.12) is still valid but can be, in fact, improved
by showing that

liminfε→0 βε,α(Θa(rε)) > 1− α for any α ∈]0, 1[,

i.e., the minimax signal detection problem is asymptotically trivial (see the
proof of Theorem 4.1 of [17], supplementary material, Section 11.1.). It is worth
pointing out at this point that if (4.2) holds, then the minimax type II error
probability βε,α(Θa(rε)) asymptotically belongs to the set {0, 1 − α}, for any
α ∈]0, 1[, depending on the behavior of any given rε > 0.

The case where ω0,rε �→ 0 as ε → 0 exists in, e.g., the case of severely ill-posed
inverse problems with the class of analytic functions (super-smooth functions),
i.e., bj � e−jt, j ∈ N, for some t > 0, and aj � ejs, j ∈ N, for some s > 0,
respectively. Indeed,

ω0,rε := sup
j∈N

b2j θ̄
2
j√

2
∑

k∈N
b4kθ̄

4
k

∼ z20e
−2tm

z20e
−2tm

� 1 �→ 0, as ε → 0,

for some quantities z0 ∈ R and m ∈ [1,∞) (see Theorem 4.3 and Remark 4.4 in
[17]). We also refer to Section 4.3.3 below for a similar computation in a mildly
ill-posed inverse problem setting.

Remark 4.2. Theorem 4.2 does not provide an immediate expression for the
minimax separation rate r̄ε. In practice, however, both terms rε,1 and rε,2 re-
quired in the construction of the lower and upper bounds, respectively, sketched
in Section 2.2, are derived from the same equation: uε(rε,1) = uε(rε,2) = Oε(1).
Then one can, ‘in general’, check the implications

rε
rε,1

→ 0 ⇒ uε(rε) = oε(1) and
rε
rε,2

→ +∞ ⇒ uε(rε) → +∞, as ε → 0,
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which, thanks to Theorem 4.2 and Definition 2.7, allows one to conclude. As
mentioned previously, this task cannot be accomplished unless explicit expres-
sions for the sequences a = (aj)j∈N and b = (bj)j∈N are given. Explicit calcula-
tion of the minimax separation rate r̄ε in a mildly ill-posed inverse problem is
provided in Section 4.3.2.

The proofs of the assertions in Theorem 4.1 and Theorem 4.2 are direct
consequences of the discussion provided in Section 3, concerning the control
of the upper and lower bounds, for both minimax separation radius r̃ε and
maximal type II error probability βε,α(Θa(rε)). Detailed arguments and related
discussions can be found in, e.g., [1], [17] and [22].

4.2. Deriving the minimax separation rate r̄ε from bounds on the
minimax separation radius r̃ε.

The following theorem shows that, under some mild conditions on the growth
of the sequences a = (aj)j∈N and b−1 = (b−1

j )j∈N, one can derive the asymp-
totic order of the minimax separation rate r̄ε from the bounds on the minimax
separation radius r̃ε given in (4.1).

Proposition 4.1. Assume that Y = (Yj)j∈N are observations from the GSM
(1.1), and consider the signal detection problem (2.4) with F defined in (2.3).
Assume that both sequences a = (aj)j∈N and b−1 = (b−1

j )j∈N are non-decreasing
and that they satisfy

a� ≤ aD−1

aD
≤ a� and b� ≤ bD−1

bD
≤ b� for all D > 1, (4.3)

for some constants 0 < a� ≤ a� < ∞ and 0 < b� ≤ b� < ∞. Let α, β ∈ ]0, 1[ be
given. Then, there exists a constant C ≥ 1 such that

inf
D∈N

⎡⎣C(α, β)ε2

√√√√ D∑
j=1

b−4
j + a−2

D

⎤⎦ ≤ C sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦ ,

where the constants c(α, β) and C(α, β) are respectively given in (3.6) and
(3.19). In particular, both lower and upper bounds in (4.1) are of the same
order.

The control (4.1) hence proposes a sharp description of the minimax separa-
tion radius r̃ε as soon as (4.3) is satisfied. Since r̄ε/r̃ε = Oε(1), the asymptotic
minimax separation rate r̄ε can thus be determine from (4.1). On the other hand,
a non-asymptotic bound that matches asymptotic known results can be consid-
ered as (rate) optimal. Hence, although the motivations differ, both asymptotic
and non-asymptotic approaches provide a similar description on the minimax
signal detection problem at hand.

Remark 4.3. We note also that the condition (4.3) is satisfied for various
combinations of interest, among them: (i) mildly ill-posed inverse problems (bj �
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j−t, j ∈ N, for some t > 0) with ordinary smooth functions (aj � js, j ∈ N,
for some s > 0), (ii) severely ill-posed inverse problems (bj � e−jt, j ∈ N, for
some t > 0) with ordinary smooth functions (aj � js, j ∈ N, for some s > 0),
and (iii) mildly ill-posed inverse problems (bj � j−t, j ∈ N, for some t > 0)
with super-smooth functions (aj � ejs, j ∈ N, for some s > 0). Among the
possible situations where the condition (4.3) is not satisfied, one can mention,

for instance, power-exponential behaviors (aj � ej
ls, j ∈ N, for some s > 0 and

l > 1, or bj � e−jrt, j ∈ N, for some t > 0 and r > 1).

Proof. Let the bandwidth D0 ∈ N satisfy

D0 = arg sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦ . (4.4)

We restrict ourselves to the following case

a−2
D0

≤ c(α, β)ε2

√√√√ D0∑
j=1

b−4
j .

(The other case follows similarly along the same lines of proof.) Then, thanks
to (4.3), we get

inf
D∈N

⎡⎣C(α, β)ε2

√√√√ D∑
j=1

b−4
j + a−2

D

⎤⎦ ≤ C(α, β)ε2

√√√√ D0∑
j=1

b−4
j + a−2

D0

≤ (C(α, β) + c(α, β))ε2

√√√√ D0∑
j=1

b−4
j

≤ Cε2

√√√√D0−1∑
j=1

b−4
j ,

for some constant C > 0 that can be explicitly computed. Note that

a−2
D0

≤ c(α, β)ε2

√√√√ D0∑
j=1

b−4
j implies a2D0−1 > c(α, β)ε2

√√√√D0−1∑
j=1

b−4
j ,

since, otherwise, we arrive at a contradiction, due to the definition of D0 ∈ N

in (4.4). Hence,

inf
D∈N

⎡⎣C(α, β)ε2

√√√√ D∑
j=1

b−4
j + a−2

D

⎤⎦ ≤ Cε2

√√√√D0−1∑
j=1

b−4
j ,

≤ C

⎡⎣ε2
√√√√D0−1∑

j=1

b−4
j ∧ a−2

D0−1

⎤⎦ ,
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≤ C sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦ .

In other words, there exists some constant C ≥ 1 such that

sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦
≤ inf

D∈N

⎡⎣C(α, β)ε2

√√√√ D∑
j=1

b−4
j + a−2

D

⎤⎦ ≤ C sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦ .(4.5)

Hence, the lower and the upper bounds in (4.1) are of the same order. This
concludes the proof of the proposition.

Remark 4.4. According to Definition 2.8, and as soon as (4.3) is satisfied,
the spectral cut-off test ΨD,P defined in (3.15), with bandwidth D := D0 ∈ N

selected as in (4.4), is asymptotically minimax consistent. Indeed, given θ ∈ Ea
and a radius rε such that ‖θ‖ ≥ rε,

Pθ(ΨD0,P = 0) = Pθ (TD0,P ≤ t1−α,D0) ,

= Pθ

⎛⎝TD0,P − E[TD0,P ] ≤ t1−α,D0 −
D0∑
j=1

θ2j

⎞⎠ ,

≤ Pθ

⎛⎝|E[TD0,P ]− TD0,P | ≥
D0∑
j=1

θ2j − t1−α,D0

⎞⎠ ,

≤
ε4
∑D0

j=1 b
−4
j(∑D0

j=1 θ
2
j − t1−α,D0

)2 .
Then, since r̄ε/r̃ε = Oε(1) as ε → 0, using Proposition 3.1, we get

D0∑
j=1

θ2j − t1−α,D0 ≥ ‖θ‖2 − C

⎛⎝ε2

√√√√ D0∑
j=1

b−4
j + a−2

D0

⎞⎠ ,

≥ r2ε − Cr̃2ε ,

≥ r2ε(1− oε(1)),

as soon as rε/r̄ε → +∞ as ε → 0. Finally, we obtain

Pθ(ΨD0,P = 0) ≤ Cr̄4ε
r4ε(1− oε(1))

= oε(1),

which entails

βε(Θa(rε),ΨD0,P ) = oε(1) if
rε
r̄ε

→ +∞ as ε → 0.



A sample document 283

4.3. An illustrative example: A mildly ill-posed inverse problem

Our aim below is to illustrate the results presented in Section 4.1 and Section
4.2. To this end, we address the minimax signal detection problem of a mildly
ill-posed inverse problem. Namely, we will assume that

aj � js, for some s > 0, and bj � j−t, for some t > 0, for all j ∈ N.
(4.6)

Our aim in this context is multifold:

• First, we consider an asymptotic analysis of the minimax separation radius
r̃ε based on the inequality (4.1).

• Second, we explicitly compute the minimax separation rate r̄ε through a
careful analysis of the extremal problem (3.9).

• Third, we provide a non-asymptotic analysis of the Ingster test Ψrε,I ,
defined in (3.23). In particular, we compute its associated separation ra-
dius rε(Ea,Ψrε,I , β) and show that, up to constant, it coincides with the
minimax separation radius r̃ε.

• Fourth, we present an asymptotic analysis of the spectral cut-off test ΨD,P ,

defined in (3.15). In particular, for an appropriate bandwidth D := D̃ ∈ N,
we prove that the maximal type II error probability βε(Θa(rε),ΨD̃,P ), is
asymptotically bounded from above by a quantity that possesses a Gaus-
sian shape.

These results demonstrate that tools used to derive ‘asymptotic’ results can
be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa.

4.3.1. Asymptotic analysis of the minimax separation radius r̃ε

We are interested in the asymptotic behavior of the minimax separation radius
r̃ε. Recall from Theorem 4.1 that, for any ε > 0,

sup
D∈N

⎡⎣c(α, β)ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

⎤⎦ ≤ r̃2ε ≤ inf
D∈N

⎡⎣C(α, β)ε2

√√√√ D∑
j=1

b−4
j + a−2

D

⎤⎦ .

Moreover, according to (4.5), both the upper and the lower bounds in the above
inequality are of the same order. Indeed, the constraint (4.3) of Theorem 4.1
is satisfied in the setting (4.6). Hence, we are now able to characterize the
asymptotic value of the minimax separation radius r̃ε.

Simple algebra shows that

D∑
j=1

b−4
j =

D∑
j=1

j4t = CD4t+1(1 + o(1)) as D → +∞,
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for some constant C > 0. Hence, the bandwidth D0 ∈ N, introduced in (4.4),
satisfies

ε2

√√√√ D0∑
j=1

b−4
j = O(a−2

D0
) iff ε2D

2t+1/2
0 = O(D−2s

0 ) iff D0 = Oε

(
ε

−2
2s+2t+1/2

)
.

We then deduce from the previous computation that the minimax separation
radius r̃ε satisfies

r̃2ε = O(D−2s
0 ) = Oε

(
ε

4s
2s+2t+1/2

)
. (4.7)

4.3.2. Computation of the minimax separation rate r̄ε

Following Remark 4.2, an explicit computation of the function rε �→ uε(rε) is
required in order to retrieve the minimax separation rate r̄ε from the solution
of the equation uε(rε) = Oε(1).

We first need to solve the extremal problem (3.9) defined as

u2
ε(rε) =

1

2ε4
inf

θ∈Θa(rε)

∑
j∈N

b4jθ
4
j . (4.8)

This problem is solved via Lagrange multipliers. In particular, the extremal
sequence, i.e., the solution of the above mentioned extremal problem, appears
to be of the form

θ̄2j (rε) = z20b
−4
j (1−Aa2j)+, j ∈ N,

where the quantities z0 := z0,ε and A := Aε are determined by the equations∑
j∈N

b−2
j θ̄2j (rε) and

∑
j∈N

a2jb
−2
j θ̄2j (rε) = 1. (4.9)

Remark 4.5. The quantity A determines the so-called efficient dimension m in
specific ill-posed inverse problems: since aj is an increasing sequence, the efficient
dimension is the quantity m = mε ∈ [1,∞) such that Aa2[m] ≤ 1 < Aa2[m]+1,

see, e.g., [17], supplementary material, Section 11. Moreover, a unique solution
to the system of equations (4.9) exists for rε > 0 small enough, due to the fact
that

∑
j∈N

b−1
j = +∞ (see, Proposition 11.2 of [17], supplementary material,

Section 11).

The equations (4.8)-(4.9) are immediately rewritten in the form{
r2ε = z20J1,
1 = z20A−1J2,

(4.10)

with

J1 =
∑
j∈N

b−4
j (1−Aa2j)+,
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J2 = A
∑
j∈N

a2jb
−4
j (1−Aa2j )+.

In particular, the extremal problem (3.9) takes the form

u2
ε(rε) = ε−4z40J0/2, where J0 = J1 − J2 =

∑
j∈N

b−4
j (1−Aa2j )

2
+. (4.11)

Setting R = A−1/2s, simple computations lead to

J1 =
∑
j∈N

b−4
j (1−Aa2j )+,

=
∑

j: a2
j≤A−1

b−4
j −A

∑
j: a2

j≤A−1

b−4
j a2j ,

=
∑

j: j≤R
j4t −A

∑
j: j≤R

j4t+2s,

= C1R4t+1(1 + o(1)) as R → +∞.

Using similar algebra, one can prove that

J2 = C2R4t+1(1 + o(1)) and J0 = C0R4t+1(1 + o(1)) as R → +∞.

In particular, we get from (4.10) that

r2ε = AJ1
J2

= R−2s C1
C2

(1 + o(1)) as R → +∞. (4.12)

Therefore, combining the above results,

uε(rε) =
(rε
ε

)4 J0
2J2

1

=
(rε
ε

)4 C0R4t+1

2C2
2R2(4t+1)

(1 + o(1)) as R → +∞,

=
(rε
ε

)4 r
−(4t+1)/s
ε

r
−(8t+2)/s
ε

O(1) as rε → 0,

= O
(
ε−4r(4s+4t+1)/s

ε

)
as rε → 0. (4.13)

The expression in (4.13) provides an explicit form for the function rε �→ uε(rε)
that is required in order to retrieve the minimax separation rate r̄ε from the
solution of the equation uε(rε) = Oε(1). Our next task is to solve this equation.
Using (4.13), we immediately get

uε(rε) = Oε(1) iff ε−4r(4s+4t+1)/s
ε = Oε(1) iff rε = Oε

(
ε

2s
2s+2t+1/2

)
.

(4.14)



286 C. Marteau and T. Sapatinas

In order to conclude our discussion, we need to prove that the minimax
separation rate r̄ε is of the following order

rε,0 = Oε

(
ε

2s
2s+2t+1/2

)
. (4.15)

To this end, we remark that, for any rε > 0,

• If rε/rε,0 → 0 then, using (4.13), it is easily seen that uε(rε) = oε(1).
Hence, according to Theorem 4.2, βε(Θa(rε)) = 1− α+ oε(1).

• If rε/rε,0 → +∞ then, using (4.13), it is easily seen that uε(rε) → +∞,
as ε → 0. Hence, according to Theorem 4.2, βε(Θa(rε)) = oε(1).

Therefore, Definition 2.7 allows to conclude that rε,0 in (4.15) is indeed the
minimax separation rate r̄ε. (Note that, in view of (4.7) and (4.15), the mini-
max separation radius r̃ε and the minimax separation rate r̄ε are of the same
asymptotic order, as expected according to previous discussion.)

4.3.3. Non-asymptotic analysis of the Ingster test Ψrε,I

We present a non-asymptotic study of the Ingster test Ψrε,I , defined in (3.23).
We show that the statistical performances of the Ingster test Ψrε,I and the
spectral cut-off test ΨD,P defined in (3.15) are comparable. In particular, the
Ingster test Ψrε,I appears to be powerful in the sense of Definition 2.5, namely,

rε(Ea,Ψrε,I , β) ≤ Cr̃ε,

for a fixed β ∈]0, 1[ and some constant C ≥ 1, for an appropriately selected
radius rε > 0.

Proposition 4.2. Let α, β ∈]0, 1[ be given. Define

ρ2ε := inf
R≥2

[C0R−2s ∨ c′(α, β)ε2R2t+1/2], (4.16)

for some positive constants C0 and c′(α, β) than can be explicitly computed. Let
Ψ�

I := Ψρε,I , where Ψ.,I is the Ingster test defined in (3.23), and let ρε > 0 be
the radius defined in (4.16). Then, there exists constants C ≥ 1 and ε0 > 0 such
that, for all 0 < ε < ε0, the separation radius of Ψ�

I satisfies

rε(Ea,Ψ�
I , β) ≤ Cr̃ε. (4.17)

Proof of Proposition 4.2. Let rε > 0 be a given radius. Using the same
arguments as in (3.30), we get

βε(Θa(rε),Ψrε,I) ≤ sup
θ∈Θa(rε)

1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2
.

Then, there exists an explicit constant Cα,β > 0 such that

uε(rε) ≥ Cα,β ⇒ h(rε, θ) ≥ Cα,β , ∀ θ ∈ Θa(rε)
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⇒ 1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2
≤ β ∀ θ ∈ Θa(rε)

⇒ sup
θ∈Θa(rε)

1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2
≤ β

⇒ βε(Θa(rε),Ψrε,I) ≤ β. (4.18)

Our task now is to find a condition on rε > 0 that will guarantee the validity
of the above inequality uε(rε) ≥ Cα,β . Working along the lines of Section 4.3.2,
we then arrive at

r2ε = z20J1, A = z20J2 and u2
ε(rε) = ε−4r4ε

J0
2J2

1

.

Hence, we see that

uε(rε) ≥ Cα,β iff r2ε ≥
√
2Cα,β ε

2 J1

J
1/2
0

. (4.19)

Moreover,

J1 =
∑
j∈N

b−4
j (1−Aa2j )+ ≤

∑
j:j≤R

j4t ≤ C ′
1R4t+1,

and
J1 ≥

∑
j:j≤R

j4t −R−2s
∑

j:j≤R
j4t+2s ≥ C1R4t+1,

for all R ≥ 2, where R = A−1/2s, and for some positive constants C1, C
′
1

(depending on s and t only). In the same spirit, we can also prove that, for all
R ≥ 2,

C2R4t+1 ≤ J2 ≤ C ′
2R4t+1 and C0R4t+1 ≤ J0 ≤ C ′

0R4t+1,

for some positive constants C0, C
′
0, C1, C

′
1 (depending on s and t only). Hence,

we get that
√
2Cα,βε

2 J1

J
1/2
0

≤ c′(α, β)ε2R2t+1/2, (4.20)

for some constant c′(α, β) > 0. Therefore, we deduce from (4.19)-(4.20), that

r2ε ≥ c′(α, β)ε2R2t+1/2 ⇒ uε(rε) ≥ Cα,β .

Using the same kind of algebra, we get from (4.12) that r2ε = R−2sJ1/J0. Hence,
for all R ≥ 2,

C0R−2s ≤ r2ε ≤ C1R−2s,

for some positive constants C0, C1. Finally, for all R ≥ 2,

r2ε ≥ C0R−2s ∨ c′(α, β)ε2R2t+1/2 ⇒ uε(rε) ≥ Cα,β

⇒ βε(Θa(rε),Ψrε,I) ≤ β.
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Hence, taking rε := ρε, where ρε is defined in (4.16), we immediately get that

βε(Θa(ρε),Ψ
�
I) ≤ β,

which implies
rε(Ea,Ψ�

I , β) ≤ ρε.

To conclude, it suffices to show that there exists a constant C ≥ 1 and ε0 > 0
such that, for all 0 < ε < ε0, ρε ≤ Cr̃ε. This, however, holds true working along
the lines of the proof of (4.5). This concludes the proof of the proposition.

Concerning Proposition 4.2, the following comments are in order:

• The considered Ingster test Ψ�
I , designed for asymptotic purposes, can be,

somehow, employed in the non-asymptotic framework. It appears, that we
recover existing non-asymptotic upper bounds, namely, for all 0 < ε < ε0,
the Ingster test Ψ�

I is powerful according to Definition 2.5. The value
ε0 > 0 guarantees that the optimal bandwidth D0 ∈ N in (4.4) satisfies
the requirement 2 ≤ D0 < +∞ which, in turn, ensures that ρε and r̃ε are,
indeed, of the same order.

• The term ρε involved in the construction of Ψ�
I := ΨI,ρε plays the role of

a tuning (regularization) parameter. In a sense, the parameter ρε plays a
similar role to the bandwidth D� in (3.21). Hence, it provides a trade-off
between the two competing terms ‘bias’ and ‘standard deviation’ involved
in (4.16).

• As we have seen in (3.25), the Ingster test Ψrε,I is an asymptotically α-
level test for all rε > 0. Hence, a non-asymptotic control of the type I
error probability αε(Ψ

�
I) would be necessary in order to provide a fully

non-asymptotic treatment for the Ingster test Ψ�
I . This can be easily ac-

complished by replacing the (1−α)-quantile t1−α of a standard Gaussian
random variable in (3.23) by an appropriate (1 − α)-quantile. Then, the
upper bound (4.17) presented in Proposition 4.2 still holds true, up to
some constants.

4.3.4. Asymptotics of Gaussian type for the spectral cut-off test ΨD,P

To conclude, we present an asymptotic analysis of the spectral cut-off test ΨD,P ,
defined in (3.15). In particular, as ε → 0, we prove that the maximal type II
error probability βε(Θa(rε),ΨD̃,P ), for an appropriate bandwidth D̃ ∈ N, is
asymptotically bounded from above by a quantity that possesses a Gaussian
shape.

Proposition 4.3. Let α ∈]0, 1[ be given. Let rε > 0 be a radius satisfying
uε(rε) = Oε(1). Let also ΨD̃,P be the spectral cut-off test defined in (3.15) with

bandwidth D̃ ∈ N satisfying

D̃ := argmax
D∈N

⎧⎨⎩C(α)ε2

√√√√ D∑
j=1

b−4
j + a−2

D ≤ r2ε
2

⎫⎬⎭ , (4.21)
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where the positive constant C(α) is defined in Proposition 3.1. Then, for any
sequence hε ∈]0, 1[ satisfying hε = oε(1) and hεD̃

1/4 → +∞ as ε → 0,

βε(Θa(rε),ΨD̃,P ) ≤ Φ

⎛⎝t1−α − (1− hε)
a−2

D̃

ε2
√∑D̃

j=1 b
−4
j

⎞⎠+ oε(1). (4.22)

Proof of Proposition 4.3 Consider the spectral cut-off test ΨD̃,P defined

in (3.15), with bandwidth D̃ ∈ N selected as in (4.21). For any θ ∈ Θa(rε) and
any sequence hε ∈]0, 1[ (that will be made precise later on)

Pθ(ΨD̃,P = 0) = Pθ

(
TD̃,P ≤ t1−α,D̃

)
= Pθ

⎛⎝ D̃∑
j=1

b−2
j (y2j − ε2) ≤ t1−α,D̃

⎞⎠
= Pθ

⎛⎝ε2
D̃∑

j=1

b−2
j (ξ2j − 1) + 2ε

D̃∑
j=1

b−1
j θjξj ≤ t1−α,D̃ −

D̃∑
j=1

θ2j

⎞⎠
≤ Pθ

⎛⎝ε2
D̃∑

j=1

b−2
j (ξ2j − 1) ≤ (1− hε)

(
t1−α,D̃ −

D̃∑
j=1

θ2j

)⎞⎠
+Pθ

⎛⎝2ε

D̃∑
j=1

b−1
j θjξj ≤ hε

(
t1−α,D̃ −

D̃∑
j=1

θ2j

)⎞⎠
:= T1 + T2, (4.23)

where, for the last inequality, we used the fact that, for any t ∈ R and any
random variables X and Y ,

{X + Y ≤ t} ⊆ {X ≤ (1− hε)t} ∪ {Y ≤ hεt}.

Below, our aim is

• to show that, asymptotically, T1 has a Gaussian shape of the form (4.33),
• to prove that T2 = oε(1),
• to study the asymptotic behavior of the threshold t1−α,D̃.

Control of T1: For any δ > 0, simple algebra shows that, for any bandwidth
D ∈ N,

ε2(2+δ)
∑D

j=1 b
−2(2+δ)
j E|ξ2j − 1|2+δ(

ε2
√∑D

j=1 b
−4
j

)2+δ
� D2(2+δ)t+1

D(4t+1)(2+δ)/2

� D−δ/2 = o(1) as D → +∞.
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Hence, by Lyapunov’s condition,

ε2
∑D̃

j=1 b
−2
j (ξ2j − 1)

ε2
√∑D̃

j=1 b
−4
j

L−→ N (0, 1) as ε → 0 (since D̃ → +∞).

Then, it follows that

T1 = Φ

⎛⎜⎜⎝ (1− hε)

(
t1−α,D̃ −

∑D̃
j=1 θ

2
j

)
ε2
√∑D̃

j=1 b
−4
j

⎞⎟⎟⎠+ oε(1). (4.24)

Control of T2: Since (ξj)j∈N are independent standard Gaussian random vari-
ables,

T2 := Pθ

⎛⎝2ε
D̃∑

j=1

b−1
j θjξj ≤ hε

(
t1−α,D̃ −

D̃∑
j=1

θ2j

)⎞⎠

= Pθ

⎛⎜⎜⎝Z ≤ hε

2

(
t1−α,D̃ −

∑D̃
j=1 θ

2
j

)
ε

√∑D̃
j=1 b

−2
j θ2j

⎞⎟⎟⎠ (where Z ∼ N (0, 1)).(4.25)

Then, according to (4.21), for any θ ∈ Θa(rε),∑D̃
j=1 θ

2
j − t1−α,D̃

ε

√∑D̃
j=1 b

−2
j θ2j

≥
‖θ‖2 − t1−α,D̃ − a−2

D̃

ε (max1≤j≤D̃ b−1
j )‖θ‖

≥ 1

C

(
‖θ‖2 − r2ε/2

rε‖θ‖

)
D̃1/4

≥ D̃1/4

2C

‖θ‖
rε

≥ 1

2C
D̃1/4 → +∞ as ε → 0 (since D̃ → +∞),(4.26)

where for the second inequality we used the fact that

ε

(
max

1≤j≤D̃
b−1
j

)
� εD̃t �

(
ε2
√∑D̃

j=1 b
−4
j

)1/2

D̃1/4
≤ C

rε

D̃1/4
,

for some constant C > 0. Hence, using (4.25) and (4.26), it follows that, as soon
as hεD̃

1/4 → +∞ as ε → 0,
T2 = oε(1). (4.27)

Behavior of t1−α,D̃: First we show that

(1− hε)
t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j

= t1−α + oε(1). (4.28)
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Indeed, according to the definition of t1−α,D̃,

P0

⎛⎝ D̃∑
j=1

b−2
j (y2j − ε2) ≤ t1−α,D̃

⎞⎠ = 1− α

⇔ P

⎛⎝ε2
∑D̃

j=1 b
−2
j (ξ2j − 1)

ε2
√∑D̃

j=1 b
−4
j

≤
t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j

⎞⎠ = 1− α

⇔ Φ−1
ε (1− α) =

t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j

,

where, for any s ∈ R,

Φε(s) := P

⎛⎝ε2
∑D̃

j=1 b
−2
j (ξ2j − 1)

ε2
√∑D̃

j=1 b
−4
j

≤ s

⎞⎠ .

Then, as above, using the Central Limit Theorem with Lyapunov’s condition
and Lemma 21.2 in [26], we get

Φε(s) → Φ(s) as ε → 0 (∀ s ∈ R)

⇔ Φ−1
ε (u) → Φ−1(u) as ε → 0 (∀ u ∈]0, 1[) (4.29)

In particular, for any α ∈]0, 1[,

Φ−1
ε (1− α) → Φ−1(1− α) as ε → 0

⇔
t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j

= t1−α + oε(1). (4.30)

Finally, taking into account that hε = oε(1), (4.28) holds true.

Completing the proof: Using (4.24) and (4.28), it follows that

T1 = Φ

⎛⎝t1−α −
(1− hε)

∑D̃
j=1 θ

2
j

ε2
√∑D̃

j=1 b
−4
j

+ oε(1)

⎞⎠+ oε(1). (4.31)

According to (4.21), for any θ ∈ Θa(rε),

(1− hε)

∑D̃
j=1 θ

2
j

ε2
√∑D̃

j=1 b
−4
j

= (1− hε)
‖θ‖2 −

∑D̃
j=1 θ

2
j

ε2
√∑D̃

j=1 b
−4
j

≥ (1− hε)
r2ε − a−2

D̃

ε2
√∑D̃

j=1 b
−4
j
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≥ (1− hε)
a−2

D̃

ε2
√∑D̃

j=1 b
−4
j

. (4.32)

Hence, using (4.23), (4.24), (4.27) and the Mean Value Theorem,

βε(Θa(rε),ΨD̃,P ) = sup
θ∈Θa(rε)

Pθ(ΨD̃,P = 0)

≤ Φ

⎛⎝t1−α − (1− hε)
a−2

D̃

ε2
√∑D̃

j=1 b
−4
j

⎞⎠+ oε(1).

Hence, (4.22) holds true, and this completes the proof of the proposition.

Concerning Proposition 4.3, the following comments are in order:

• The maximal type II error probability βε(Θa(rε),ΨD̃,P ) associated to the

spectral cut-off test ΨD̃,P , with bandwidth D̃ ∈ N selected as in (4.21), is
asymptotically bounded from above by a quantity that possesses a Gaus-
sian shape. It is worth mentioning that this spectral cut-off test ΨD̃,P is
of the same type as the one introduced in Section 3.2.2. In particular, by
construction, the spectral cut-off ΨD̃,P is still an α-level test. Nevertheless,

the bandwidth D̃ ∈ N defined in (4.21), is selected in a different manner
in order to accommodate the asymptotic paradigm. Indeed, this regular-
ization parameter D̃ ∈ N now depends on the radius rε. Notice that this
is comparable to the construction of the Ingster test Ψrε,I introduced in
(3.23), where the Ingster filters ωj,rε defined in (3.22) explicitly depend
on the radius rε.

• The asymptotic upper bound of the maximal type II error probability
βε(Θa(rε),ΨD̃,P ) obtained in (4.22) is coherent with the non-asymptotic
analysis provided in Section 3.2.2 (see, in particular, (3.20) and (3.21)).
Indeed, in order to guarantee that, for any β ∈]0, 1[, βε(Θa(rε),ΨD̃,P ) is

(asymptotically) upper bounded by β, we have to solve the equation a−2
D �

Cα,βε
2

√∑D̃
j=1 b

−4
j , for some constant Cα,β > 0 (whose value depends on

the tools used to control βε(Θa(rε),ΨD̃,P )).
• In order to conclude our discussion, we provide a heuristic comparison be-

tween the asymptotic upper bound of the maximal type II error probability
βε(Θa(rε),ΨD̃,P ) and the sharp asymptotics of Gaussian type obtained
in Theorem 4.2. Working as in Section 4.3.2, we get that, as ε → 0,

uε(rε) ∼
r4ε
ε4

R−(4t+1)
ε ∼

(
R−2s

ε

ε2R2t+1/2
ε

)2

, where Rε satisfies R−s
ε ∼ rε.

Note that, thanks to (4.13), uε(rε) = Oε(1) implies that rε ∼
ε2s/(2s+2t+1/2), as ε → 0. Moreover, in view of (4.7), D̃−2s ∼ a−2

D̃
∼ r2ε

as ε → 0. Hence, according to the definition of the bandwidth D̃ given in
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Fig 4. The solid curve represents the function Φ(t1−α−uε(rε)) while the dashed curve displays
the function Φ(t1−α − cuε(rε)), for some c ∈]0, 1[ and a radius rε > 0 satisfying uε(rε) =
Oε(1) (see (4.34)). The solid curve is associated with the sharp asymptotics of Gaussian type
for the maximal type II error probability βε,α(Θ(rε)) while the dashed curve is associated to
the asymptotic upper bound of the maximal type II error probability βε(Θa(rε),ΨD̃,P ) of the

the spectral cut-off test ΨD̃,P , with bandwidth D̃ ∈ N selected as in (4.21).

(4.21), as soon as uε(rε) = Oε(1), in some sense, we have that

uε(rε) ∼
a−2

D̃

ε2
√∑D̃

j=1 b
−4
j

as ε → 0.

In particular, it means that we can find a c ∈]0, 1[ such that

βε(Θa(rε),ΨD̃,P ) ≤ Φ(t1−α − c uε(rε)) + oε(1). (4.33)

According to Theorem 4.2, it is immediately seen that

βε,α(Θa(rε)) = Φ(t1−α − uε(rε)) + oε(1) < Φ(t1−α − c uε(rε)) + oε(1).
(4.34)

Hence, the spectral cut-off test ΨD̃,P defined in (4.22), with bandwidth

D̃ ∈ N selected as in (4.21), does not provide sharp asymptotics of Gaus-
sian type. Indeed, it is not designed for that purpose: the spectral cut-off
filters associated to this test appear to be quite ‘rough’ in such a set-
ting compared to the Ingster filters defined in (3.22) (see Figure 4 for a
graphical illustration).
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• If we define a radius r̄�ε > 0 to satisfy u(r̄�ε) = t1−α − tβ , for prescribed
α, β ∈]0, 1[, then, using Theorem 4.2, we immediately get

βε,α(Θa(r̄
�
ε)) = Φ(t1−α − uε(r̄

�
ε)) + oε(1) = β + oε(1).

Furthermore, according to the definition of the separation radius r̃�
ε,D̃

:=

rε(Ea,ΨD̃,P , β) for the spectral cut-off test ΨD̃,P defined in (4.22), with

bandwidth D̃ ∈ N selected as in (4.21), we have

βε,α(Θa(r̃
�
ε,D̃

) ≤ β.

However, we conjecture that it is not possible to prove that

r̃�
ε,D̃

r̄�ε
= 1 + oε(1).

In other words, the spectral cut-off tests appear to be quite ‘rough’ to
provide the optimal constants of the associated rates for the considered
minimax signal detection problem.

Remark 4.6. Proposition 4.3 holds true in a general setting. Indeed, by looking
at its proof (the control of T1 and T2), the only condition needed to prove (4.22)
is that

∃ δ > 0 such that
max1≤j≤D b−2

j√∑D
j=1 b

−4
j

= o(D−δ) as D → +∞. (4.35)

It is easily seen the condition (4.35) is satisfied in various settings, namely, direct
problems (i.e., bj = 1, j ∈ N), well-posed inverse problems (i.e., bj > b0, for some
b0 > 0, j ∈ N) and mildly ill-posed problems (i.e., bj � j−jt, j ∈ N, for some
t > 0). We point out, however, that it is not satisfied, for instance, in exponential
or power-exponential behaviors (i.e., bj � e−jrt, j ∈ N, for some t > 0 and
r ≥ 1), discussed in Remark 4.3). It is worth mentioning that condition (4.35)
is, in general, comparable to the condition ω0,rε = oε(1), discussed in Theorem
4.2. For more details on the asymptotic expression of ω0,rε in mildly ill-posed
inverse problems, we refer to the proof of Theorem 4.2 of [17], supplementary
material, Section 11.3.

5. Conclusions

We discussed non-asymptotic and asymptotic approaches to minimax signal
detection in a unified treatment and provided an overview of this specialized
area. In particular, we considered a Gaussian sequence model that contains as
special cases classical models, such as direct, well-posed inverse and ill-posed
inverse problems. We compared the construction of lower and upper bounds
for the minimax separation radius (non-asymptotic approach) and the minimax
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separation rate (asymptotic approach), and brought to light hitherto unknown
similarities and links between these two associated minimax signal detection
paradigms. An example of a mildly ill-posed inverse problem was used for illus-
trative purposes. In particular, tools used to derive ‘asymptotic’ results can be
exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. We note that
in these considerations we have worked with certain ellipsoids in the space of
squared-summable sequences of real numbers, with a ball of positive radius re-
moved, and we confined our attention to the Neyman-Pearson criterion.

There are various ways that the above results could be possibly extended.
For instance, for the same smoothness classes, similar investigations, could be
easily obtained for the total-error probability criterion defined as the sum of the
type I and maximal type II error probabilities of a given test Ψ, i.e.,

ζε(Θa(rε),Ψ) = αε(Ψ) + βε(Θa(rε),Ψ),

where αε(Ψ) and βε(Θa(rε),Ψ) are defined in (2.5) and (2.6), respectively. Note
that, by defining

ζε(Θa(rε)) = inf
Ψ̃
[ζε(Θa(rε), Ψ̃)]

where the infimum is taken over all possible tests Ψ̃, it is known that (see, e.g.,
[18], Chapter 2) that

ζε(Θa(rε)) = inf
α∈]0,1[

[
α+ βε,α(Θa(rε))

]
,

where βε,α(Θa(rε)) is the minimax type II error probability defined in Definition
2.6.

Similar investigations for the Neyman-Pearson criterion and/or the total-
error probability criterion should also be possible for other classes F of signals,
such as those characterized by their non-zero coefficients (dense or sparse sig-
nals) and lp-bodies with p ∈]0, 2] (see, e.g., [24], [1], [17], [22]). In the same spirit,
several contributions have been proposed in various regression and density mod-
els which provide attractive frameworks for investigation in the minimax testing
theory (see, e.g., [12], [9], [11], [4], [16], [5], [20]).

For the sake of brevity and clarity in our presentation, we have also not
discussed adaptation issues of the testing procedures involved in the minimax
signal detection paradigms considered here. Indeed, the filters used to design
the spectral cut-off (non-asymptotic framework) and Ingster (asymptotic frame-
work) tests explicitly depend on the form of the sequence (aj)j∈N that measures
the smoothness of the signal θ, which is, in general, unknown in practice. It is
therefore of paramount importance in practical applications to provide minimax
testing procedures that do not explicitly depend on the associated smoothness
parameter. This is, usually, referred to as the ‘adaptation’ problem (see, e.g.,
[1], [18], [17], [23]).

However, all the above investigations need careful attention that is beyond
the scope of the present work.
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