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a b s t r a c t

In this paper, we consider ill-posed inverse problem models Y ¼ Tf þex where T denotes a
compact operator, e a noise level, x a Gaussian white noise and f the function of interest.
Recently, minimax rates of testing in such models have been obtained in various
situations, both from asymptotic and non-asymptotic point of views. Nevertheless, it
seems necessary to propose test strategies attaining these rates, being easy to implement
and robust with respect to the characteristics of the operator. In particular, we prove that
the inversion of the operator is not always necessary. This result provides interesting
perspectives, for instance in the specific cases where the operator is difficult to handle.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Inverse problems have been extensively studied over the past decades. They provide a non-trivial generalization of
classical statistical models and are at the core of several application problems. In this paper, we consider the model

Y ¼ Tf þsx,

where T : X-Y denotes a compact operator, X and Y Hilbert spaces, s a noise level and x a Gaussian white noise.
In this framework, the most common issues mainly concern the estimation of the parameter of interest f, with either

parametric or non-parametric tools. Optimality with respect to a particular loss function have been achieved and some
authors have built adaptive methods leading to general oracle inequalities. Many methods have been considered,
representing the most trends in statistic estimation methods (kernel methods, model selection, projection onto specific
bases).

Actually one of the main differences between direct and indirect problems comes from the fact that two spaces are at
hand: the space of the observations Y and the space where the function will be estimated, namely X , the operator mapping
one space into another, T : X-Y. Hence to build a statistical procedure, a choice must be made which will determine the
whole methodology. This question is at the core of the inverse problem structure and is encountered in many cases. When
trying to build basis well adapted to the operator, two strategies can be chosen, either expanding the function onto a wavelet
basis of the space X and taking the image of the basis by the operator as stated in Donoho (1995), or expanding the image of
the function onto a wavelet basis of Y and looking at the image of the basis by the inverse of the operator, studied in
Abramovich and Silverman (1998). For the estimation problem with model selection theory, estimators can be obtained
either by considering sieves on ðYmÞm % Y with their counterpart Xm :¼ T%Ym % X or sieves on ðXmÞm % X and their image
Ym :¼ TXm % Y (see for instance in Loubes and Ludeña, 2008, 2010).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jspi

Journal of Statistical Planning and Inference

0378-3758/$ - see front matter & 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2010.11.035

! Corresponding author.
E-mail addresses: beatrice.laurent@insa-toulouse.fr (B. Laurent), jean-michel.loubes@math.univ-toulouse.fr (J.-M. Loubes),

clement.marteau@math.univ-toulouse.fr (C. Marteau).

Journal of Statistical Planning and Inference 141 (2011) 1849–1861



Author's personal copy

Signal detection for inverse problem has received little attention. If some particular cases such as convolution problems
have been widely investigated (see Butucea et al., 2009 or Holzmann et al., 2007 for general references), the general case of
tests for inverse problem have only been tackled very recently. We refer to Ingster et al. (2010) and Laurent et al. (2010) for a
complete asymptotical and non-asymptotical theory. The previous dilemma concerning the choice of the space where to
perform the study is here also crucial. Indeed, two methods are at hand: the first one consists in performing tests on the
functional space X which implies inverting the operator, while the second method is to build a test directly on the
observations in the space Y, which involves considering an hypothesis on the image of the unknown function. Such issues
have been tackled for different alternatives in Bissantz et al. (2009) or Holzmann et al. (2007).

It is obvious that from a practical point of view, for known operators, testing directly the data has the advantage to be very
easy to use, requiring few computations. Indeed, since Tf follows a direct regression model, all well known testing procedures
may apply. In this paper, we will show that in many cases, considering the problem as a direct problem often leads to very
interesting testing performances. Hence depending on the difficulty of the inverse problem and on the set of assumptions on
the function to be detected (sparse conditions or smoothness conditions), we prove that the specific treatment devoted to
inverse problem which includes an underlying inversion of the operator, may worsen the detection strategy. For each
situation, we also highlight the cases where the direct strategy fails and were a specific test for inverse problem should be
preferred. Deviations from an assumption on the function may be more natural to consider rather than assumption on its
image by the operator, Tf, but since we consider signal detection, i.e. tests on the nullity of the function, both assumptions can
be investigated.

The paper falls into the following parts. Section 2 defines precisely the criterion chosen to describe the optimality of the
tests. Section 3 is devoted to testing issues where the signal is characterized by smoothness constraints. In Section 4, we
consider finite dimensional models: we present and develop some tools that will be used to prove the results of Section 3.
Then, some simulation results are gathered in Section 5. A general discussion is displayed in Section 6 while the proofs are
postponed to Appendix A.

2. Signal detection for inverse problems: two possible frameworks

We consider in this paper signal detection of a function f observed in the following framework. Let T be a linear operator on
an Hilbert space X with inner product ð","Þ, and consider an unknown function f observed from indirect observations in a
Gaussian white noise model

YðgÞ ¼ ðTf ,gÞþseðgÞ, g 2 H, ð1Þ

where eðgÞ is a centered Gaussian variable with variance JgJ2 :¼ ðg,gÞ. The operator T is supposed to be compact. Then it
admits a singular value decomposition (SVD) ðbj,cj,fjÞjZ1 in the sense that

Tfj ¼ bjcj, T&cj ¼ bjfj 8j 2 N
%, ð2Þ

where Tn denotes the adjoint operator of T. Considering the observations ðYðcjÞÞj2N% , Model (1) becomes

Yj ¼ bjyjþsej ¼ njþsej, 8jZ1, ð3Þ

with Yj ¼ YðcjÞ, ej ¼ eðcjÞ, ðTf ,cjÞ ¼ bjyj ¼ nj and yj ¼ ðf ,fjÞ. Hence, inference on the sequence y¼ ðyjÞj2N% provides the same
results for the function f.

In order to measure the testing difficulty of a given model, we will consider the minimax point of view developed in the
series of paper due to Ingster (1993). Let G be some subset of an Hilbert space and g 2 G a function of interest. We consider the
minimal radius r for which the problem of testing ‘‘ g ¼ 0’’ against the alternative ‘‘ g 2 G and JgJZr’’ with prescribed
probabilities of errors is possible. Of course, the smaller the radius r, the better will be the test.

More precisely, a test is a decision ruleFwith value in {0,1}. By convention, we accept a null hypothesis H0 whenF¼ 0 and
we reject otherwise. Let a 2 ð0,1Þ be fixed, a decision rule F is a level-a test if PH0

ðF¼ 1Þra for some a40. In this case, we
often write Fa instead of F in order to enlighten the dependence in a. The quality of the test Fa then relies on the quantity
rðFa,b,GÞ defined as

rðFa,b,GÞ ¼ inf r40, sup
g2G,JgJZr

PgðFa ¼ 0Þrb

( )
,

for some fixed b. The minimax rate of testing on G is defined as the smallest possible rate on G, namely

rðG,a,bÞ :¼ inf
Fa
rðFa,b,GÞ,

where the infimum is taken over all possible level-a testing procedures.
A testing procedure Fa is said to be minimax for H0:g=0 on G if there exists a constant CZ1 such that

sup
g2G,JgJZCrðG,a,bÞ

PgðFa ¼ 0Þrb:
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Let H0
IP be the null hypothesis corresponding to inference on the function f or the corresponding coefficients, namely

HIP
0 : f ¼ 0,

associated with the alternative HIP
1 : Jf JZr,f 2 F for some F " X . The corresponding rates of testing have been computed

very recently in Ingster et al. (2010) or Laurent et al. (2010) and different testing procedures have been proposed. We may
alternatively consider the hypothesis image of the assumption H0

IP by the operator T

HDP
0 : Tf ¼ 0,

with the alternative HDP
1 : JTf JZr,Tf 2 TF , where TF denotes the image of F by the operator T. Since the operator is known,

note that the assumption H0
DP is completely specified. In this case the Model (3) may be viewed as a direct observation model.

Previous rates have been computed for the different sets of assumptions that we will consider, conditions on the number of
non-zero coefficients or regularity assumptions. For more details, we refer to Ingster (1993), Lepski and Spokoiny (1999) or
Baraud (2002) for a non-asymptotic point of view.

It seems clear that both assumptions Tf=0 and f = 0 are equivalent since the operator T is injective. So H0
IP and H0

DP are two
ways of rephrasing the same question. Nevertheless, remark that the associated alternatives and rates of convergence
strongly differ. In some sense, the inversion of the operator may introduce an additional difficulty. Hence, a test minimax for
H0

DP on TF is not necessarily minimax for H0
IP on F . The same remark holds for the reverse. Nevertheless, we can conjecture

that in some specific cases, these hypotheses may be in some sense exchangeable or at least that there exists some kind of
hierarchy. The aim of this paper is to present these situations. More precisely, we will enlighten situations where test
procedures may be used to consider both H0

DP and H0
IP in an optimal way. For different classes of functionsF , we will point out

the cases where

# every procedure Fa minimax for H0
IP on F is also necessary minimax for H0

DP on TF ,
# every procedure Fa minimax for H0

DP on TF is also necessary minimax for H0
IP on F .

We will see that the answer is not so simple and depends on the spaces F and on the ill-posedness of the problem.
We will consider different spaces F in order to define the alternative to H0

DP and H0
IP. Hereafter we will consider inference

on the function f ¼
P

jyjfj or the image by the operator T, Tf ¼
P

jbjyjcj ¼
P

jnjcj, expressing the assumptions directly on the
functions or their corresponding coefficients in the appropriate basis. Concerning the operator, conditions will be set on the
sequence ðbkÞk2N& . The decay of the eigenvalues indeed describes the difficulty of the inverse problem. We will consider two
main cases:

Mildly ill-posed: There exist two constants c,C and an index s40 such that

8jZ1, cj'srbjrCj's:

Severely ill-posed: There exist two constants c,C and an index g40 such that

8jZ1, cexpð'gjÞrbjrCexpð'gjÞ:

The parameters s and g are called index of ill-posedness of the corresponding inverse problem.

3. Test strategies under smoothness constraints

In the following, the functions of interest are assumed to belong to smoothness classes determined by the decay of their
coefficients in the bases ðfkÞkZ1 or ðckÞkZ1. Several explicit rates of testing have been established following the considered
spaces (X or Y), the rate of decay of the coefficients, and the behaviour of the sequence ðbkÞkZ1. For more details, we refer for
instance to Baraud (2002) in the direct case (i.e. when T denotes the identity) or to Laurent et al. (2010) in an heteroscedastic
setting, which is equivalent to the inverse problem modeled in (3).

More precisely, let a¼ ðakÞk2N& be a monotone non-decreasing sequence and R40. In the following, we assume that the
function f is embedded in an ellipsoid EXa,2ðRÞ of the form

EXa,2ðRÞ ¼ g 2 X ,
Xþ1

j ¼ 1

a2
j /g,fjS

2rR2

8
<

:

9
=

;: ð4Þ

The sequence a characterizes the shape of the ellipsoid. Functional sets of the form (4) are often used to model some
smoothness class of functions: the choice aj= js for all j 2 N% corresponds to a Sobolev ball with regularity s, namely Hs(R)
while aj = exp(s j) for all j 2 N% entails that the function belongs to an analytic class of function with parameter s. For a given
sequence c, we define the analogue of EXa,2ðRÞ on Y by

EYc,2ðRÞ ¼ h 2 Y,
Xþ1

j ¼ 1

c2
j /h,cjS

2rR2

8
<

:

9
=

;: ð5Þ
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Imposing an ellipsoid type constraint on the function f entails also an ellipsoid constraint on Tf. Indeed, using Model (3), we
get that Tf 2 EYc,2ðRÞ as soon as f 2 EXa,2ðRÞ, for c¼ ðckÞk2N ¼ ðakb$1

k Þk2N. We point out that the operator regularizes the function
and for such a smoothness assumption, function Tf is smoother than f.

On the one hand, the rates for the inverse hypothesis H0
IP highly depend on the ill-posedness of the inverse problem and the

different types of ellipsoids. They are given in Laurent et al. (2010) and recalled in Table 1. In the following, we write mk % nk if
there exists two constants c1 and c2 such that for all kZ1, c1rmk=nkrc2. Table 1 presents the minimax rates of testing over
the ellipsoids EXa,2ðRÞwith respect to the l2 norm. We consider various behaviours for the sequences ðakÞk2N% and ðbkÞk2N% . For
each case, we give f ðsÞ such that for all 0oso1, C1ða,bÞf ðsÞrr2ðEXa,2ðRÞ,a,bÞrC2ða,bÞf ðsÞwhere C1ða,bÞ and C2ða,bÞ denote
positive constants independent of s. Here ~D denotes the integer part of the solution of 2nDsþ2gD¼ logðs$2Þ and t,s,n,g are
positive constants.

On the other hand, in Baraud (2002), the rates for the direct hypothesis H0
DP are obtained under the ellipsoid condition

Tf 2 EYc,2ðRÞ and are presented in Table 2. The terms u,a are positive constants.
Test strategies in this framework are based on the following theorem.

Theorem 1. Let ðYjÞjZ1 be a sequence obeying to Model (3). Let a,b 2 ð0,1Þ be fixed. Let EXa,2ðRÞ be the ellipsoid defined in (4). There
exists s040 such that for all 0osos0, in the four cases displayed in Table 1, we have

' Every level-a test minimax for H0
DP on EYc,2ðRÞ is also minimax for H0

IP on EXa,2ðRÞ.
' There exist level-a tests minimax for H0

IP on EXa,2ðRÞ but not for H0
DP on EYc,2ðRÞ,

where for all kZ1, ck=akbk
$1.

Note that under ellipsoid constraint, previous results hold both for mildly and severely ill-posed problems. Hence the
conclusion of this theorem is that testing in the space of observations should be preferred rather than building specific tests
designed for inverse problem which will not improve the rates and will introduce additional difficulties. Remark that we do
not claim that all the procedure minimax for H0

IP will necessarily fail for testing H0
DP, but rather than an additional study seems

necessary.
A part of the proof of Theorem 1 is based on Lemma 1 below and is postponed to Appendix A. This lemma provides, under

ellipsoid constraint, an embedding on the deviation balls for Tf provided that f is bounded away from zero.

Lemma 1. Let gs be a positive sequence such that gs-0 as s-0. The following embedding holds:

ff 2 EXa,2ðRÞ,Jf J2Zgsg ( ff 2 EXa,2ðRÞ,JTf J2Zð1$cÞmsg,

where c 2)0,1½, ms ¼ b2
mðsÞgs and mðsÞ is such that R2a$2

mðsÞrcgs.

Using Lemma 1, we can control the norm of Tf given Jf J2 for all f belonging to EXa,2ðRÞ. Remark that the reverse is not true.
Indeed, we can always construct signals such that JTf J2 and Jf J2 are of the same order.

4. Rate optimal strategies for finite dimensional models

The aim of this section is to present and develop some tools useful for the proofs of the results presented in the previous
section. In particular, our aim is to exhibit tests that fail to be powerful simultaneously in the inverse and the direct setting (i.e.
for the hypothesis H0

DP and H0
IP). Most of the tests designed for alternatives of the form ‘‘f 2 EXa,2ðRÞ,Jf JZr’’ involve only a

finite number of coefficients. These tests are in some sense biased. The key issue is thus to control this bias with respect to the
rates of testing. As in classical non-parametric estimation problems, finding the best trade-off between these two quantities is
at the heart of the testing approach. A good understanding of such kind of testing procedures is thus necessary.

Table 1
Minimax rates of testing in the indirect case.

Mildly ill-posed Severely ill-posed
bk % k$t bk % expð$gkÞ

ak % ks s4s=ð2sþ2tþ1=2Þ ðlogðs$2ÞÞ$2s

ak % expðnksÞ s2ðlogðs$2ÞÞð2tþ1=2Þ=s
e$2n ~D s

ðso1Þ

Table 2
Minimax rates of testing in the direct case.

ck % ku s4u=ð2uþ1=2Þ

ck % expðakuÞ s2ðlogðs$2ÞÞ1=2u

B. Laurent et al. / Journal of Statistical Planning and Inference 141 (2011) 1849–18611852
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Hence, in this section, we deal with functions having zero coefficients after a certain level. For a given DZ1, let

HD ¼ spanffj,1r jrDg,

KD ¼ spanfcj,1r jrDg,

where span(A) denotes the linear space generated by A " l2ðNÞ. From (2), the assertion f 2 HD is equivalent to Tf 2 KD.
Assume that f 2 HD, or equivalently that Tf 2 KD which entails that the signal f is concentrated on the first D coefficients of

the basis ðfkÞk2N. As said before in Section 2, choosing the best framework for building signal detection tests involves knowing
the minimax rates of testings for the both settings: the direct and the indirect version of the observation model. On the one
hand, rates of testing for the inverse problem (3) have been obtained in Laurent et al. (2010) under such assumptions. For
CLða,bÞ,CUða,bÞ two positive constants, we have

CLða,bÞs2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j ¼ 1

b%4
j

vuut rr2
2ðHDÞrCUða,bÞs2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j ¼ 1

b%4
j

vuut :

On the other hand, for the direct observation model, Yj ¼ njþexj,j 2 N, rates are given in Baraud (2002). For cLða,bÞ,cUða,bÞ two
positive constants, we get

cLða,bÞs2
ffiffiffiffi
D
p

rr2
2ðKDÞrcUða,bÞs2

ffiffiffiffi
D
p

:

For fixed D, we are here in a parametric setting, both rates of testing are of order s2. In order to compare the hypotheses H0
DP

and H0
IP in the spirit of Section 3, we have to take into account the dependency with respect to the parameter D of these rates. In

this sense, we introduce a definition of rate-optimality which will provide a framework for potential comparisons between
H0

DP and H0
IP.

Definition 1. Assume that Y ¼ ðYjÞjZ1 obeys to model (3). Let a,b 2'0,1½. For all D 2 N), we consider a level%a test Fa,D:
Pf ¼ 0ðFa,D ¼ 1Þra. The collection of tests ðFa,D,DZ1Þ is rate-optimal for H0

IP over the sets ðHD,DZ1Þ if the following property
holds for some constant Ca,b40:

8DZ1,8f 2 HD, Jf J2Zs2Ca,b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j ¼ 1

b%4
j

vuut ¼)Pf ðFa,D ¼ 1ÞZ1%b: ð6Þ

The collection of tests ðFa,D,DZ1Þ is rate-optimal for H0
DP over the sets ðKD,DZ1Þ if the following property holds for some

constant Cua,b40:

8DZ1,8f 2 HD, JTf J2Zs2Cua,b
ffiffiffiffi
D
p
¼)Pf ðFa,D ¼ 1ÞZ1%b: ð7Þ

Following Definition 4.1, a family is rate optimal if, in some sense, it possesses a similar behaviour for all the values of D.
The following theorem provides a comparison for the two signal detection procedures at hand.

Theorem 2. Assume that Y ¼ ðYjÞjZ1 obeys to Model (3). Let 0oaobo1=2.

Mildly ill-posed inverse problem: Let ðFa,DÞDZ1 be a collection of level-a tests which is rate-optimal for H0
DP over the sets

ðKD,DZ1Þ then ðFa,DÞDZ1 is also rate-optimal for H0
IP over the sets ðHD,DZ1Þ.

Mildly or severely ill-posed inverse problem: There exists a collection of tests ðFa,DÞDZ1 which is rate-optimal for H0
IP over the sets

ðHD,DZ1Þ but not for H0
DP over the sets ðKD,DZ1Þ.

Severely ill-posed inverse problem: There exists a collection of tests ðFa,DÞDZ1 which is rate-optimal for H0
DP over the sets

ðKD,DZ1Þ but not for H0
IP over the sets ðHD,DZ1Þ.

Previous theorem proves that the situation where the function is defined by a fixed number of coefficients differs from the
case where a regularity constraint is added on its coefficients. On the one hand, when considering mildly ill-posed inverse
problems, it seems clear that the both problems of testing respectively H0

IP and H0
DP are not equivalent when the function f

belongs to HD. Every testing procedure that works in the direct case could be used without additional assumptions in the
inverse case. The reverse is not true. On the other hand, the severely ill-posed case is not a straightforward generalization of
the results obtained for polynomially decreasing eigenvalues. Indeed, in this particular setting, testing H0

IP and H0
DP seems to be

two different tasks. A good test for H0
IP may fail for H0

DP and the reverse is true.
Hence, without additional assumption on the function f, different strategies should be used according to the considered

assumption.

5. Simulations

Our goal is to illustrate the difference between direct and indirect testing strategies on some simulations. In Fig. 1, we focus
on mildly ill-posed problems for testing the nullity of two coefficients. We compare and plot here the power of a direct test
Fð1ÞD,a and an indirect test Fð2ÞD,a and with same level 5%.

B. Laurent et al. / Journal of Statistical Planning and Inference 141 (2011) 1849–1861 1853
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The test Fð1ÞD,a rejects the null hypothesis H0: f = 0, if

XD

j ¼ 1

Y2
j 4vD,a,

where vD,a denotes the 1$a quantile of
PD

j ¼ 1 Y2
j under H0. The test Fð2ÞD,a rejects the null hypothesis H0: f = 0, if

XD

j ¼ 1

b$2
j Y2

j 4uD,a,

where uD,a denotes the 1$a quantile of
PD

j ¼ 1 b$2
j Y2

j under H0.
We will conduct two different simulations. First, for an alternative f 2 H2, we estimate the power of the testsFð1Þ2,a andFð2Þ2,a,

for the Yj’s obeying to Model (3), with on the one hand bj= j$1, and on the other hand ðy1,y2Þ 2 ð$5,5Þ2 (and yj ¼ 0,8jZ2).
The simulations are obtained using 10 000 replications. In Fig. 1, we present the estimated powers of the two tests. As

expected, the direct test is powerful outside an ellipsoid while the indirect test behaves well outside a ball. Then, in Fig. 2, we
provide the difference between the two test powers. The comparison of the two tests enlightens that specific tests for inverse
problems are outperformed by a procedure that directly tests the observations.

In a second simulation, we focus on two generic examples of goodness of fit. We consider two different alternatives f1,D and
f2,D defined respectively as

/f1,D,fjS¼
C1D1=4 if j¼ 1,

0, 8j41,

(
/f2,D,fjS¼

C1D1þ1=4 if j¼D,

0, 8jaD,

(
ð8Þ

where C1 ¼
ffiffiffi
6
p

. We perform these simulations for a mildly ill-posed problem: we set bj= j$1 for all jZ1.

Fig. 1. Power of direct and indirect tests.

Fig. 2. Comparison of direct and indirect tests.

B. Laurent et al. / Journal of Statistical Planning and Inference 141 (2011) 1849–18611854
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Remark that for a given D, both functions f1,D and f2,D belong to HD. We plot for different values of D=1,y,50 the second
kind error for the direct testFð1Þa,D in dotted line and for the indirect testFð2Þa,D in straight line, with a¼ 5%. Results are displayed
in Fig. 3. For each run, the test is conducted over 10 000 replications.

For the function f1,D, the indirect test fails in detecting the non-zero coefficient while the direct test succeeds. We point out
that this function corresponds to the counter-example exhibited in the proof of Theorem 2.

Remark also that the function f2,D corresponds to the theoretical case for which the direct test does not perform better than
the indirect test. This statement appears also clearly on the curves since the simulated second kind errors are of the same
order whatever D is.

6. Concluding remarks

Our aim was to be able to decide whether tests for inverse problems should be performed or if direct inference on the
observations could be sufficient or even lead to better results. Note that, we only have considered test problems for which the
null hypothesis was f=0. Actually, this is not restrictive and the same results still hold for any goodness of fit problem of the
type f= f0. As shown in this paper, we promote the following testing strategies according to the nature of the inverse problem.

$ Mildly ill-posed problems: in this situation, in most cases, tests built directly on the rough observed data, i.e. in the space of
the observations, outperform tests that invert the operator. Note that we have not investigated the special situation of ‘p

bodies tackled in Baraud (2002) or in Laurent et al. (2010). Indeed, for this case, minimax rates of testing are only achieved
up to a logarithmic term and in this case specific tests should be designed to avoid flawed rates of testing.
$ Severely ill-posed problems: for this kind of inverse problem, tests are more difficult and the situation is reversed. Indeed,

in most cases, the operator changes the difficulty of the testing issues and thus a specific treatment must be addressed to
the data. Only the specific frame of signal testing where the function has an ellipsoid-type regularity, enables to get rid of
the inverse problem settings and to use direct testing procedure on the raw data.

Hence a large number of goodness of fit issues for inverse problems can be more efficiently solved by using tests on the direct
observations, with the great advantage that a large variety of tests are available. Moreover, since only the observations are
needed, as soon as the kind of inverse problem is known, tests can be designed without ’inversion’ of the operator in the sense
that it is not necessary to perform a regularization of the data (see Butucea et al., 2009 or Laurent et al., 2010 for instance).
Hence, our results enable to build tests in the cases where the operator is difficult to handle: SVD unavailable, eigenvalues
difficult to compute, ySuch situations are encountered in Cavalier and Hengartner (2005) where the operators are partially
known for instance. Nevertheless, our testing procedures in this direct case only consider alternatives of the form JTf JZr. In
some cases, deviations from Assumptions H0

IP may be more natural to consider rather than applying the operator T.
To conclude this discussion, we point out that when it is difficult to assess which strategy should be used, we can always

combine two level-a=2 tests respectively minimax for H0
IP and H0

DP, to obtain a global minimax test.
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Fig. 3. Second kind error for direct and indirect approaches. The dashed lines represent the second kind error for the test Fð1ÞD,a for different values of D while
the solid lines are associated to the test Fð2ÞD,a . Results for the alternatives f1,D and f2,D introduced in (8) are respectively displayed on the left-hand and right-
hand sides.
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Appendix A. Proofs

A.1. Technical tools

Let us recall the following lemma which is proved in Laurent et al. (2010) (see Lemma 2).

Lemma 2. Let D 2 N!,

Zj ¼ ljþsjej, 1r jrD,

where e1, . . . ,eD are i.i.d. Gaussian variables with mean0 and variance1. We define T̂ ¼
PD

j ¼ 1 Z2
j and

S¼
XD

j ¼ 1

s4
j þ2

XD

j ¼ 1

s2
j l

2
j :

The following inequalities hold for all xZ0:

P T̂$EðT̂ ÞZ2
ffiffiffiffiffiffi
Sx
p
þ2 sup

1r jrD
ðs2

j Þx

 !
rexpð$xÞ, ð9Þ

PðT̂$EðT̂ Þr$2
ffiffiffiffiffiffi
Sx
p
Þrexpð$xÞ: ð10Þ

We can easily deduce from this lemma the following corollary.

Corollary 1. Let

Yj ¼ bjyjþsej, j 2 N!:

Let DZ1, b 2'0,1½ and denote by q1$bðDÞ the ð1$bÞ quantile of
PD

j ¼ 1 b$2
j Y2

j , and by qu1$bðDÞ the ð1$bÞ quantile of
PD

j ¼ 1 Y2
j . Then,

setting xb ¼ lnð1=bÞ

q1$bðDÞr
XD

j ¼ 1

y2
j þs2

XD

j ¼ 1

b$2
j þ2

ffiffiffiffiffiffiffiffiffi
Sxb

q
þ2s2 sup

j ¼ 1,...,D
b$2

j xb, ð11Þ

qu1$bðDÞr
XD

j ¼ 1

b2
j y

2
j þs2Dþ2

ffiffiffiffiffiffiffiffiffiffi
Suxb

q
þ2s2xb, ð12Þ

where

S¼ s4
XD

j ¼ 1

b$4
j þ2s2

XD

j ¼ 1

y2
j

b2
j

and Su¼ s4Dþ2s2
XD

j ¼ 1

b2
j y

2
j :

Lemma 3. Let ðYjÞjZ1 be a sequence obeying to Model (3). Let a,b 2 ð0,1Þ be fixed and consider the ellipsoid EYc,2ðRÞ defined by (5).
Assume that

~c1ea1ku rckr ~c2ea2ku
, 8k 2N%,

where ~c1, ~c2,a1 and a2 denote positive constants independent of k. Then, there exists ~c3, ~c4 such that

~c3s2ðlogðs$2ÞÞ1=2urr2ðEYc,2ðRÞ,a,bÞr ~c4s2ðlogðs$2ÞÞ1=2u:

Proof. The proof follows the same lines as in Laurent et al. (2010) (see Corollary 3). Recall from Baraud (2002) or Laurent et al.
(2010) that the minimax rate on EYc,2ðRÞ verifies

sup
D2J
ðr2

D4R2Cc$2
D Þrr2ðEYc,2ðRÞ,a,bÞr inf

D2J
ðCr2

DþR2Cc$2
D Þ,

where C is a positive constant depending only on a,b and r2
D ¼Oðs2

ffiffiffiffi
D
p
Þ as D-þ1. In a first time, we set

D0 ¼
1

2a1
logðs$2Þ

" #1=u
& ’

:

Then

r2ðEYc,2ðRÞ,a,bÞrCr2
D0
þCR2c$2

D0

rCs2ðlogðs$2ÞÞ1=2uþCs2

rCs2ðlogðs$2ÞÞ1=2u,
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where C denotes a constant independent of s which may vary from line to line. Concerning the lower bound, we set

D1 ¼
1

4a2
logðs#2Þ

! "1=u
$ %

:

Then

r2ðEYc,2ðRÞ,a,bÞZr2
D1
4R2Cc#2

D1

ZCs2ðlogðs#2ÞÞ1=2u4s¼ Cs2ðlogðs#2ÞÞ1=2u,

for some C40. This concludes the proof. &

A.2. Proof of Theorem 2

For the sake of convenience, we set s¼ 1 in the sequel without loss of generality.
Let us prove the first point of Theorem 2. We consider mildly ill-posed inverse problems. Let ðFa,D,DZ1Þ be a collection of

level-a tests which is rate-optimal for H0
DP on KD. Then, for all DZ1

P0ðFa,D ¼ 1Þra and sup
ff2HD :JTf J2 ZCua,b

ffiffiffi
D
p
g
Pf ðFa ¼ 1ÞZ1#b,

for some constant Cua,b40. Remark that ðFa,D,DZ1Þ is also a collection of level-a tests for H0
IP. For mildly ill-posed inverse

problems (cj#srbjrCj#s for all jZ1), there exists a constant C(s) such that

inf
j ¼ 1::D

b2
j

XD

j ¼ 1

b#4
j

0

@

1

A
1=2

ZCðsÞ
ffiffiffiffi
D
p

:

Hence, for all f 2 HD such that Jf J2 ¼
PD

j ¼ 1 y
2
j ZCa,bð

PD
j ¼ 1 b#4

j Þ
1=2

JTf J2 ¼
XD

j ¼ 1

b2
j y

2
j Z inf

j ¼ 1::D
b2

j

XD

j ¼ 1

y2
j ZCðsÞ % Ca,b

ffiffiffiffi
D
p

:

Since (7) holds, for all constant Ca,b such that CðsÞ % Ca,bZCua,b, (6) also holds which concludes the first part of the proof.
Let us now prove the second point of Theorem 2. We consider mildly or severely ill-posed inverse problems. We consider

the following testing procedures: for all DZ1, let

FIP
a,D ¼ 1 PD

j ¼ 1
b#2

j
Y2

j
Z sD,a

n o, ð13Þ

where

sD,a ¼
XD

j ¼ 1

b#2
j þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j ¼ 1

b#4
j xa

vuut þ2 sup
1r jrD

b#2
j xa, ð14Þ

with xa ¼ lnð1=aÞ. It is proved in Laurent et al. (2010) that for all DZ1,FIP
a,D is a level-a test which is rate-optimal for H0

IP on HD.
We want to show that the collection of tests ðFa,D,DZ1Þ is not rate-optimal for H0

DP over the sets ðKD,DZ1Þ, i.e. that for all
C40, we can find DZ1 and f 2 HD such that JTf J2ZC

ffiffiffiffi
D
p

s2 and

Pf ðFIP
a,D ¼ 1Þ ¼Pf

XD

j ¼ 1

b#2
j Y2

j ZsD,a

0

@

1

Arb: ð15Þ

Let q1#bðDÞ denote the ð1#bÞ quantile of
PD

j ¼ 1 b#2
j Y2

j . Inequality (15) holds if sD,aZq1#bðDÞ. Using (11), with s¼ 1, the
condition sD,aZq1#bðDÞ is satisfied if

XD

j ¼ 1

y2
j þ2

ffiffiffiffiffiffiffiffiffi
Sxb

q
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j ¼ 1

b#4
j xa

vuut þ2 sup
1r jrD

b#2
j ðxa#xbÞ:

Using the inequality
ffiffiffiffiffiffiffiffiffiffi
aþb
p

r ffiffiffi
a
p
þ

ffiffiffi
b
p

for a,b40, the above inequality holds if

XD

j ¼ 1

y2
j þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xb
XD

j ¼ 1

y2
j

vuut r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j ¼ 1

b#4
j

vuut ð
ffiffiffiffiffi
xa
p
#

ffiffiffiffiffi
xb

p
Þþ2 sup

1r jrD
b#2

j ðxa#xbÞ: ð16Þ
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One can check that if

XD

j ¼ 1

y2
j r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j ¼ 1

b"4
j

vuut ð
ffiffiffiffiffi
xa
p
"

ffiffiffiffiffi
xb

p
Þþ sup

1r jrD
b"2

j ðxa"xbÞ"xb, ð17Þ

then (16) holds, and thus Pf ðFIP
a,D ¼ 1Þrb.

For the sake of simplicity, we assume that bj= j"s for mildly ill-posed inverse problems and bj ¼ expð"gjÞ for severely ill-
posed inverse problems. We consider the function f 2 HD defined by y2

1 ¼ C
ffiffiffiffi
D
p

with C40, and yj ¼ 0 for all j41. Then

JTf J2 ¼
XD

j ¼ 1

b2
j y

2
j ¼

XD

j ¼ 1

y2
j ¼ C

ffiffiffiffi
D
p

:

Moreover, the right-hand term in (17) is respectively bounded from below by

Cða,b,sÞD1=2þ2s"xb

in the polynomial case and by

Cða,b,gÞexpð2DgÞ"xb

when bj ¼ expð"gjÞ.
Hence, for D large enough (16) holds and ðFIP

a,D,DZ1Þ is not rate-optimal for H0
DP over ðKD,DZ1Þ.

Let us now prove the third point of Theorem 2. We consider severely ill-posed inverse problems. We introduce the
following testing procedure: for all DZ1, let

FDP
a,D ¼ 1 PD

j ¼ 1
Y2

j
Z sD,a

n o with sD,a ¼Dþ2
ffiffiffiffiffiffiffiffi
Dxa

p
þ2xa:

It is proved in Baraud (2002) that the collection of level-a tests ðFDP
a,D,DZ1Þ is rate-optimal for H0

DP on ðKD,DZ1Þ. For all C40,
we want to find DZ1 and Tf 2 KD such that Jf J2ZCð

PD
j ¼ b"4

j Þ
1=2 and

Pf ðFDP
a,D ¼ 1Þrb:

Let qu1"bðDÞ denote the ð1"bÞ quantile of
PD

j ¼ 1 Y2
j . If sD,aZqu1"bðDÞ, we have Pf ðFDP

a,D ¼ 1Þrb. Using (12) with s¼ 1, the
condition sD,aZqu1"bðDÞ is satisfied if

XD

j ¼ 1

b2
j y

2
j þ2

ffiffiffiffiffiffiffiffiffiffi
Suxb

q
r2

ffiffiffiffiffiffiffiffi
Dxa

p
þ2ðxa"xbÞ: ð18Þ

By similar computations as for the second point, this condition holds if

XD

j ¼ 1

b2
j y

2
j þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xb
XD

j ¼ 1

b2
j y

2
j

vuut r2
ffiffiffiffi
D
p
ð
ffiffiffiffiffi
xa
p
"

ffiffiffiffiffi
xb

p
Þþ2ðxa"xbÞ:

We consider the function f 2 HD defined by yD ¼ Cb"1
D with C40, and yj ¼ 0 for jaD. Then

XD

j ¼ 1

b2
j y

2
j ¼ C:

Hence (18) holds for D large enough.

A.3. Proof of Lemma 1

Assume that

f 2 fn 2 EXa,2ðRÞ,JnJ2Zgsg:

Then, for all mZ1

JTf J2 ¼
X

kZ1

b2
ky

2
k Z

Xm

k ¼ 1

b2
ky

2
k Zb2

m

Xm

k ¼ 1

y2
k ¼ b2

m Jf J2"
X

k4m

y2
k

 !

:

Since f 2 EXa,2ðRÞ
X

k4m

y2
k ra"2

m

X

k4m

a2
ky

2
k rR2a"2

m :

Hence

JTf J2Zb2
mðgs"R2a"2

m Þ:

We conclude the proof choosing m¼mðsÞ such that R2a"2
mðsÞrcgs, for some 0oco1 independent of s.
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A.4. Proof of Theorem 1

Let a and b be fixed. Denote by r2ðEXa,2ðRÞ,a,bÞ and r2ðEYc,2ðRÞ,a,bÞ the minimax rates of testing on respectively EXa,2ðRÞ and
EYc,2ðRÞ. Let Fa a level-a test minimax for H0

DP on EYc,2ðRÞ. Then there exists a positive constant C1 such that

sup
Tf2EY

c,2
ðRÞ,JTf J2 ZC1r2ðEY

c,2
ðRÞ,a,bÞ

PyðFa ¼ 0Þrb:

Let C240, thanks to Lemma 1 with gs ¼ C2r2ðEXa,2ðRÞ,a,bÞ

ff 2 EXa,2ðRÞ,Jf J2ZC2r2ðEXa,2ðRÞ,a,bÞg $ ff ,Tf 2 EYc,2ðRÞ,JTf J2Z ð1%cÞC2b2
mðsÞr2ðEXa,2ðRÞ,a,bÞg:

Hence, Fa is a level-a test minimax for H0
IP as soon as

R2a%2
mðsÞrcC2r2ðEXa,2ðRÞ,a,bÞ,

for some 0oco1, C240 and

C1r2ðEYc,2ðRÞ,a,bÞrð1%cÞC2b2
mðsÞr2ðEXa,2ðRÞ,a,bÞ:

We verify that these both inequalities hold for the four different cases given by the two degrees of ill-posedness of the
operator and the two different sets of smoothness conditions displayed in Table 1. To this end, we use the minimax rates of
testing established in Baraud (2002) and Laurent et al. (2010).

In the following we write mðsÞCnðsÞ if there exists two constants c1 and c2 such that for all s40, c1rmðsÞ=nðsÞrc2. For
all xZ0, we denote by bxc the greatest integer smaller than x and by dxe the smallest integer greater than x. In each of the four
cases displayed in Table 1, we have to define in the proof below a quantity mðsÞ, which will be greater than 1 for srs0 for
some s040. s0 that depends on the coefficients of the ellipsoids and on the ill-posedness of the inverse problem.

1st case: Assume that ðakÞkZ1 & ðksÞkZ1 for some s40 and that the problem is mildly ill-posed: ðbkÞkZ1 & ðk%tÞkZ1. In this
setting, recall that

r2ðEXa,2ðRÞ,a,bÞCs4s=ð2sþ2tþ1=2Þ and r2ðEYc,2ðRÞ,a,bÞCsð4sþ4tÞ=ð2sþ2tþ1=2Þ:

We define

mðsÞ ¼ ds%2=ð2sþ2tþ1=2Þe:

Then

R2a%2
mðsÞCmðsÞ%2sCs4s=ð2sþ2tþ1=2ÞrcC2r2ðEXa,2ðRÞ,a,bÞ,

where C240 and 0oco1. Moreover

b2
mðsÞr2ðEXa,2ðRÞ,a,bÞCmðsÞ%2tr2ðEXa,2ðRÞ,a,bÞCsð4tþ4sÞ=ð2sþ2tþ1=2ÞCr2ðEYc,2ðRÞ,a,bÞ:

2nd case: Assume that ðakÞkZ1 & ðexpðnksÞÞkZ1 for some n,s40 and that the problem is mildly ill-posed:
ðbkÞkZ1 & ðk%tÞkZ1. In this setting, remark that the sequence ðakb%1

k Þk2N satisfies the inequality ~c1 enks rakb%1
k r ~c2 e2nks

for
all k 2 N%. Hence, using Lemma 3

r2ðEXa,2ðRÞ,a,bÞCs2ðlogðs%2ÞÞð2tþ1=2Þ=s and r2ðEYc,2ðRÞ,a,bÞCs2ðlogðs%2ÞÞ1=2s:

We define

mðsÞ ¼ 1
2n lnðs%2Þ
! "1=s
& ’

:

Then, for s small enough, mðsÞZ1 and

R2a%2
mðsÞCR2s2rR2s2ðlnðs%2ÞÞð2tþ1=2Þ=srcC2r2ðEXa,2ðRÞ,a,bÞ,

where C240 and 0oco1. Moreover

b2
mðsÞr2ðEXa,2ðRÞ,a,bÞCs2ðlns%2Þ1=2sCr2ðEYc,2ðRÞ,a,bÞ:

3rd case: Assume that ðakÞk2N & ðksÞkZ1 for some s40 and that the problem is severely ill-posed: ðbkÞkZ1 & ðe%gkÞkZ1 for
some g40. In this setting, remark that the sequence c¼ ðckÞkZ1 ¼ ðakb%1

k Þk2N satisfies the inequality ~c1 enkrckr ~c2 e2nk for all
k 2 N%. Hence, using Lemma 3

r2ðEXa,2ðRÞ,a,bÞC ðlogðs%2ÞÞ%2s and r2ðEYc,2ðRÞ,a,bÞCs2ðlogðs%2ÞÞ1=2:

We set

mðsÞ ¼ 1
2g logðs%2ðlogs%2Þ%1=2Þþ

1
2g logððlogs%2Þ%2sÞ

# $
:
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Then

R2a!2
mðsÞrCR2mðsÞ!2srCðlogðs!2ÞÞ!2srcC2r2ðEXa,2ðRÞ,a,bÞ,

where C240, 0oco1, and

b2
mðsÞr2ðEXa,2ðRÞ,a,bÞZCe!2gmðsÞðlogs!2Þ!2sZCs2ðlogðs!2ÞÞ1=2Cr2ðEYc,2ðRÞ,a,bÞ:

4th case: Assume that ðakÞkZ1 $ ðexpðnksÞÞkZ1 for some n,s40 and that the problem is severely ill-posed:
ðbkÞkZ1 $ ðe!gkÞkZ1 for some g40. In this setting, remark that the sequence c¼ ðckÞkZ1 ¼ ðakb!1

k Þk2N satisfies the inequality
~c1 egkrckr ~c2 e2gk for all k 2 N%. Hence, using Lemma 3

r2ðEXa,2ðRÞ,a,bÞCe!2n ~Ds

and r2ðEYc,2ðRÞ,a,bÞCs2ðlogðs!2ÞÞ1=2,

where ~D denotes the integer part of the solution of 2nDsþ2gD¼ logðs!2Þ. Then, we set

mðsÞ ¼ 1
2g logðs!2ðlogs!2Þ1=2Þ!

n
g
~D

s
! "

:

Remark that for s small enough, mðsÞZ ~D since so1. Therefore

R2a!2
mðsÞ ¼ R2e!2nmðsÞs rcC2e!2n ~Ds

,

where C240 and 0oco1. Then

b2
mðsÞr2ðEXa,2ðRÞ,a,bÞCe!2gmðsÞ!2n ~Ds

ZCs2ðlogs!2Þ1=2:

This concludes the first part of Theorem 1. In the second part, we have to find a level-a test minimax for H0
IP on EXa,2ðRÞ but

not for H0
DP on EYc,2ðRÞ. For the sake of convenience, we assume that the problem is mildly ill-posed and that bk=k!t. The proof

follows essentially the same lines when ðbkÞkZ1 is an exponentially decreasing sequence. Recall that from Laurent et al. (2010)

r2ðEXa,2ðRÞ,a,bÞ ¼ sup
D2N'
ðr2

D4R2a!2
D Þ with r2

DCs2D2tþ1

and

r2ðEYc,2ðRÞ,a,bÞ ¼ sup
D2N'
ð ~r2

D4R2b2
Da!2

D Þ with ~r2
DCs2

ffiffiffiffi
D
p

:

Hence, we are looking for a function f and a level-a test Fa minimax for H0
IP on EXa,2ðRÞ verifying:

Tf 2 EYc,2ðRÞ,JTf J2ZCa,b sup
D2N'
ð ~r2

D4Rb2
Da!2

D Þ and Pf ðFa ¼ 0Þ4b:

To this end, introduce

D% ¼ inffD : ~r2
DZR2b2

Da!2
D g:

Clearly

JTf J2ZCa,b ~r2
D% ) JTf J2ZCa,b sup

D2N'
ð ~r2

D4R2b2
Da!2

D Þ:

Let f be the function defined as

y2
1 ¼ Ca,bs2

ffiffiffiffiffiffi
D%

p
and yj ¼ 0 8j41: ð19Þ

The function f belongs to the space HD% and Jf J2 ¼ JTf J2ZCa,bs2
ffiffiffiffiffiffi
D%

p
. Moreover, Tf 2 EYc,2ðRÞ since

Xþ1

k ¼ 1

a2
k b!2

k /Tf ,ckS
2 ¼ a2

1y
2
1CCa,bs2

ffiffiffiffiffiffi
D%

p
rQ ,

at least for s small enough. Moreover, from Theorem 2, we deduce that the global test FIP
a,D% defined in (13)–(14) is not

powerful for H0
DP when the alternative is defined by (19).
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