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We are interested in the statistical linear inverse problem Y = Af + ϵξ , where A denotes a compact
operator and ϵξ a stochastic noise. In this setting, the risk hull point of view provides interesting tools
for the construction of adaptive estimators. It sheds light on the processes governing the behaviour of
linear estimators. In this article, we investigate the link between some threshold estimators and this risk
hull point of view. The penalised blockwise Stein rule plays a central role in this study. In particular, this
estimator may be considered as a risk hull minimisationmethod, provided the penalty is well chosen. Using
this perspective, we study the properties of the threshold and propose an admissible range for the penalty
leading to accurate results. We eventually propose a penalty close to the lower bound of this range.
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1. Introduction

This article deals with the statistical inverse problem

Y = Af + ϵξ, (1)

whereH, K are Hilbert spaces andA : H → K denotes a linear operator. The function f ∈ H is
unknown and has to be recovered from a measurement of Af corrupted by some stochastic noise
ϵξ . Here, ϵ represents a positive noise level and ξ a Gaussian white noise (see, Hida 1980 for
more details). In particular, for all g ∈ K , we can observe

⟨Y, g⟩ = ⟨Af, g⟩ + ϵ⟨ξ, g⟩, (2)

where ⟨ξ, g⟩ ∼ N (0, ∥g∥2). Denote byA⋆ the adjoint operator ofA. In the sequel,A is supposed
to be a compact operator. Such a restriction is very interesting from a mathematical point of
view. The operator (A⋆A)−1 is unbounded: the least square solution f̂LS = (A⋆A)−1A⋆Y does not
continuously depend on Y . The problem is said to be ill-posed.
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686 C. Marteau

In a statistical context, several studies of ill-posed inverse problems have been proposed in
recent years. It would be however impossible to cite them all. For the interested reader, we may
mention Fan (1991) and Ermakov (1989) for convolution operators, Johnstone and Silverman
(1990) for the positron emission tomography problem, Donoho (1995) in a wavelet setting, or
Bissantz, Hohage, Munk and Ryumgaart (2007) for a general statistical approach and some rates
of convergence. We also refer to Engl, Hank and Neubauer (1996) for a survey in a numerical
setting.
Using a specific representation (i.e. particular choices for g in Equation (2)) may help in the

understanding of the model (1). In this sense, the classical singular value decomposition is a
very useful tool. Since A⋆A is compact and self-adjoint, the associated sequence of eigenvalues
(b2k)k∈N is strictly positive and converges to 0 as k → +∞. The sequence of eigenvectors (φk)k∈N
is supposed, in the sequel, to be an orthonormal basis ofH . For all k ∈ N, set ψk = b−1

k Aφk . The
triple (bk, φk, ψk)k∈N verifies

Aφk = bkψk,

A⋆ψk = bkφk,
(3)

for all k ∈ N. This representation leads to a simpler understanding of the model (1). Indeed, for
all k ∈ N, using Equation (3) and the properties of the Gaussian white noise,

yk = ⟨Y, ψk⟩ = ⟨Af, ψk⟩ + ϵ⟨ξ, ψk⟩ = bk⟨f, φk⟩ + ϵξk, (4)

where ξk are i.i.d. standard Gaussian variables. Hence, for all k ∈ N, we can obtain from
Equation (1) an observation on θk = ⟨f, φk⟩. In the ℓ2-sense, θ = (θk)k∈N and f represents the
same mathematical object. The sequence space model (4) clarifies the effect ofA on the signal f .
Since A is compact, bk → 0 as k → +∞. For large values of k, the coefficients bkθk are negli-
gible compared with ϵξk . In a certain sense, the signal is smoothed by the operator. The recovery
becomes difficult in the presence of noise for large ‘frequencies’ (i.e. when k is large).
Our aim is to estimate the sequence (θk)k∈N = (⟨f, φk⟩)k∈N. The linear estimation plays an

important role in the inverse problem framework and is a starting point for several recovering
methods. Let (λk)k∈N be a real sequence with values in [0, 1]. In the following, this sequence will
be called a filter. The associated linear estimator is defined by

f̂λ =
+∞∑

k=1
λkb

−1
k ykφk.

In the sequel, f̂λ may be sometimes identified with θ̂λ = (λkb
−1
k yk)k∈N. The meaning will be clear

from the context. The error related to f̂λ is measured by the quadratic risk Eθ∥f̂λ − f ∥2. Given
a family of estimators T , we would like to construct an estimator θ⋆ comparable with the best
possible one contained in T (called the oracle), via the inequality

Eθ∥θ⋆ − θ∥2 ≤ (1+ ϑϵ)Eθ∥θT − θ∥2 + Cϵ2, (5)

with ϑϵ, C > 0. The quantity Cϵ2 is a residual term. The inequality (5) is said to be sharp if
ϑϵ → 0 as ϵ → 0. In this case, θ⋆ asymptotically mimics the behaviour of θT . Oracle inequalities
play an important, though recent role in statistics. They provide a precise and non-asymptotic
measure on the performances of θ⋆, which does not require a priori informations on the signal.
In several situations, oracle results lead to interesting minimax rates of convergence. This theory
has given rise to a considerable amount of literature. We mention in particular Donoho (1995),
Barron, Birgé and Massart (1999), Cavalier, Golubev, Picard and Tsybakov (2002) or Candés
(2006) for a survey.
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The risk hull minimisation (RHM) principle, initiated in Cavalier and Golubev (2006) for
spectral cut-off (or projection) schemes, is an interesting approach for the construction of data-
driven parameter choice rules. The principle is to identify the stochastic processes that control the
behaviour of a projection estimator. Then, a deterministic criterion, called a hull, is constructed
in order to contain these processes. We also mention Marteau (in press) for a generalisation of
this method to some other regularisation approaches (Tikhonov, Landweber,...).
In this article, our aim is to establish a link between the RHM approach and some specific

threshold estimators. We are interested in the family of blockwise constant filters. In this specific
case, this approach leads to the penalised blockwise Stein rule studied for instance in Cavalier and
Tsybakov (2002). This is a new perspective for this well-known threshold estimator. In particular,
the risk hull point of view makes precise the role of the penalty through a simple and general
assumption.
This article is organised as follows. In Section 2, we construct a hull for the family of blockwise

constant filters. Section 3 establishes a link between the penalised blockwise Stein rule and the
risk hull method, and investigates the performances of the related estimator. Section 4 proposes
some examples and a discussion on the choice of the penalty. Some results on the theory of ordered
processes and the proofs of the main results are gathered in Section 5.

2. A risk hull for blockwise constant filters

In this section, we recall the RHM approach for projection schemes. Then, we explain why an
extension of the RHMmethod may be pertinent.A specific family of estimators is introduced and
the related hull is constructed.

2.1. The risk hull principle

For all N ∈ N, denote by θ̂N the projection estimator associated with the filter (1{k≤N})k∈N. For
each value of N ∈ N, the related quadratic risk is

Eθ∥θ̂N − θ∥2 =
∑

k>N

θ2k + Eθ

N∑

k=1
(b−1

k yk − θk)
2 =

∑

k>N

θ2k + ϵ2
N∑

k=1
b−2

k . (6)

The optimal choice forN is the oracleN0 thatminimisesEθ∥θ̂N − θ∥2. It is a trade-off between the
two sums (bias and variance) in the r.h.s. of Equation (6). This trade-off cannot be found without
a priori knowledge on the unknown sequence θ . Data-driven choices for N are necessary.
The classical unbiased risk estimation (URE) approach consists in estimating the quadratic

risk. One may use the functional

U(y, N) = −
N∑

k=1
b−2

k y2k + 2ϵ2
N∑

k=1
b−2

k , ∀N ∈ N.

The related adaptive bandwidth is defined as

Ñ = argmin
N∈N

U(y, N).

Some oracle inequalities related to this approach have been obtained in different papers (see,
for instance, Cavalier et al. 2002). Nevertheless, this approach suffers from some drawbacks,
especially in the inverse problem framework.
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688 C. Marteau

Indeed, this method is based on the average behaviour of the projection estimators: U(y, N)

is an estimator of the quadratic risk. This is quite problematic in the inverse problem framework
where the main quantities of interest often possess a great variability. This can be illustrated by a
very simple example: f = 0. In this particular case, for allN ∈ N, the loss of the related projection
estimator θ̂N is

∥θ̂N − θ∥2 = ϵ2
N∑

k=1
b−2

k + ηN, with ηN = ϵ2
N∑

k=1
b−2

k (ξ 2k − 1) ∀N ∈ N.

Since bk → 0 as k → +∞, the process N '→ ηN possesses a great variability, which explodes
with N . In this case, the behaviour of Eθ∥θ̂N − θ∥2 and ∥θ̂N − θ∥2 are rather different. The
variability is neglected when only considering the average behaviour of the loss. This leads in
practice to wrong decisions for the choice of N . More generally, as soon as the signal-to-noise
ratio is small, one may expect poor performances of the URE method. We refer to Cavalier and
Golubev (2006) for a complete discussion illustrated by some numerical simulations.
From now on, the problem is to construct a data-driven bandwidth that takes into account

this phenomenon. Instead of the quadratic risk, in Cavalier and Golubev (2006) it is proposed to
consider a deterministic term V (θ, N), called a hull, satisfying

Eθ sup
N∈N

[∥θ̂N − θ∥2 − V (θ, N)] ≤ 0. (7)

This hull bounds uniformly the loss in the sense of inequality (7). Ideally, it is constructed in order
to contain the variability of the projection estimators. The related estimator is then defined as the
minimiser of V (y, N), an estimator of V (θ, N), on N.
The theoretical and numerical properties of this estimator are presented and discussed in detail

in Cavalier and Golubev (2006) in the particular case of spectral cut-off regularisation. In the
same spirit, we mentionMarteau (in press) for an extension of this method to wider regularisation
schemes (Landweber, Tikhonov, ...).

2.2. The choice of !

In order to construct an estimator leading to an accurate oracle inequality, one must consider both
a family of filters % and a procedure in order to mimic the behaviour of the best element in %.
In this article we are interested in the risk hull principle. This point of view possesses indeed

interesting theoretical properties. It makes the role of the stochastic processes involved in linear
estimation more precise and leads to an accurate understanding of the problem.
Now,we address the problemof the choice of%. In the oracle sense, an ideal goal of adaptation is

to obtain a sharp oracle inequality over all possible estimators. This is inmost cases an unreachable
task since this set is too large. The difficulty of the oracle adaptation increases with the size of the
considered family. At a smaller scale, one may consider%mon, the family of linear and monotone
filters defined as

%mon = {λ = (λk)k∈N ∈ ℓ2 : 1 ≥ λ1 ≥ · · · ≥ λk ≥ · · · ≥ 0},

The set %mon contains the linear and monotone filters and covers most of the existing linear
procedures as the spectral cut-off, Tikhonov, Pinsker or Landweber filters (see, for instance, Engl
et al. 1996 or Bissantz et al. 2007). Some oracle inequalities have been already obtained on specific
subsets of %mon in Cavalier and Golubev (2006) and Marteau (in press), but we would like to
consider the whole family at the same time.
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The set !mon is always rather large and obtaining an explicit estimator in this setting seems
difficult. A possible alternative is to consider a set that contains elements presenting a behaviour
similar to the best one in !mon, but where an estimator could be explicitly constructed. In this
sense, the collection of blockwise constant estimators may be a good choice. In the sequel, this
family will be identified to the set

!⋆ = {λ ∈ l2 : 0 ≤ λk ≤ 1, λk = λKj
, ∀k ∈ [Kj, Kj+1 − 1], j = 0, . . . , J, λk = 0, k > N},

where J , N and (Kj )j=0,...,J are such that K0 = 1, KJ = N + 1 and Kj > Kj−1. In the fol-
lowing, we will also use the notations Ij = {k ∈ [Kj−1, Kj − 1]} and Tj = Kj − Kj−1, for all
j ∈ {1, . . . , J }.
In the following,most of the results are established for a general construction of!⋆. There exists

several choices that may lead to interesting results. Typically,N → +∞ as ϵ → 0. It is chosen in
order to capture most of the nonparametric functions with a controlled bias (see Equation (17) for
an example). Concerning the size (Tj )j=1,...,J of the blocks, we refer to Cavalier and Tsybakov
(2001) for several examples.
The family !⋆ can easily be handled. In particular, each block Ij can be considered inde-

pendently of the other ones. This simplifies considerably the study of the considered estimators.
Moreover, for all θ ∈ ℓ2,

R(θ, λmon) = inf
λ∈!mon

R(θ, λ) and R(θ, λ0) = inf
λ∈!⋆

R(θ, λ) (8)

are in fact rather close, subject to some reasonable constraints on the sequences (bk)k∈N and
(Tj )j=1,...,J (see Section 4 or Cavalier and Tsybakov 2002 for more details).
The extension of the RHM principle to the family !⋆ presents other advantages. The related

estimator corresponds indeed to a threshold scheme.Hence, wewill be able to address the question
of the choice of the threshold through the risk hull approach. This may be a new perspective for
the blockwise constant adaptive approach, and more generally for this class of regularisation
procedures.

2.3. A risk hull for !⋆

First, we introduce some notations. For all j ∈ {1, . . . , J }, let ηj be defined as follows:

ηj = ϵ2
∑

k∈Ij

b−2
k (ξ 2k − 1). (9)

The random variable ηj plays a central role in blockwise constant estimation. It corresponds to the
main stochastic part of the loss in each block Ij . The hull proposed in Theorem 2.1 is constructed
in order to contain these terms. Introduce also

ρϵ = max
j=1,...,J

√
*j and ∥θ∥2(j) =

∑

k∈Ij

θ2k ∀j ∈ {1, . . . , J }, (10)

with

*j = maxk∈Ij
ϵ2b−2

k

σ 2j
and σ 2j = ϵ2

∑

k∈Ij

b−2
k .

We will see that ρϵ → 0 as ϵ → 0 with appropriate choices of blocks and minor assumptions on
the sequence (bk)k∈N (see Section 4 for more details).
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690 C. Marteau

From now on, we are able to present a hull for the family !⋆, that is, a deterministic sequence
(V (θ, λ))λ∈!⋆ verifying

Eθ sup
λ∈!⋆

{∥θ̂λ − θ∥2 − V (θ, λ)} ≤ 0.

The proof of the following result is postponed to Section 5.2.

Theorem 2.1 Let (penj )j=1,...,J be a positive sequence verifying

J∑

j=1
E[ηj − penj ]+ ≤ C1ϵ

2, (11)

for some positive constant C1. Then, there exists B > 0 such that

V (θ, λ) = (1+ Bρϵ)

⎧
⎨

⎩

J∑

j=1
[(1− λKj

)2∥θ∥2(j) + λ2Kj
σ 2j + 2λKj

penj ] +
∑

k>N

θ2k

⎫
⎬

⎭

+ C1ϵ
2 + BρϵR(θ, λ0), (12)

is a risk hull on !⋆.

Theorem 2.1 states in fact that the penalised quadratic risk,

Rpen(θ, λ) =
J∑

j=1
[(1− λKj

)2∥θ∥2(j) + λ2Kj
σ 2j ] +

∑

k>N

θ2k + 2
J∑

j=1
λKj

penj , (13)

is, up to some constants and residual terms, a risk hull on the family !⋆. Hence, we will
use Rpen(θ, λ) as a criterion for the construction of a data-driven filter on !⋆, provided that
inequality (11) is satisfied (see Section 3).
The construction of a hull can be reduced to the choice of a penalty (penj )j=1,...,J , provided

Equation (11) is verified.A brief discussion concerning this assumption is presented in Section 3.
Some examples of penalties are presented in Section 4.

3. Oracle inequalities

In Section 2, we have proposed a family of hulls indexed by the penalty (penj )j=1,...,J . In this
section, we are interested in the performances of the estimators constructed from these hulls.
In the sequel, we set λj = λKj

for all j ∈ {1, . . . , J }. This is a slight abuse of notation, but the
meaning will be clear from the context. Then define

Upen(y, λ) =
J∑

j=1
[(λ2j − 2λj )(∥ỹ∥2(j) − σ 2j ) + λ2jσ

2
j + 2λjpenj ],

where
∥ỹ∥2(j) = ϵ2

∑

k∈Ij

b−2
k y2k , ∀j ∈ {1, . . . , J }.

The term Upen(y, λ) is an estimator of the penalised quadratic risk Rpen(θ, λ) defined in
Equation (13). Recall that from Theorem 2.1, Rpen(θ, λ) is, up to some constant and residual
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terms, a risk hull. Let θ⋆ denote the estimator associated with the filter

λ⋆ = arg min
λ∈$⋆

Upen(y, λ). (14)

Using simple algebra, we can prove that the solution of Equation (14) is

λ⋆
k =

⎧
⎨

⎩

(
1−

(
σ 2j + penj

)
/∥ ỹ ∥2(j)

)

+
, k ∈ Ij , j = 1, . . . , J,

0, k > N.
(15)

This filter behaves as follows. For all j ∈ {1, . . . , J }, λ⋆
j compares the term ∥ỹ∥2(j) with σ 2j + penj.

When ∥θ∥2(j) is ‘small’ (or even equal to 0), this comparison may lead to wrong decision. Indeed,
∥ỹ∥2(j) is in this case close to σ 2j + ηj . The variance of the variables ηj is very large since bk → 0
as k → +∞. Fortunately, these variables are uniformly bounded by the penalty in the sense of
Equation (11). Hence, λ⋆

j should be close to 0 for ‘small’ ∥θ∥2(j). Theorem 3.1 emphasises this
heuristic discussion through a simple oracle inequality.
Remark that the particular case penj = 0 for all j ∈ {1, . . . , J } leads to the URE approach.

Inequality (11) does not hold in this setting.

Theorem 3.1 Let θ⋆ be the estimator associated with the filter λ⋆. Assume that inequality (11)
holds. Then, there exists C⋆ > 0 independent of ϵ such that, for all θ ∈ ℓ2 and any 0 < ϵ < 1,

Eθ∥θ⋆ − θ∥2 ≤ (1+ τϵ) inf
λ∈$⋆

R(θ, λ) + C⋆ϵ2,

where τϵ → 0 as ϵ → 0 provided maxj penj /σ
2
j → 0 and ρϵ → 0 as ϵ → 0.

Although this result is rather general, the constraints on the blocks and the penalty are only
expressed through one inequality (here Equation (11)). This is one of the advantages of the RHM
approach.
For the particular choice penj = ϕjσ

2
j leading to the penalised blockwise Stein rule, we obtain

a simpler assumption than in Cavalier and Tsybakov (2002). This is an interesting outcome.
We conclude this section with an oracle inequality on$mon, the family of monotone filters.We

take advantage of the closeness between $⋆ and $mon under specific conditions. For the sake of
convenience, we restrict to one specific type of blocks.
Let νϵ = ⌈log ϵ−1⌉ and κϵ = log−1 νϵ , where for all x ∈ R, ⌈x⌉ denotes the minimal integer

strictly greater than x. Define the sequence (Tj )j=1,...,J by

T1 = ⌈νϵ⌉, Tj = ⌈νϵ(1+ κϵ)
j−1⌉, j > 1, (16)

and the bandwidth J as

J = min{j : Kj > N̄}, with N̄ = max

{

m :
m∑

k=1
b−2

k ≤ ϵ−2κ−3
ϵ

}

. (17)

Corollary 3.2 Assume that (bk) ∼ (k−β)k∈N for some β > 0 and that the sequence
(penj )j=1,...,J satisfies inequality (11). Then , for any θ ∈ ℓ2 and 0 < ϵ < ϵ1, we have

Eθ∥θ⋆ − θ∥2 ≤ (1+ /ϵ) inf
λ∈$mon

R(θ, λ) + C2ϵ
2,

where C2, ϵ1 denote positive constants independent of ϵ, and /ϵ → 0 as ϵ → 0.
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692 C. Marteau

The proof is a direct consequence of Lemma 1 of Cavalier and Tsybakov (2002). It can be in
fact extended to other constructions for blocks. One has only to verify that

max
j=1,...,J−1

σ 2j+1
σ 2j

≤ 1+ ηϵ, for 0 < ηϵ <
1
2
.

The inequality is sharp if ηϵ → 0 as ϵ → 0. The interested reader can refer to Cavalier and
Tsybakov (2001) for some examples of blocks.
The results obtained in this section hold for awide range of penalties. This range is characterised

and studied in the next section.

4. Some choices of penalty

In this section, we present two possible choices of penalty satisfying inequality (11). Then, we
present a brief discussion on the range in which this sequence can be chosen. The goal of this
section is not to say what could be a good penalty. This question is rather ambitious and may
require more than a single paper. Our aim here is rather to present some hint on the way it could
be chosen and on the related problem.
For the sake of convenience, we use in this section the same framework of Corollary 3.2.

We assume that the sequence of eigenvalues possesses a polynomial behaviour, that is, (bk) ∼
(k−β)k∈N for some β > 0. Concerning the set%⋆, we consider the weakly geometrically increas-
ing blocks defined in Equations (16) and (17).All the results presented in the sequel hold for other
constructions (see, for instance, Cavalier and Tsybakov 2001). We leave the proof to the inter-
ested reader. Concerning the sequence (bk)k∈N, the relaxation of the assumption on polynomial
behaviour is not straightforward. In particular, considering exponentially decreasing eigenvalues
require a specific treatment in this setting.
Let u and v be two real sequences. Here, and in the sequel, for all k ∈ N, we write uk ! vk if we

can find a positive constant C independent of k such that uk ≤ Cvk , and uk ≃ vk if both uk ! vk

and uk " vk . Since the sequence (bk)k∈N possesses a polynomial behaviour, we can write that for
all j ∈ {1, . . . , J }

σ 2j = ϵ2
∑

k∈Ij

b−2
k ≃ ϵ2K

2β
j (Kj+1 − Kj)

and

'j =
K
2β
j+1

K
2β
j (Kj+1 − Kj)

≃ (Kj+1 − Kj)
−1,

since Kj+1/Kj → 1 as j → +∞.

4.1. Examples

The following lemma provides upper bounds on the termEθ [ηj − penj ]+ andmakesmore explicit
the behaviour of the penalty. It can be used to prove inequality (11) in several situations.

Lemma 4.1 For all j ∈ {1, . . . , J } and δ such that 0 < δ < ϵ−2b2Kj −1/2,

E[ηj − penj ]+ ≤ δ−1 exp

⎧
⎨

⎩−δpenj + δ2*2
j + 4δ3

∑

k∈Ij

ϵ6b−6
k

(1− 2δϵ2b−2
Kj −1)

⎫
⎬

⎭ ,
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with
!2

j = ϵ4
∑

k∈Ij

b−4
k , ∀j ∈ {1, . . . , J }. (18)

Proof Let j ∈ {1, . . . , J } be fixed. First, remark that for all δ > 0,

Eθ [ηj − penj ]+ =
∫ +∞

penj

P (ηj ≥ t) dt,

=
∫ +∞

penj

P (exp(δηj ) ≥ eδt ) dt,

≤ δ−1e−δpenj Eθ exp(δηj ).

Then, provided 0 < δ < ϵ−2b2Kj−1/2,

Eθ exp(δηj ) ≤ exp

⎧
⎨

⎩δ2!2
j + 4δ3

∑

k∈Ij

ϵ6b−6
k

(1− 2ϵ2δb−2
k )+

⎫
⎬

⎭ .

This concludes the proof. !

The principle of RHM leads to an interesting choice. The only restriction on (penj )j=1,...,J from
the risk hull point of view is expressed through inequality (11) as follows:

J∑

j=1
Eθ [ηj − penj ]+ ≤ C1ϵ

2,

for some positive constant C1. Since Eθ [ηj − u]+ ≤ Eθηj1{ηj ≥u} for all positive u, we may be
interested in the penalty

penj = (1+ α)Uj , with Uj = inf{u : Eθηj1{ηj ≥u} ≤ ϵ2}, ∀j ∈ {1, . . . , J }, (19)

for some α > 0. This penalty is an extension of the sequence proposed by Cavalier and Golubev
(2006) for spectral cut-off schemes.
The next corollary establishes that the sequence (penj )j=1,...,J is a relevant choice for the

penalty.We obtain a sharp oracle inequality for the related estimator. In particular, inequality (11)
holds, i.e. the penalty contains the variability of the problem.

Corollary 4.2 Let θ⋆ be the estimator introduced in Equation (15) with the penalty
(penj )j=1,...,J . Then,

Eθ∥θ⋆ − θ∥2 ≤ (1+ γϵ) inf
λ∈*⋆

R(θ, λ) + C4

α
ϵ2, (20)

where C4 denotes a positive constant independent of ϵ and γϵ = o(1) as ϵ → 0.

Proof We use the following lower bound on Uj :

Uj = inf{u : Eθηj1{ηj ≥u} ≤ ϵ2} ≥
√
2!2

j log(Cϵ−4!2
j ), (21)

where for all j ∈ {1, . . . , J }, !2
j is defined in Equation (18). The proof can be directly derived

from the Lemma 1 of Cavalier and Golubev (2006). Then, thanks to Theorems 2.1 and 3.1, we
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694 C. Marteau

only have to prove that inequality (11) holds since maxj penj /σ
2
j converges to 0 as ϵ → 0. For

all j ∈ {1, . . . , J }, using Lemma 4.1,

E[ηj − penj ]+ ≤ 1
δ
exp

⎧
⎨

⎩−δpenj + δ2%2
j + 4δ3

∑

k∈Ij

ϵ6b−6
k

(1− 2δϵ2b−2
Kj−1)

⎫
⎬

⎭ , (22)

for all 0 < δ < ϵ−2b2Kj −1/2. Setting

δ =

√√√√ log(Cϵ−4%2
j )

2%2
j

,

and using Equation (21), we obtain

E[ηj − penj ]+ ≤

√√√√ 2%2
j

log(Cϵ−4%2
j )
exp

{
1
2
log(Cϵ−4%2

j )

}
× exp{−(1+ α) log(Cϵ−4%2

j )},

≤ Cϵ2

√
1

log(Cϵ−4%2
j )
exp{−α log(Cϵ−4%2

j )}.

Indeed, provided Equations (16) and (17) hold, δb−2
Kj −1 and the last term in the right-hand side of

the exponential in Equation (22) converge to 0 as j → +∞. Hence, we eventually obtain
J∑

j=1
E[ηj − penj ]+ ≤ Cϵ2

J∑

j=1

1
log1/2(CTj )

exp{−α log(CTj )},

≤ Cϵ2
J∑

j=1
j−1/2 exp{−α log(Cνϵ(1+ κϵ)

j )},

≤ Cϵ2
+∞∑

j=1
j−1/2 exp{−αDj} <

Cϵ2

α
,

where D and C denote two positive constants independent of ϵ. This concludes the proof of
Corollary 4.3. !

The penalty (19) is not explicit. Nevertheless, it can be computed using Monte–Carlo approx-
imation: there are only J terms to compute. Remark that it is also possible to deal with the lower
bound (21) which is explicit. The theoretical results are essentially the same since we use this
bound in the proof of Corollary 4.3.
Now, we consider the penalty introduced in Cavalier and Tsybakov (2002). For all j ∈

{1, . . . , J }, it is defined as follows:

penCTj = )
γ
j σ 2j , with 0 < γ <

1
2
.

Remark that with our assumptions on +⋆ and (bk)k∈N,

penCTj ≃ ϵ2K
2β
j (Kj+1 − Kj)

1−γ " penj .

This inequality entails that Equation (11) is satisfied. Hence, an oracle inequality similar to
Equation (20) can be obtained for this sequence. This is the same result as in Cavalier and
Tsybakov (2002). However, we construct a different proof, thanks to the RHM approach.
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4.2. The range

Theorem 3.1 provides in fact an admissible range for the penalty. If we want a sharp oracle
inequality, necessarily maxj penj /σ

2
j → 0 as ϵ → 0. Hence, the penalty should not be too large.

At the same time, we require from inequality (11) that the penalty contains in a certain sense the
variables (ηj )j=1,...,J . Hence, small penalties will not be convenient.
From inequality (11) and Lemma 4.1, the sequence (penj )j=1,...,J should at least fulfil penj !

$j for all j ∈ {1, . . . , J }. Since we require at the same time maxj σ 2j /penj → 0 as j → +∞,
an admissible penalty in the sense of Theorem 3.1 should satisfy

$j " penj " σ 2j , ∀j ∈ {1, . . . , J }. (23)

With our assumptions, this range is equivalent to

ϵ2K
2β
j (Kj+1 − Kj)

1/2 " penj " ϵ2K
2β
j+1(Kj+1 − Kj), ∀j ∈ {1, . . . , J }.

It is possible to prove that similar to Equation (20) oracle inequality holds for all penalty
(penj )j=1,...,J satisfying Equation (23). This is in particular the case for (penj )j=1,...,J and
(penCT

j )j=1,...,J .
Using the same bounds as in the proof of Corollary 4.3, it seems difficult to obtain a sharp

oracle inequality with the penalty ($j )j=1,...,J . Nevertheless, the range (23) is derived from upper
bounds on the estimator θ⋆ and may certainly be refined. A lower bound approach may perhaps
produce interesting results (see for instance (Efromovich 2007)).
In order to conclude this discussion, it would be interesting to compare the two penalties

presented in this section. Remark that (penj )j=1,...,J is closer to the lower bound of the range that
(penj )j=1,...,J . However, we do not claim that a penalty is better than another. This is an interesting
but a very difficult question that should be addressed in a separate paper.

4.3. Conclusion

The main contribution of this article is an extension of the RHM method to the family (⋆ and
a link between the penalised blockwise Stein rule and the risk hull approach. It is rather sur-
prising that a threshold estimator may be studied via some tools usually related to a parameter
selection setting. In any case, this approach allows us to develop a general study on this thresh-
old estimator. In particular, we impose a simple assumption on the threshold that is related to
the variance of the ηj in each block. This treatment may certainly be applied to other existing
adaptive approaches. For instance, one may be interested in wavelet threshold estimators in a
wavelet-vaguelette decomposition framework (Donoho 1995). The generalisation of our work in
this setting is not straightforward since the ‘blocks’ are of size one. Nevertheless, this approach
may provide some new interesting perspectives.
In order to conclude this article, it seems necessary to discuss the role played by the constant

α in the penalty (penj )j=1,...,J . Inequality (11) does not hold for α = 0. On the other hand, the
proof of Corollary 4.3 indicates that large values for α will not lead to an accurate recovering.
The choice of α has already been discussed and illustrated via some numerical simulations in a
slightly different setting, see Cavalier and Golubev (2006) or Marteau (in press) for more details.
Remark that we do not require α to be greater than one in this article. This is a small difference
compared with the constraints expressed in a regularisation parameter choice scheme. This can
be explained by the blockwise structure of the variables (ηj )j=1,...,J .
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696 C. Marteau

5. Proofs and technical lemmas

5.1. Ordered processes

Ordered processes were introduced in Kneip (1994). In Cao and Golubev (2006), these processes
are studied in detail and very interesting tools are provided. These stochastic objects may play an
important role in the adaptive estimation, see in particular Golubev (2007) or Marteau (in press)
for more details.
The aim of this section is not to provide an exhaustive presentation of this theory but rather to

introduce some definitions and useful properties.

Definition 5.1 Let ζ(t), t ≥ 0, be a separable random process with Eζ(t) = 0 and finite
variance "2(t). It is called ordered if, for all t2 ≥ t1 ≥ 0,

"2(t2) ≥ "2(t1) and E[ζ(t2) − ζ(t1)]2 ≤ "2(t2) − "2(t1).

Let ζ be a standard Gaussian random variable. The process t $→ ζ t is the most simple example
of ordered process. Wiener processes are also covered by Definition 5.1. The family of ordered
processes is in fact quite large.

Assumption C1 There exists κ > 0 such that

ϕ(κ) = sup
t1,t2

E exp
{

κ
ζ(t1) − ζ(t2)√

E[ζ(t1) − ζ(t2)]2

}

< +∞.

This assumption is not very restrictive. Several processes encountered in linear estimation satisfy
it.
The proof of the following result can be found in Cao and Golubev (2006).

Lemma 5.2 Let ζ(t), t ≥ 0, be an ordered process satisfying ζ(0) = 0 andAssumption C1. There
exists a constant C = C(κ) such that, for all γ > 0,

E sup
t≥0

[ζ(t) − γ"2(t)]+ ≤ C

γ
.

This lemma is rather important in the theory of ordered processes and leads to several interesting
results. In particular, the following corollary will be often used in the proofs.

Corollary 5.3 Let ζ(t), t ≥ 0, be an ordered process satisfying ζ(0) = 0 and Assumption C1.
Consider t̂ measurable with respect to ζ . Then, there exists C = C(κ) > 0 such that

Eζ(t̂) ≤ C

√
E"2(t̂).

Proof Let γ > 0 be fixed. Using Lemma 5.2,

Eζ(t̂) = Eζ(t̂) − γ E"2(t̂) + γ E"2(t̂),

≤ E sup
t≥0

[ζ(t) − γ"2(t)]+ + γ E"2(t̂),

≤ C

γ
+ γ E"2(t̂).

Choose γ = (E"2(t̂))−1/2 in order to conclude the proof. !
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5.2. Proofs

Proof of Theorem 2.1 First, remark that

Eθ sup
λ∈#⋆

{∥θ̂λ − θ∥2 − V (θ, λ)}

= Eθ sup
λ∈#⋆

{+∞∑

k=1
(1− λk)

2θ2k + ϵ2
+∞∑

k=1
λ2kb

−2
k ξ 2k − 2ϵ

+∞∑

k=1
λk(1− λk)θkb

−1
k ξk − V (θ, λ)

}

,

= Eθ sup
λ∈#⋆

⎧
⎨

⎩

J∑

j=1

⎡

⎣(1−λj )
2∥θ∥2(j) +λ2j

∑

k∈Ij

ϵ2b−2
k ξ 2k − 2λj (1− λj )Xj

⎤

⎦+
∑

k>N

θ2k − V (θ, λ)

⎫
⎬

⎭,

= Eθ

J∑

j=1

⎡

⎣(1− λ̂j )
2∥θ∥2(j) + λ̂2j

∑

k∈Ij

ϵ2b−2
k ξ 2k + 2λ̂j (λ̂j − 1)Xj

⎤

⎦ +
∑

k>N

θ2k − EθV (θ, λ̂),

with
λ̂ = arg sup

λ∈#⋆

{∥θ̂λ − θ∥2 − V (θ, λ)}

and
Xj = ϵ

∑

k∈Ij

θkb
−1
k ξk, ∀j ∈ {1, . . . , J }. (24)

Let j ∈ {1, . . . , J } be fixed. Use the decomposition

Eθ2λ̂j (λ̂j − 1)Xj = Eθ λ̂
2
jXj + Eθ (λ̂

2
j − 2λ̂j )Xj ,

= Eθ λ̂
2
jXj + Eθ (1− λ̂j )

2Xj = A1
j + A2

j , (25)

since EθXj = 0. First, consider A1
j . Let λ0j denote the blockwise constant oracle on the block j .

Using Corollary 5.3 in Section 5.1,

A1
j = Eθ λ̂

2
jXj = Eθ [λ̂2j − (λ0j )

2]Xj ≤ C

√
Eθ [λ̂2j − (λ0j )

2]2
∑

k∈Ij

ϵ2b−2
k θ2k ,

where C > 0 denotes a positive constant. Indeed, both processes ζ : t '→ (t2 − (λ0j )
2)Xj , t ∈

[(λ0j )2, 1] and ζ̄ : t '→ (t−2 − (λ0j )
2)Xj , t ∈ [(λ0j )−1; +∞[ are ordered and satisfy Assumption

C1. For all γ > 0, use

[λ̂2j − (λ0j )
2]2 ≤ 4[(1− λ̂j )

2 + (1− λ0j )
2](λ̂2j + (λ0j )

2),

and the Cauchy–Schwartz andYoung inequalities

A1
j ≤ C

√
Eθ [(1− λ̂j )2 + (1− λ0j )

2](λ̂2j + (λ0j )
2)max

k∈Ij

ϵ2b−2
k ∥θ∥2(j),

≤ CEθ [γ (1− λ̂j )
2∥θ∥2(j) + γ −1)j λ̂

2
jσ

2
j ] + Cγ (1− λ0j )

2∥θ∥2(j)

+ Cγ −1)j (λ
0
j )
2σ 2j + C

√
Eθ (1− λ̂j )2λ̂

2
j max

k∈Ij

ϵ2b−2
k ∥θ∥2(j), (26)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
A
R
T
E
A
U
,
 
C
l
é
m
e
n
t
]
 
A
t
:
 
1
1
:
3
9
 
5
 
J
u
l
y
 
2
0
1
0



698 C. Marteau

for some positive constant C. The bound of the last term in the r.h.s. of Equation (26) requires
some work. First, suppose that

∥θ∥2(j) ≤ σ 2j . (27)

In such a situation, for all γ > 0,
√

Eθ (1− λ̂j )2λ̂
2
j max

k∈Ij

ϵ2b−2
k ∥θ∥2(j) ≤

√
∥θ∥2(j)Eθ λ̂

2
j max

k∈Ij

ϵ2b−2
k ,

≤ γ ∥θ∥2(j) + γ −1&jEθ λ̂
2
jσ

2
j .

If Equation (27) holds, then

∥θ∥2(j) =
σ 2j ∥θ∥2(j)

σ 2j + ∥θ∥2(j)

(

1+
∥θ∥2(j)

σ 2j

)

≤ 2{(1− λ0j )
2∥θ∥2(j) + (λ0j )

2σ 2j },

where λ0 is the oracle defined in Equation (8). Indeed,

λ0j =
∥θ∥2(j)

σ 2j + ∥θ∥2(j)

, ∀j ∈ {1, . . . , J }.

Now, suppose
∥θ∥2(j) > σ 2j . (28)

Then, for all γ > 0,
√

Eθ (1− λ̂j )2λ̂
2
j max

k∈Ij

ϵ2b−2
k ∥θ∥2(j) ≤

√
max
k∈Ij

ϵ2b−2
k Eθ (1− λ̂j )2∥θ∥2(j),

≤ γ Eθ (1− λ̂j )
2∥θ∥2(j) + γ −1&jσ

2
j .

Using Equation (28),

σ 2j =
σ 2j ∥θ∥2(j)

σ 2j + ∥θ∥2(j)

(

1+
σ 2j

∥θ∥2(j)

)

≤ 2{(1− λ0j )
2∥θ∥2(j) + (λ0j )

2σ 2j }.

Setting γ = √
&j , we eventually obtain

A1
j ≤ C

√
&jEθ [(1− λ̂j )

2∥θ∥2(j) + λ̂2jσ
2
j ] + C

√
&j [(1− λ0j )

2∥θ∥2(j) + (λ0j )
2σ 2j ], (29)

for some constant C > 0 independent of ϵ. The same bound occurs for the term A2
j in

Equation (25). Hence, there exists B > 0 independent of ϵ such that

Eθ sup
λ∈'⋆

{∥θ̂λ − θ∥2 − V (θ, λ)}

≤ Eθ

J∑

j=1

⎡

⎣(1+ Bρϵ)(1− λ̂j )
2∥θ∥2(j) + λ̂2j

∑

k∈Ij

ϵ2b−2
k ξ 2k + Bρϵλ̂

2
jσ

2
j

⎤

⎦

+
∑

k>N

θ2k + BρϵR(θ, λ0) − EθV (θ, λ̂),
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≤ Eθ sup
λ∈#⋆

⎧
⎨

⎩

J∑

j=1

⎡

⎣(1+ Bρϵ)(1− λj )
2∥θ∥2(j) + λ2j

∑

k∈Ij

ϵ2b−2
k ξ 2k + Bρϵλ

2
jσ

2
j

⎤

⎦

+
∑

k>N

θ2k + BρϵR(θ, λ0) − V (θ, λ)

⎫
⎬

⎭ ,

where ρϵ is defined in Equation (10). Now, using Equations (9) and (12),

Eθ sup
λ∈#⋆

{∥θ̂λ − θ∥2 − V (θ, λ)} ≤ Eθ sup
λ∈#⋆

⎧
⎨

⎩

J∑

j=1
[λ2jηj − 2λjpenj ] − C1ϵ

2

⎫
⎬

⎭ ,

=
J∑

j=1
Eθ sup

λj ∈[0,1]
[λ2jηj − 2λjpenj ] − C1ϵ

2.

Let j ∈ {1, . . . , J } be fixed. We are looking for λj ∈ [0, 1] that maximises the quantity λ2jηj −
2λjpenj . If ηj < 0, the function λ %→ λ2ηj − 2λpenj is concave and the maximum on [0, 1] is
attained for λ = 0. Now, if ηj > 0, the function λ %→ λ2ηj − 2λpenj is convex and the maximum
on [0, 1] is attained in 0 or 1. Therefore,

sup
λj ∈[0,1]

(λ2jηj − 2λjpenj ) = [ηj − 2penj ]+, (30)

Using inequality (11), we eventually obtain

Eθ sup
λ∈#⋆

{∥θ̂λ − θ∥2 − V (θ, λ)} ≤
J∑

j=1
Eθ [ηj − 2penj ]+ − C1ϵ

2,

≤
J∑

j=1
Eθ [ηj − penj ]+ − C1ϵ

2 ≤ 0.

This concludes the proof of Theorem 2.1. !

Remark Using the same algebra in the proof of Theorem 2.1, it is possible to prove that

Eθ sup
λ∈#⋆

{∥θ̂λ − θ∥2 − W(θ, λ)} ≤ 0, (31)

where

W(θ, λ) = (1+ Bρϵ)

⎧
⎨

⎩

J∑

j=1
[(1− λKj

)2∥θ∥2(j) + λ2Kj
σ 2j + λ2Kj

penj ] +
∑

k>N

θ2k

⎫
⎬

⎭

+ C1ϵ
2 + BρϵR(θ, λ0).

Hence, W(θ, λ) is also a risk hull. For all j ∈ {1, . . . , J }, the only difference with V (θ, λ) is
contained in the bound of

sup
λj ∈[0,1]

{λ2jηj − λ2jpenj } ≤ [ηj − penj ]+.

Then, we use inequality (11) in order to obtain Equation (31).
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700 C. Marteau

Proof of Theorem 3.1 In the situation where inequality (11) holds, Equation (31) yields

Eθ∥θ⋆ − θ∥2 ≤ W(θ, λ⋆) = (1+ Bρϵ)R̄pen(θ, λ⋆) + BρϵR(θ, λ0) + C1ϵ
2, (32)

where

R̄pen(θ, λ⋆) =
J∑

j=1
[(1− λ⋆

j )
2∥θ∥2(j) + (λ⋆

j )
2σ 2j + (λ⋆

j )
2penj ] +

∑

k>N

θ2k ,

and B denotes a positive constant independent of ϵ. Moreover, from Equation (14),

Upen(y, λ⋆) ≤ Upen(y, λ), ∀λ ∈ '⋆.

The proof of Theorem 3.1 is mainly based on these two equalities. First, remark that

Upen(y, λ⋆) − R̄pen(θ, λ⋆) =
J∑

j=1
[((λ⋆

j )
2 − 2λ⋆

j )(∥ỹ∥2(j) − σ 2j ) + (λ⋆
j )
2σ 2j + 2λ⋆

jpenj

− (1− λ⋆
j )
2∥θ∥2(j) − (λ⋆

j )
2σ 2j − (λ⋆

j )
2penj ] −

∑

k>N

θ2k ,

=
J∑

j=1
[{(λ⋆

j )
2 − 2λ⋆

j }(∥ỹ∥2(j) − σ 2j ) − (1− λ⋆
j )
2∥θ∥2(j)

+ {2λ⋆
j − (λ⋆

j )
2}penj ] −

∑

k>N

θ2k .

Hence,

Upen(y, λ⋆) − R̄pen(θ, λ⋆) =
J∑

j=1

⎡

⎣{(λ⋆
j )
2 − 2λ⋆

j }
∑

k∈Ij

(θ2k + ϵ2b−2
k (ξ 2k − 1) + 2ϵb−1

k ξkθk)

− (1− λ⋆
j )
2∥θ∥2(j) + {2λ⋆

j − (λ⋆
j )
2}penj

⎤

⎦ −
∑

k>N

θ2k ,

=
J∑

j=1
{(λ⋆

j )
2 − 2λ⋆

j }(ηj + 2Xj − penj ) − ∥θ∥2,

where ηj and Xj are respectively defined in Equations (9) and (24). Hence, from Equation (14)

R̄pen(θ, λ⋆) = Upen(y, λ⋆) + ∥θ∥2 +
J∑

j=1
{2λ⋆

j − (λ⋆
j )
2}(ηj + 2Xj − penj ),

≤ Upen(y, λp) + ∥θ∥2 +
J∑

j=1
{2λ⋆

j − (λ⋆
j )
2}(ηj + 2Xj − penj ),

where
λp = arg inf

λ∈'⋆
Rpen(θ, λ)
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and Rpen(θ, λ) is defined in Equation (13). Then, with simple algebra

EθUpen(y, λp) = Eθ

J∑

j=1
[{(λp

j )2 − 2λp
j }(∥ỹ∥2(j) − σ 2j ) + (λ

p
j )2σ 2j + 2λp

j penj ],

= Rpen(θ, λp) − ∥θ∥2.

This leads to

Eθ R̄pen(θ, λ⋆) ≤ Rpen(θ, λp) + Eθ

J∑

j=1
{2λj − (λ⋆

j )
2}(ηj + 2Xj − penj ). (33)

We are now interested in the behaviour of the right-hand side of Equation (33). First, using
Equations (25)–(29) in the proof of Theorem 2.1,

Eθ {2λj − (λ⋆
j )
2}Xj ≤ Cρϵ{(1− λ

p
j )2∥θ∥2(j) + (λ

p
j )2σ 2j } + C̄ρϵEθ {(1− λ⋆

j )
2∥θ∥2(j) + (λ⋆

j )
2σ 2j },

for all j ∈ {1, . . . , J }. Here, C and C̄ denote positive constants independent of ϵ. In particular, it
is always possible to obtain C̄ verifying C̄ρϵ < 1 (see the proof of Theorem 2.1 for more details).
Hence,

Eθ R̄pen(θ, λ⋆) ≤ (1+ Cρϵ)Rpen(θ, λp) + C̄ρϵEθ R̄pen(θ, λ⋆) + Eθ

J∑

j=1
{2λ⋆

j − (λ⋆
j )
2}(ηj − penj ).

Then, from inequalities (11) and (30),

Eθ

J∑

j=1
{2λ⋆

j − (λ⋆
j )
2}(ηj − penj ) = Eθ

J∑

j=1
[ηj − penj ]+ ≤ C1ϵ

2.

This leads to

Eθ R̄pen(θ, λ⋆) ≤ (1+ Cρϵ)Rpen(θ, λp) + C̄ρϵEθ R̄pen(θ, λ⋆) + C1ϵ
2,

⇒ (1− C̄ρϵ)Eθ R̄pen(θ, λ⋆) ≤ (1+ Cρϵ)Rpen(θ, λp) + C1ϵ
2,

⇒ Eθ R̄pen(θ, λ⋆) ≤ (1+ Cρϵ)

(1− C̄ρϵ)
Rpen(θ, λp) + Cϵ2. (34)

Using Equations (32) and (34),

Eθ∥θ⋆ − θ∥2 ≤ (1+ Bρϵ)Eθ R̄pen(θ, λ⋆) + C1ϵ
2 + BρϵR(θ, λ0),

≤ (1+ µϵ)Rpen(θ, λp) + Cϵ2 + BρϵR(θ, λ0),

where µϵ = µϵ(ρϵ) such that µϵ → 0 as ρϵ → 0 and C is a positive constant independent of
ϵ. In order to conclude the proof, we just have to compare R(θ, λ0) with Rpen(θ, λp). For all
j ∈ {1, . . . , J }, introduce

Rj
pen(θ, λ) = (1− λj )

2∥θ∥2(j) + λ2jσ
2
j + 2λjpenj , and Rj(θ, λ) = (1− λj )

2∥θ∥2(j) + λ2jσ
2
j .
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Then,

Rj
pen(θ, λp) ≤

σ 4j ∥θ∥2(j)

(σ 2j + ∥θ∥2(j))
2 +

σ 2j ∥θ∥4(j)

(σ 2j + ∥θ∥2(j))
2 + 2

penj
σ 2j

σ 2j ∥θ∥2(j)

σ 2j + ∥θ∥2(j)

,

=
(

1+ 2
penj
σ 2j

)

Rj(θ, λ0),

since R
j
pen(θ, λp) ≤ R

j
pen(θ, λ0) from the definition of λp. This concludes the proof of

Theorem 3.1. !
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