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Abstract

We consider in this paper a goodness-of-fit testing problem in a density frame-
work. In particular, we deal with an error-in-variables model where each new in-
coming observation is gathered with a random independent error. It is well-known
that in such a situation, we are faced with an inverse (deconvolution) problem. Nev-
ertheless, following recent results in the Gaussian white noise model, we prove that
using procedures containing a deconvolution step is not always necessary.

1 Introduction

In this paper, we consider the goodness-of-fit testing problem of an unknown density
f from i.i.d random variables X1, . . . , Xn observed with measurement errors. Actually let
Y = (Y1, . . . , Yn) be a sample of n i.i.d. observations where

Yi = Xi + εi, ∀i ∈ {1 . . . n}. (1)

The εi’s play the role of measurement errors, which are supposed to be centered and
associated to a known density g. In this context, the density of the Yi corresponds to the
convolution product between f and g, denoted by f ∗ g.

Inference on the density f is a deconvolution problem and has been widely studied in
the statistical literature. Estimation issues have received a great amount of attention. We
mention for instance [Fan 1991] for a first study of the optimal rates of convergence related
to deconvolution kernel estimators of f or [Delaigle et al. 2004] for a practical calibration
of such estimators. More generally, we mention [Meister 2009] for an introduction to
nonparametric deconvolution problems or [Engl et al. 1996] and [Cavalier 2008] where
precise descriptions on inverse problems and related statistical issues are provided.
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Our aim in this paper is not to provide an estimator of the density f but rather to
assess optimality of procedures able to decide whether the unknown density f is equal
to f0 where f0 denotes some given density. For instance, the Xi may correspond to the
measures of a quantity of interest (e.g. weight, cholesterol rate,...) of n individuals. The
purpose is then to compare the distribution of this sample to the one of a benchmark
population (e.g. diabetic or healthy people). From a statistical point of view, providing
an answer to this question corresponds to test

HIP
0 : f = f0, against HIP

1 : f 6= f0, f ∈ H,

where H denotes a subset of L2(R). The exponent IP traduces the fact that we deal
with a contaminated sample with density f ∗ g. Hence, inference on f leads to the
inverse problem of testing a density in a deconvolution model. This issue has been widely
tackled in the statistical literature. We refer for instance to [Bissantz et al. 2009] or
[Holzmann et al. 2007] in a slightly different setting. Moreover, the papers [Butucea 2007,
Butucea et al. 2007, Butucea et al. 2009] provide a complete study of this testing problem
in many situations, including minimax rates of testing. However, as for any inverse
problem, such procedures require to invert the convolution operator and are thus based on
a regularization scheme of the observations (see [Engl et al. 1996] or [Bissantz et al. 2007]
for more details). From a practical point of view, such methods are sometimes difficult
to implement since one needs to compute a deconvolution kernel in a density framework
or the singular value decomposition for more general operators. It is thus natural to ask
whether this regularization step is necessary.

Using reasonable assumptions (which will be made precise later on) on the density g,
the convolution operator is injective. Hence, in some sense, the assertions ”f = f0” and
”g∗f = g∗f0” are equivalent. In a goodness-of-fit framework, two different points of view
may be alternatively considered. The statistician may either perform an indirect test

HIP
0 : f = f0, against HIP

1 : f 6= f0, f ∈ H, (2)

or may use a direct approach directly on the data, without a deconvolution step. In that
case he considers the direct test

HDP
0 : g ∗ f = g ∗ f0, against HDP

1 : g ∗ f 6= g ∗ f0, g ∗ f ∈ H′, (3)

for some H′ ⊂ L2(R).
As proved in [Laurent et al. 2011] in a Gaussian white noise setting, a surprising

outcome is that the inversion is not always necessary in a goodness-of-fit purpose. Indeed,
well calibrated direct procedures (i.e. dealing with the observation without regularization
step) can do as well as classical tests based on an inversion of the operator. The aim of this
paper is to extend this discussion to the deconvolution framework and to investigate the
favorable cases. Actually, depending on the difficulty of the inverse problem defined by
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the regularity of the density of the noise g, and on the set of assumptions on the density f
to be detected, we prove that the specific treatment devoted to an inverse problem which
includes an underlying inversion of the operator, may worsen the detection strategy.

This paper is organized as follows. In Section 2, we formalize the testing problem and
present the existing results in the literature. In Section 3 we prove that direct testing
procedures are often minimax for the inverse testing problem and we construct a test
minimax for HIP

0 that will fail on HDP
0 in some particular situation. Most of the proofs

are gathered in Section 5.

2 Two possible settings

Recall that we consider the deconvolution model

Yi = Xi + εi, i = 1, . . . , n (4)

where the Xi’s and εi’s are i.i.d real random variables with respective density functions
(with respect to Lebesgue measure) f and g. Since the Xi’s and εi’s are independent, the
Yi’s are associated to the density f ∗ g where ∗ denotes the convolution operator. Our
aim is to test f = f0 or equivalently f ∗ g = f0 ∗ g where f0 denotes a benchmark density
function.

We consider the following general smoothness assumption on the densities given by
the decay of their Fourier transform. We assume that both f0 and f belong to the space
E(h, L) defined as

E(h, L) =

{
f :

∫
R
|Φf (t)|2|h(t)|2dt < 2πL

}
,

where Φf denotes the Fourier transform of a function f , L a positive constant and h an
increasing function. Remark that in the particular case where h(t) = ts for some s > 0,
E(h, L) corresponds to the Sobolev space

W (s, L) =

{
f ∈ Cs,

∫
|Φf (t)|2|t|2sdt < 2πL

}
,

while, when h(t) = exp(α|t|r) for all t ∈ R, the set E(h, L) is identified as the space of
super-smooth densities functions

S(α, r, L) =

{
f ∈ C∞,

∫
|Φf (t)|2 exp(2α|t|r)dt < 2πL

}
.

The development of testing strategies is strongly associated to the notion of separation
rates corresponding to the minimax point of view developed in the series of papers due
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to [Ingster 1993]. Given the hypothesis H0, let ρn be a decreasing sequence, and H1 an
alternative of the form

H1 : f 6= f0, f ∈ H(h, L, ρn),

where
H(h, L, ρn) = {ν ∈ E(h, L), ‖ν − f0‖ > ρn} ,

and ‖.‖ denotes the L2-norm. For a testing procedure ∆n, we write by convention ∆n = 0
if we accept H0 and ∆n = 1 if we reject the assumption. For a given 0 < ξ < 1, a testing
procedure ∆?

n is said to attain the testing rate ρn over E(h, L) if there exists C? = C?(ξ)
such that

lim sup
n→+∞

[
Pf0(∆

?
n = 1) + sup

f∈H(h,L,Cρn)

Pf (∆
?
n = 0)

]
≤ ξ, (5)

for all C > C?. In other words, the procedure ∆n is able to detect that f 6= f0 with
prescribed asymptotic errors as soon as ‖f − f0‖ > Cρn. The rate ρn is then said to be
the minimax rate of testing on E(h, L) if there exists C? = C?(ξ) > 0 such that

lim inf
n→+∞

inf
∆n

[
Pf0(∆n = 1) + sup

H(h,L,Cρn)

Pf (∆n = 0)

]
≥ ξ,

for all 0 < C < C?. The infimum in the previous formula is taken over all testing
procedures ∆n. The quality of the testing procedure then relies on the quantity ρn, and
of course, for a given level and power of test, the smaller the ρn, the better.

In the noise-free case (i.e. εi = 0 for all i = 1 . . . n), minimax rates of testing are
described for instance in [Ingster 1993]. Similar results in the Gaussian sequence space
model are obtained in [Baraud 2002 ] or [Baraud et al. 2003 ] where adaptation with re-
spect to the smoothness is discussed. In the inverse problem framework, two different
cases are commonly discussed, which are associated to the rate of decay of the Fourier
transform of g. One may alternatively assume that

0 < |Φg(t)| = O(|t|−β), as t→ +∞,

which yields a mildly ill-posed inverse problem or that

0 < |Φg(t)| = O
(
exp(−γ|t|β)

)
, as t→ +∞,

which corresponds to a severely ill-posed inverse problem. Note that imposing that the
Fourier transform of the noise vanishes nowhere induces that the convolution operator
is injective. This warrants the identifiability of the statistical model. In the specific
error-in-variables model (4), which is at the heart of the present paper, the most
complete reference is up to our knowledge [Butucea 2007]. For the sake of convenience,
we reproduce the obtained result in Table 1. We mention that similar rates are available
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f/g |Φg(u)| ∼ |u|−β |Φg(u)| ∼ exp−γ|u|
β

W (s, L) n−
2s

4s+4β+1 (log n)−s/β

S(α, r, L) log(n)(β+1/4)/rn−1/2 exp(−α/vr∗) (r < β)

n−1/2v
(β−1)−
∗ exp(−γ/hβ∗ ) (r > β)

Table 1: Minimax rate of testing in the error-in-variables model (4). The term v∗ denotes
the solution of 2αv−r∗ + 2γv−β∗ = log(n)− log log(n).

in a Gaussian white noise model: see [Laurent et al. 2012] or [Ingster et al. 2012].

Here, goodness-of-fit tests in a deconvolution model can be built using the two different
settings which amount to test either ”f = f0”, which will be referred to as the inverse
problem setting, or ”g ∗ f = g ∗ f0” which will be named the direct problem setting. This
problematic has been discussed for the first time in [Holzmann et al. 2007]. Namely, a
direct procedure will correspond to a test based on the blurred observations and designed
for the detection of differences between f ∗g and f0 ∗g while an inverse problem procedure
deals with a test based on an estimator of f . More precisely for h and h̃ two functions
that will control the respective regularities of f and f ∗ g, we define the following set of
hypotheses

HDP
0 : g ∗ f = g ∗ f0, against HDP

1 : g ∗ f 6= g ∗ f0, g ∗ f ∈ H1(h̃, L, ρDPn ), (6)

while the second one can be considered as an inverse problem, where we test

HIP
0 : f = f0, against HIP

1 : f 6= f0, f ∈ H1(h, L, ρIPn ). (7)

In this paper, we prove that although the convolution operator is one-to-one, the two
testing problems are not equivalent. In particular, we will see that a testing procedure
minimax for (6) is also minimax for the problem (7) with a particular choice for h̃. We
also investigate cases where the converse is not true: we will exhibit optimal deconvolution
testing procedures that are not minimax in the direct case.

3 Comparison of the inverse and direct approaches

The aim of this section is to compare the testing problems (6) and (7). Our aim is to
describe the cases where direct procedures may be minimax for (7) and inverse tests are
minimax for (6).

Throughout this section, we will consider a noise having a non null Fourier transform,
i.e.

Φg(t) 6= 0, ∀t ∈ R.
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This assumption is quite common in the statistical literature, in particular when consider-
ing nonparametric deconvolution problems. Actually it allows for instance the construc-
tion of a deconvolution kernel, which gives rise to a natural estimator by simply removing
the part of the signal due to the noise by a mere division.

More specifically, we deal with the following hypothesis.

Assumption A1: There exists a positive constant Cl such that for all t ∈ R

|Φg(t)| ≥ Cl|t|−β,

for mildly ill-posed problems or

|Φg(t)| ≥ Cl exp(−γ|t|β),

for severly ill-posed inverse problems.

3.1 Performances of direct methods

In this part, we prove that for a well-chosen ’regularity’ h̃, (direct) testing procedures
that are minimax for (6) are also minimax for (7).

In order to provide a satisfying comparison of the problems (6) and (7), one needs first
to have a precise idea of the regularity of f ∗ g provided f ∈ E(v, L) for some h. Since
Φf∗g = Φf .Φg,

f ∈ E(h, L)⇔
∫
|Φf∗g(t)|2|Φg(t)|−2|h(t)|2dt < L⇔ f ∗ g ∈ E(Φ−1

g h, L).

In particular, if |h(t)| = |t|s, i.e. E(h, L) = W (s, L), we get that

f ∈ W (s, L)⇔ f ∗ g ∈ W (s+ β, L′)

for some L′ provided |Φg(t)| = O(|t|−β) and |Φg(t)| 6= 0 for all t ∈ R.

Since the assertions g∗f = g∗f0 and f = f0 are equivalent provided Assumption A1 is
satisfied, it seems clear that both hypotheses HDP

0 and HIP
0 are equivalent. Consequently,

the first kind errors are the same for a given test ∆n whatever the chosen null hypothesis.
The alternatives are therefore at the heart of the comparison between the two testing
problems.
The following theorem establishes that in the cases considered in this paper, a direct test
performs as well as specific procedures tailored to handle the particular deconvolution
issue.
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Theorem 3.1 Let ξ ∈]0, 1[ be a fixed level of test. We assume that h is polynomially
(Sobolev) or exponentially increasing (supersmooth). The related inverse problem is mildly
or severely ill-posed and we assume that Assumption A1 is satisfied. Then every test
minimax for HDP

0 on E(|Φg(.)|−1h, L) is also minimax for HIP
0 on E(h, L).

The proof of this theorem relies on the following lemma which gives a control on ‖ν∗g‖
from ‖ν‖ provided the function of interest ν belongs to E(h, L) for some h and L.

Lemma 3.2 Let γn be a positive sequence such that γn → 0 as n→ +∞. The following
embedding holds:{

ν ∈ E(h, L), ‖ν‖2 ≥ γn
}
⊂
{
ν ∈ E(h, L), ‖ν ∗ g‖2 ≥ µn

}
,

where

µn =
1

2
|Φg(τn)|2γn,

and τn is such that L|h(τn)|−2 ≤ γn/2.

Proof Let t ∈ R+ which will be chosen later and ν ∈ E(h, L) such that ‖ν‖2 ≥ γn.
For the sake of convenience, we will also suppose that the function t 7→ |Φg(t)| is non
increasing. Then

‖ν ∗ g‖2 =

∫
|Φν(u)|2|Φg(u)|2du

≥
∫
|u|≤t
|Φν(u)|2|Φg(u)|2du,

≥ |Φg(t)|2
∫
|u|≤t
|Φν(u)|2du,

≥ |Φg(t)|2
(
‖ν‖2 −

∫
|u|>t
|Φν(u)|2du

)
.

Note that the assumption about the decay of Φg could be relaxed, up to some more
complicated algebra in the proofs, replacing |Φg(t)|2 by inf |u|≤t |Φν(u)|2 in the following.
Since ν ∈ E(h, L)∫

|u|>t
|Φν(u)|2du ≤ |h(t)|−2

∫
|u|>t
|h(u)|2|Φν(u)|2du ≤ L|h(t)|−2.

Hence
‖ν ∗ g‖2 ≥ |Φg(t)|2

(
γn − L|h(t)|−2

)
.

We conclude the proof choosing t = τn such that L|h(τn)|−2 ≤ γn/2.
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Applying Lemma 3.2, we get that for all testing procedures ∆n,

sup
f∈E(h,L), ‖f−f0‖2≥γn

Pf (∆n = 0) ≤ sup
f∈E(h,L), ‖(f−f0)∗g‖2≥µn

Pf (∆n = 0).

Consequently, provided γn is of order (ρIPn )2 and µn is of order (ρDPn )2, a test minimax for
HDP

0 will be also minimax for HIP
0 . The whole proof of Theorem 3.1 is postponed to the

Appendix.
The consequence of the previous result is that classical testing procedures designed for

the direct problem (6) can be directly used on our noisy observations without performing
any regularization step. No need for a special treatment is required since direct testing
procedures are proved to be minimax. Hence, the following direct testing procedure
allows, following the results presented in Theorem 3.1, to tackle the testing issue of a
wide variety of inverse problems.

Let K denote a kernel i.e. a function K : R→ R such that∫
R
K(x)dx = 1 and

∫
R
K2(x)dx <∞.

Define the test statistics as

T̃n,λ =
1

n(n− 1)

∑
k 6=j

〈Kλ(.− Yk)− f0, Kλ(.− Yj)− f0〉, (8)

whereKλ := λ−1Kg(./λ) for some bandwidth λ. Remark that the term T̃n,λ is an estimator
of ‖(f − f0) ∗ g‖2. Then, we set

∆̃n,λ = 1{|T̃n,λ|>C̃u2n}, (9)

where C̃ denotes a sufficiently large constant and (un)n∈N a positive real sequence. This
decision rule means that we reject HDP

0 if the estimator of ‖(f − f0) ∗ g‖2 takes large
values. Otherwise, if T̃n,λ is small w.r.t. the sequence (un)n∈N, we accept HDP

0 . This kind
of estimator has been widely studied in the literature and appropriate values for λ and
un have been proposed in several different setting. In particular, it has been proved (we
refer to [Ingster 1993] or [Butucea 2007] among others) that the test ∆̃n,λ is minimax for
HDP

0 on both Sobolev and super-smooth function classes.

3.2 Limitation of inverse approaches

In this section, we prove that the direct and inverse testing problems for goodness-
of-fit in a deconvolution model are not equivalent in the sense that a testing procedure
optimal for the inverse problem (7) may fail when dealing with the direct observation
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model (6). This property is essentially due to the fact that a testing procedure designed
for an inverse problem (i.e. containing a regularization step) is calibrated in order to take
into account a possible large variance for the errors. But the drawback is that such a
procedure may be too conservative or unable to detect alternatives with small intensity.

The key of the proof is to exhibit a testing procedure minimax in the inverse setting
(7) that may fail in certain situations for the direct testing issue. We deal in this
paper with a procedure proposed by [Butucea 2007] in the error-in-variable model. In a
first time, we need to construct a preliminary estimator of f using a kernel type estimator.

First, consider K a kernel. The associated deconvolution kernel Kg is defined as

ΦKg =
ΦK(t)

Φg(t/λ)
, (10)

for some bandwidth λ. We refer to [Meister 2009] for more details on the construction of
such quantities and discussion on the Assumption A1. The testing procedure is then
based on an estimation of ‖f − f0‖2. A candidate is given by

T ?n =
1

n(n− 1)

∑
k 6=j

〈Kg,λ(.− Yk)− f0, Kg,λ(.− Yj)− f0〉,

where Kg,λ := λ−1Kg(./λ). Then, we set

∆?
n = 1{|T ?n |>C?t2n}, (11)

where C? and tn are positive parameters that should be properly chosen. For an appro-
priate choice of tn and hn (see e.g. [Butucea 2007]) this test is known to be minimax for
HIP

0 on the different smoothness classes considered in this paper. In particular,

lim
n→+∞

[
Pf0(∆

?
n = 1) + sup

f∈H(h,L,Cρn)

Pf (∆
?
n = 0)

]
≤ ξ.

Nevertheless, we prove that this procedure fails in the direct case, i.e. that there exists
f1,n ∈ E(Φg(.)

−1h, L) such that

‖(f1,n − f0) ∗ g‖ ≥ C1ρn(E(Φg(.)
−1h, L)) but lim

n→+∞

[
Pf0(∆

?
n = 1) + Pf1,n(∆?

n = 0)
]
> ξ,

whatever the value of C1.

Theorem 3.3 Let 0 < ξ < 1 be a test level and a function h to be fixed. Assume that
Assumption A1 holds. For both mildly and severely ill-posed problems, there exist level-
α tests minimax for HIP

0 on E(h, L) but not for HDP
0 on E(h.Φ−1

g , L′).

Clearly, both testing problems (6) and (7) are not equivalent. In some sense, direct
methods are more robust with respect to measurement errors. Inverse methods are too
conservative in the direct case since they are designed for high variance testing problems.
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f ∗ g ∈ W (s′, L) n−
2s′

4s′+1

f ∗ g ∈ S(α′, r, L) log(n)1/4rn−1/2

Table 2: Minimax rate of testing for the problem (6).

3.3 Conclusion

The main contribution of this paper is that the regularization is not necessary in the
minimax sense when considering goodness-of-fit testing problems. This allows to propose
direct procedures that are not based on a deconvolution scheme, i.e. that require the
inversion of the underlying operator.

This point of view may allow to consider specific problems for which this deconvolution
might be difficult or even impossible. In this sense, the case of uniform measurement
errors is of first interest. Indeed, in this specific case, Φg(t) = 0 for some t ∈ R which
does not allow the construction of (10). Nevertheless, Lemma 3.2 can not be directly
generalized in this situation or at least up to some additional constraint on the signal of
interest (for instance source conditions, see [Engl et al. 1996] or [Loubes et al. 2009] for
instance). Yet a lower bound would be necessary for the testing problem in such a case,
which still remains an open problem.

4 Proof of the main results

In this section, the quantities C and c will denote generic constants that may vary
from line to line, and even in the same line. Given two real sequences (an)n∈N and (bn)n∈N,
we write an ∼ bn if there exists c, C positive constants such that c ≤ an/bn ≤ C for all
n ∈ N.

4.1 Proof of Theorem 3.1

For the sake of convenience, we recall in Table 2 the different testing rates in the direct
case, according to the regularity of the considered densities.

Let ξ ∈]0, 1[ be fixed and ∆n a testing procedure minimax for HDP
0 on E(|Φ−1

g |h, L).
Then, according to (5)

lim
n→+∞

[
Pf0(∆n = 1) + sup

f∗g∈H(|Φg |−1h,L,CρDPn )

Pf (∆n = 0)

]
≤ ξ,
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for some positive constant C. The proof is then based on the following scheme. We first
remark that f ∈ E(h, L)⇒ g ∗ f ∈ E(|Φg|−1h, L′) for some L′. Hence, using Lemma 3.2,
we get{
f ∈ E(h, L), ‖f − f0‖2 ≥ C2(ρIPn )2

}
⊂
{
g ∗ f ∈ E(|Φg|−1h, L′), ‖(f − f0) ∗ g‖2 ≥ C2(|Φg(τn)|ρIPn )2

}
.

Consequently, the test ∆n will be minimax as soon as

|Φg(τn)|ρIPn > CρDPn , where L|h(τn)|−2 ≤ 1/2(ρIPn )2, (12)

and C denotes a positive constant independent of n. We consider 4 different cases ac-
cording to the possible regularities of the unknown density f0 (Sobolev or super-smooth)
and the degree of ill-posedness of the problem (mildly or severely ill-posed ). For each
considered case, we prove that the bound (12) holds. For the sake of convenience, the
minimax rates of convergence in the direct and inverse setting are written respectively
ρDPn and ρIPn . If we do not write explicitly the dependency with respect to the functional
spaces, it will yet be recalled for each different setting.

1st case: The problem is mildly ill-posed i.e. |Φg(t)| = O(|t|−β) for some β > 0 and
f ∈ W (s, L) for some s > 0, i.e. |h(t)| = ts. In this case, f ∗ g ∈ E(h̃, L) ⊂ W (s + β, L′)
for some L′. The term τn is chosen as

L|τn|−2s = 1/2γn ⇔ τn ∼ [ρIPn ]−1/s ∼ n
2

4s+4β+1 .

Then
|Φg(τn)|2(ρIPn )2 ∼ τ−2β

n n−
4s

4s+4β+1 ∼ n−
4s+4β

4s+4β+1 ∼ (ρDPn )2.

2nd case: The problem is mildly ill-posed and f ∈ S(α, r, L). In this setting, remark
that the function f ∗ g ∈ S(α, r, L′) for some L′. Then, according to the rates obtained
in [Butucea 2007],

(ρIPn )2 ∼ log(n)(2β+1/2)/r

n
, and (ρDPn )2 ∼ log(n)1/2r

n
.

We choose τn as

τn =

⌈(
1

2α
ln(n)

)1/r
⌉
,

where for any x ∈ R, dxe denotes the smaller integer greater than x. Then for n large
enough,

L2|h(τn)|−2 ≤ L2n−1 ≤ L2n−1 log(n)(2β+1/2)/r ≤ C(ρIPn )2,
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for some C > 0. Moreover

|Φg(τn)|2(ρIPn )2 ∼ log(n)1/2r 1

n
∼ (ρDPn )2.

3rd case: We assume that f ∈ W (s, L) for some s > 0 and that the problem is severely
ill-posed: |Φg(t)| = O(e−γ|t|

β
) as t → +∞, for some γ > 0. In this setting, remark that

ceγ|t|
β ≤ c(t) := h(t)Φ−1

g (t) ≤ Ce2γ|t|β for all t. Hence, using the results of [Butucea 2007],
we get

ρIPn ∼ (log(n))−s/β and ρDPn ∼ 1√
n

(log(n))1/4β .

We set

τn =

⌊
1

2γ
log
(
n(log n)−1/2β

)
+

1

2γ
log((log n)−2s/β)

⌋1/β

,

where for any x ∈ R, bxc denotes the greater integer smaller than x. Then

L|h(τn)|−2 ≤ CL|τn|−2s ≤ C (log(n))−2s/β ≤ C(ρIPn )2,

where C2 > 0, 0 < c < 1, and

|Φg(τn)|2(ρIPn )2 ≥ Ce−2γ|τn|β(log n)−2s/β ≥ C
1

n
(log(n))1/2β ' (ρDPn )2.

4th case: Assume that f ∈ S(α, r, L) for some α, r > 0 and that the problem is severely
ill-posed. Consider in a first time the case where β > r. In this setting, remark that
c̃1e

γ|t|β ≤ |h(t)||Φg(t)|−1 ≤ c̃2e
2γ|t|β for all t ∈ R. Hence, from [Butucea 2007], we get

(ρIPn )2 ' e−4α/t̃? and (ρDPn )2 ' 1

n
(log(n))1/2β ,

where t? denotes the integer part of the solution of 2α(t?)r + 2γ(t?)β = log(n). Then, we
set

τn =

⌊
1

2γ
log
(
n(log n)1/2β

)
− α

γ
(t?)r

⌋
.

Remark that for σ small enough, τn ≥ t? since r < β. Therefore

|h(τn)|−2 = R2e−2ατrn ≤ cC2e
−2α(t?)r ,

where C2 > 0 and 0 < c < 1. Then

|Φg(τn)|2(ρIPn )2 ≥ Ce−2γτβn−2αts? ≥ C
1

n
(log n)1/2‘β ∼ (ρDPn )2.

The proof of the case r < β follows essentially the same lines.

�
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4.2 Proof of Theorem 3.3

As explained in Section 3.2 , we deal with the deconvolution testing procedure ∆?
n intro-

duced in (11). We prove that this procedure fails in the direct case, i.e. that there exists
f1 ∈ E(Φg(.)

−1h, L) such that

‖(f1 − f0) ∗ g‖ ≥ C1ρn(E(Φg(.)
−1h, L)) but lim

n→+∞
[Pf0(∆

?
n = 1) + Pf1(∆

?
n = 0)] > ξ,

whatever the value of C1.

4.2.1 Construction of a particular f1 = f1,n

To this end, we consider the function f1,n defined as

f1,n = f0 + rnω, (13)

where

f0(x) ≥ C

1 + x2
, ω(x) = cos(σx).

1− cos(x)

πx2
,

C, σ are positive constants such that f1,n(x) ≥ 0 for all x ∈ R and rn is a parameter which
is allowed to depend on n. The term rnω corresponds to a perturbation of the density f0.
It is possible to see that

Φω(t) = (1− |t− σ|)+, ∀t ∈ R.

In particular, remark that supp (Φω) ⊂ [1− σ; 1 + σ] ⊂ [−2; 2] for 0 < σ < 1. Hence, the
perturbation rnω only concerns low frequencies. We can also verify that

Φf1,n(0) = Φf0(0) + rnΦω(0) = 1,

which ensures that f1,n is a density w.r.t. the Lebesgue measure. Moreover,

‖g ∗ (f1,n − f0)‖2 = r2
n

∫ 2

−2

|Φω(t)|2|Φg(t)|2 ≥ Cr2
n inf
t∈[−2;2]

|Φg(t)|2. (14)

As in the proof of Theorem 3.1, we consider 4 different cases according to possible reg-
ularity of the function f and the degree of ill-posedness of the problem. In each case,
choosing rn = C1ρ

DP
n , we get

‖g ∗ (f1,n − f0)‖ > CρDPn but ‖f − f0‖ = r2
n‖ω‖2 ≤ CρDPn << ρIPn , as n→ +∞,

for some positive constant C > 0. The inequality in the right hand side of the previous
equation is often incompatible with the optimality of ∆?

n = 1{|T ?n |2≥C?t2n}.

13



4.2.2 Lower bounds for the second kind error

In the following, we prove that for all fixed ξ, with a good choice of C?, we have

‖g ∗ (f1,n − f0)‖ > C1ρ
DP
n but lim

n→+∞

[
Pf0(∆

?
n = 1) + Pf1,n(∆?

n = 0)
]
> ξ,

whatever the value of C1.

1st case: In a first time, we assume that the density of the noise is polynomially smooth,
i.e. |Φg(t)| = O(|t|−β) as t→ +∞ for some β > 0. Provided

tn = n−
2s

4s+4β+1 and h = n−
2

4s+4β+1 ,

the test ∆?
n is minimax for HIP

0 on W (s, L) for C? large enough. Nevertheless, we prove
that this test is not minimax for HDP

0 on W (s + β, L′). To this end, we consider the
function f1,n defined in (13) with

rn = C1n
− 2s+2β

4s+4β+1 ,

for some positive constant C1. With such a construction, we have

‖g ∗ f1,n − g ∗ f0‖2 > C1cgn
− 4s+4β

4s+4β+1 , and lim
n→+∞

inf Pf1,n (∆?
n = 0) > ξ, (15)

for some constant cg depending on the density g. The left hand side of (15) is a direct
consequence of (14). We only have to prove the right hand side. First, introduce

Vf1,n(T ?n) = Var(T ?n), and Bf (T
?
n) = |Ef1,n [T ?n ]− ‖f1,n − f0‖2|.

The, using simple algebra, we get

Pf1,n (∆?
n = 1) = Pf1,n

(
|T ?n | > C?t2n

)
,

≤ Pf1,n
(
|T ?n − Ef1,n(T ?n)|+ ‖f1,n − f0‖2 +B(T ?n) > C?t2n

)
,

≤ Pf1,n
(
|T ?n − Ef1,n(T ?n)| > C?t2n − ‖f1,n − f0‖2 −B(T ?n)

)
,

≤ Pf1,n

(
|T ?n − Ef1,n(T ?n)|√

Vf (T ?n)
>
C?t2n − ‖f1,n − f0‖2 −B(T ?n)√

Vf1,n(T ?n)

)
,

≤

[ √
Vf1,n(T ?n)

C?t2n − ‖f1,n − f0‖2 −B(T ?n)

]2

.

In [Butucea 2007], it is proved that Bf1,n(T ?n) ≤ Lh2s
n (1 + o(1)) as n→ +∞. Hence

C?t2n − ‖f − f0‖2 −B(T ?n) ≥ (C? − L)t2n(1 + o(1)), as n→ +∞.

14



Since
√
Vf (T ?n) ≤ O(t2n) as n→ +∞, we obtain that

Pf1,n (∆?
n = 1) ≤

[
C

(C? − L)(1 + o(1))

]2

, as n→ +∞.

Provided C? = C?
ξ is large enough, we obtain that

lim
n→+∞

supPf1,n (∆?
n = 1) ≤ 1− ξ ⇒ lim

n→+∞
inf Pf1,n (∆?

n = 0) ≥ ξ.

This result holds whatever the value of C1 in the construction of rn. Hence Equation (15)
is proved which entails that the test ∆?

n is not minimax for HDP
0 on W (s+ t, L′).

2nd case: The function f belongs to S(α, r, L) and the noise is polynomially smooth. In
this case, following [Butucea 2007], the test ∆?

n is minimax provided tn and hn are chosen
as follows

tn =
1√
n

(
log(n)

2α

)(β+1/4)/r

and h =

(
log(n)

2α
− 2β + 1/2

2αrn
log log n

)−1/r

,

for C? large enough. Once again, we consider the function f1,n defined in (13) with

rn =
C1√
n

(
log(n)

2α

)1/4r

≥ CρDPn ,

for some fixed constant C. This entails

‖g ∗ (f1,n − f0)‖2 > cg
C1

n

(
log(n)

2α

)1/2r

, and ‖f1,n − f0‖2 = C1r
2
n =

1

n

(
log(n)

2α

)1/2r

.

We prove that the test ∆?
n is not minimax in this situation. Using a similar algebra

compared to the first case, we obtain

Pf1,n (∆?
n = 1) ≤

[ √
Vf1,n(T ?n)

C?t2n − ‖f1,n − f0‖2 −B(T ?n)

]2

.

Using the upper bound obtained in [Butucea 2007], we get

Vf1,n(T ?n) ≤ C1‖f1,n − f0‖2
2

(
log

2α

‖f − f0‖2
2

)2β/r

.

Hence

Pf1,n (∆?
n = 1) ≤

[
‖f1,n − f0‖2

2

C?t2n(1 + o(1))

(
log

2α

‖f1,n − f0‖2
2

)2β/r
]2

,

=
C1

C?

1

log(n)2β/r

(
log(nC2

1)
)2β/r ≤ C1

C?
.
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which yields
lim

n→+∞
Pf1,n(∆n = 1) ≤ 1− ξ,

whatever the value of C1, provided C? is large enough.

3rd case: The noise is exponentially smooth and the function f belongs to W (s, L). In
this case, the test ∆?

n is known to be minimax provided

tn =
√
L

(
log(n)

2γ

)−s/β
, and hn =

(
log(n)

2γ
− 2s+ 1

2γβ
log

log n

2γ

)−1/β

.

We consider the function f1,n defined in (13) with

rn =
1√
n

(
log(n)

γ

)1/4β

.

This entails

‖g ∗ f1,n − g ∗ f0‖2 >
1

n

(
log(n)

γ

)1/2β

, and ‖f1,n − f0‖2 = C1rn =
1

n

(
log(n)

γ

)1/2β

.

Then

Pf1,n (∆?
n = 1) ≤

[ √
Vf (T ?n)

C?t2n − ‖f − f0‖2 −B(T ?n)

]2

,

≤

[
h

2s+β/2
n

(C? − 1)t2n(1 + o(1))

]2

,

≤ C log(n)−2s/β−1/2

C? log(n)−2s/β
≤ C

C? log1/2(n)
.

Once again, the limit of the above term is bounded from above by 1−ξ for a large enough
C?.

4th case: The noise is exponentially smooth and the function f belongs to S(α, r, L).
For the sake of brevity, we only consider the case where r < β. In this case, the test ∆?

n

is known to be minimax provided

tn = hn = exp

(
− α
hr?

)
.

16



Remark that f1,n ∗ g ∈ S(γ, β, L′). Moreover, choosing

τn =
log(n)1/4β

√
n

,

we get

‖f1,n − f0‖2 = τ 2
n =

1

n
log(n)1/2β ≥ C(ρDPn )2,

for some positive constant C. Then recalling that

α

hr?
+

γ

hβ?
=

1

2

[
log(n)− (log log n)2

]
,

we get that

tn = exp

(
− α
hr?

)
= exp

(
−1

2
log(n) +

(log log n)2

2
+

γ

hr?

)
≥ C√

n
exp

(
log log n)2

)
.

Moreover, we get from [Butucea 2007] that

Vf (T
?
n) ≤ hβ−1

?

n
exp

(
2γ

hβ?
− 2α

hr?

)
+
hβ−1
?

n2
exp

(
4γ

hs?

)
.

Hence √
Vf (T ?n)

C?t2n
=

h
(β−1)/2
? /

√
n exp

(
γ/hβ? − α/hr?

)
exp (−2α/hr?)

,

=
h

(β−1)/2
?√
n

exp

(
α

hr?
+

γ

hβ?

)
,

=
h

(β−1)/2
?√
n

exp
(
log(
√
n)− (log log n)2

)
,

=
h

(β−1)/2
?

n
exp

(
−(log log n)2

)
.

We can conclude the proof remarking that hβ? is of order (log(n))−1 provided β > r.
Hence, the previous term tends to 0 as n→ +∞.

�
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no. 2, 352–372.

[Butucea et al. 2007] Butucea, C. and Tsybakov, A. B. (2007) Sharp optimality in density
deconvolution with dominating bias. I. Teor. Veroyatn. Primen. 52 , no. 1, 111–128;
translation in Theory Probab. Appl. 52 (2008), no. 1, 24–39

[Cavalier 2008] Cavalier, L. (2008) Nonparametric statistical inverse problems, Inverse
Problems, 24(3), 1-19.

[Delaigle et al. 2004] Delaigle, A. and Gijbels, I. (2004) Bootstrap bandwidth selection in
kernel density estimation from a contaminated sample. Ann. Inst. Statist. 56, 19-47.

[Engl et al. 1996] Engl, H.W., Hanke, M. and Neubauer, A. (1996) Regularization of In-
verse Problems. Kluwer Academic Publishers Group, Dordrecht.

[Fan 1991] Fan, J., (1991) On the optimal rates of convergence for nonparametric decon-
volution problems. Annals of Statistics, 19, 1257-1272.

[Holzmann et al. 2007] Holzmann, H., Bissantz, N. and Munk, A. (2007) Density testing
in a contaminated sample. Journal of Multivariate Analysis, 98, 55-75.

[Ingster 1993] Ingster, Yu. I. (1993) Asymptotically minimax hypothesis testing for non-
parametric alternatives I-II-III. Math. Methods Statist., 2, 85-114, 171-189, 249-268.

18



[Ingster et al. 2012] Ingster, Yu.I., Sapatinas, T. and Suslina, I.A. (2012) Minimax signal
detection in ill-posed inverse problems. Annals of Statistics, 40, 1524-1549.

[Laurent et al. 2012] Laurent, B., Loubes, J-M. and Marteau, C. (2012) Non asymptotic
minimax rates of testing in signal detection with heterogeneous variances. Electronic
Journal of Statistics.Volume 6, pp 91-122.

[Laurent et al. 2011] Laurent, B., Loubes, J-M. and Marteau, C. (2011) Testing inverse
problems: a direct or an indirect problem? Journal of Statistical Planning and Infer-
ence, 141 , pp. 1849-1861.

[Loubes et al. 2009] Loubes, J-M. and Rivoirard, V. (2009) Review of rates of convergence
and regularity conditions for inverse problems. Int. J. Tomogr. Stat., (11) S09, 61–82.

[Meister 2009] Meister, A. (2009) Deconvolution in nonparametric statistics. Lecture notes
in statistics, Springer.

19


	Introduction
	Two possible settings
	Comparison of the inverse and direct approaches
	Performances of direct methods
	Limitation of inverse approaches
	Conclusion

	Proof of the main results
	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Construction of a particular f1=f1,n
	Lower bounds for the second kind error



