Minimizers of the Landau-de Gennes energy around a spherical colloid particle

Lia Bronsard

McMaster University

Results obtained with: S. Alama, X. Lamy

Nematic Liquid Crystals

- Fluid of rod-like particles, partially ordered: translation but rotational symmetry is broken.
- Nematic phase: $\nu\eta\mu\alpha$, thread/fil, particles prefer to order parallel to their neighbors
- Director n(x), |n(x)| = 1 indicates local axis of preference: gives on average the direction of alignment.

Oseen-Frank energy

- A variational model for equilibrium configurations of liquid crystals.
- Equilibria $n: \Omega \subset \mathbb{R}^3 \to \mathbb{S}^2$ minimize elastic energy,

$$E(n) = \int_{\Omega} e(n, \nabla n) dx$$

$$e(n, \nabla n) = K_1(\nabla \cdot n)^2 + K_2[n \cdot (\nabla \times n)]^2 + K_3[n \times (\nabla \times n)]^2$$

• Simple case: one-constant approximation $K_1 = K_2 = K_3 = 1$,

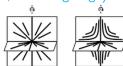
$$E(n) = \frac{1}{2} \int_{\Omega} |\nabla n|^2 dx$$
, the \mathbb{S}^2 harmonic map energy.

• n is not oriented, $-n \sim n$ gives same physical state.

$$\implies n: \Omega \to \mathbb{R}P^2$$

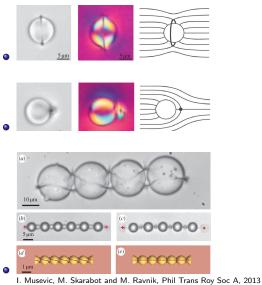
Harmonic Maps to \mathbb{S}^2 (or $\mathbb{R}P^2$)

- Real-valued minimizers $f: \Omega \to \mathbb{R}$ of the Dirichlet energy $E(f) = \frac{1}{2} \int_{\Omega} |\nabla f|^2 dx$ are harmonic functions, $\Delta f = 0$.
 - Linear elliptic PDE; solutions are smooth, bounded singularities removable.
- When u: Ω → M, M a smooth manifold, minimizers solve a nonlinear elliptic system of PDE.
- For $M = \mathbb{S}^k$ or $\mathbb{R}P^k$, $-\Delta n = |\nabla n|^2 n$
- Regularity theory for \mathbb{S}^2 or $\mathbb{R}P^2$ -valued harmonic maps:
 - ► Schoen-Uhlenbeck (1982): S²-valued minimizers are Hölder continuous except for a discrete set of points.
 - ▶ Brezis-Coron-Lieb (1986): singularities have degree ± 1 , $n \simeq \frac{Rx}{|x|}$, R orthogonal. ("hedgehog", "antihedgehog")



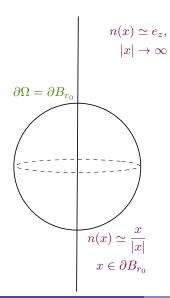
▶ Hardt-Kinderlehrer-Lin (1986): for Oseen-Frank, min are real analytic except for a closed set Z, $\mathcal{H}^1(Z) = 0$.

Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors, ...



The spherical colloid

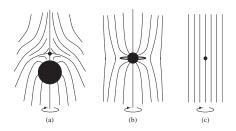
Consider a nematic in \mathbb{R}^3 surrounding a spherical particle $B_{r_0}(0)$.



- $\Omega = \mathbb{R}^3 \setminus B_{r_0}(0)$, exterior domain.
- As $|x| \to \infty$, tend to vertical director, $n(x) \to \pm e_z$
- On ∂B_{r_0} , homeotropic (normal) anchoring:
 - Strong (Dirichlet) with $n = e_r = \frac{x}{|x|}$,
 - ▶ Weak anchoring, via surface energy, $\frac{W}{2} \int_{\partial B_{r_0}} |n e_r|^2 dS$

Size matters

Physicists observe that the character of the minimizers should depend on particle radius r_0 and anchoring strength W.



Kleman & Lavrentovich, Phil. Mag. 2006.

- (a) For large r_0 , a "dipolar" configuration, with a detached (antihedghog) defect;
- (b) For small r_0 with large W, a "quadripolar" minimizer, with no point singularity but a "Saturn ring" disclination;
- (c) For small r_0 and low W, no singular structure at all.

Problems with Oseen-Frank

- "Saturn ring":
 - Solution should have a 1-D singular set.
 - Harmonic map or Oseen-Frank minimizers have only isolated point defects.
- Dipolar, with detached point defect:
 - ▶ This may be observed in a harmonic map model.
 - But harmonic map/Oseen-Frank has no fixed length scale; cannot distinguish different radii.
- New approach: embed the harmonic map problem in a larger family of variational problems with a natural length scale. The harmonic maps may be recovered in an appropriate limit.

Landau-de Gennes Model

A relaxation of the harmonic map energy.

- Introduce space of Q-tensors: $Q(x) \in Q_3$, symmetric, traceless 3×3 matrix-valued maps. Q(x) models second moment of the orientational distribution of the rod-like molecules near x.
- Eigenvectors of Q(x) = principal axes of the nematic alignment.
- Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines a director $n \in \mathbb{S}^2$,

$$Q_n = s(n \otimes n - \frac{1}{3} \mathrm{Id}).$$

- $Q_n = Q_{-n}$; these represent $\mathbb{R}P^2$ -valued maps.
- Biaxial Q-tensor: all eigenvalues are distinct. Strictly speaking, no director; but the principal eigenvector is an approximate director.
- Isotropic Q-tensor: all eigenvalues are equal, so Q=0. No preferred direction, the liquid crystal has no alignment or ordering.

The LdG Energy

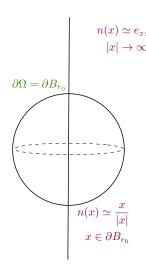
$$\mathcal{F}_{\hat{L}}(Q) = \int_{\Omega} \left[\frac{\hat{L}}{2} |\nabla Q|^2 + f(Q) \right] dx,$$

- Potential $f(Q) = -\frac{a}{2} \text{tr}(Q^2) + \frac{b}{3} \text{tr}(Q^3) + \frac{c}{4} (\text{tr}(Q^2))^2 d$
- $a = a(T_{NI} T)$, b, c > 0 constant, d chosen so $\min_{Q} f(Q) = 0$.
- f(Q) depends only on the eigenvalues of Q.
- $f(Q) = 0 \iff Q = s_*(n \otimes n \frac{1}{3}Id)$ with $n \in \mathbb{S}^2$ (uniaxial) and $s_* := (b + \sqrt{b^2 + 24ac})/4c > 0$
- Euler–Lagrange equations are semilinear, $\hat{L}\Delta Q = \nabla f(Q) = -aQ b\left(Q^2 \frac{1}{3}|Q|^2I\right) + c|Q|^2Q$
- Uniaxial solutions are the exception; in most geometries expect biaxiality rules [Lamy, Contreras—Lamy]
- Analogy: Ginzburg–Landau model, a relaxation of the S^1 -harmonic map problem:

$$\int_{\Omega} \left[\frac{\varepsilon^2}{2} |\nabla u|^2 + (|u|^2 - 1)^2 \right], \ u : \ \Omega \to \mathbb{C}$$

The spherical colloid

Consider a nematic in \mathbb{R}^3 surrounding a spherical particle $B_{r_0}(0)$.



- $\Omega = \mathbb{R}^3 \setminus B_{r_0}(0)$, exterior domain.
- Minimize LdG over $Q(x) \in H^1(\Omega; \mathcal{Q}_3)$.
- As $|x| \to \infty$, Q is uniaxial, with vertical director, $Q(x) \to s_* \left(e_z \otimes e_z \frac{1}{3}I\right)$.
- On ∂B_{r_0} , homeotropic (normal) anchoring:
 - ► Strong (Dirichlet) with $n = e_r = \frac{x}{|x|}$, $Q(x)|_{\partial B_{r_0}} = Q_s := s_* \left(e_r \otimes e_r \frac{1}{3}I\right)$.
 - Weak anchoring, via surface energy, $\frac{\hat{W}}{2} \int_{\partial B_{r_0}} |Q(x) Q_s|^2 dS$
 - $\blacktriangleright \implies \frac{\hat{L}}{\hat{W}} \frac{\partial Q}{\partial \nu} = Q_s Q \text{ on } \partial B_{r_0}.$

Two scaling limits

First rescale by the particle radius r_0 ; $\Omega = \mathbb{R}^3 \setminus B_1(0)$,

$$\mathcal{F}(Q) = \int_{\Omega} \left[\frac{\hat{L}}{2r_0^2} |\nabla Q|^2 + f(Q) \right] dx + \frac{\hat{W}}{2r_0} \int_{\partial B_1} |Q_s - Q|^2 dA.$$

and non-dimensionalize by dividing by the reference energy $a(T_{NI})$:

$$\tilde{\mathcal{F}}(Q) = \int_{\Omega} \left[\frac{L}{2} |\nabla Q|^2 + f(Q) \right] dx + \frac{W}{2} \int_{\partial B_1} |Q_s - Q|^2 dA.$$

with
$$L=rac{\hat{L}}{r_0^2 a(T_{NI})}, W=rac{\hat{W} r_0^2 a(T_{NI})}{\hat{L}}.$$

- Set $Q_{\infty} = s_*(e_z \otimes e_z \frac{1}{3}I)$, and $\mathcal{H}_{\infty} = Q_{\infty} + \mathcal{H}$, with $\mathcal{H} = \{Q \in H^1_{loc}: \int_{\Omega} \left[|\nabla Q|^2 + |x|^{-2}|Q|^2 \right] dx < \infty \}.$
- For fixed parameters L,W, there exists a minimizer in \mathcal{H}_{∞} , $Q(x) \to Q_{\infty}$ uniformly as $|x| \to \infty$.

 Open question: at what rate?
- We consider two limits:
 - ▶ Small particle limit. $L \to \infty$, with $W \to w \in (0, \infty]$.
 - ▶ Large particle limit. $L \rightarrow 0$, with Strong (Dirichlet) anchoring.

Small particle limit

$$\tilde{\mathcal{F}}(Q) = \int_{\Omega} \left[\frac{L}{2} |\nabla Q|^2 + f(Q) \right] dx + \frac{W}{2} \int_{\partial B_1} |Q_s - Q|^2 dA.$$

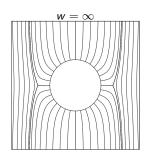
When $L \to \infty$, $W \to w \in (0, \infty]$:

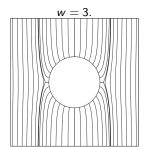
- converge to a harmonic (linear) function, $\Delta Q_w = 0$ in $\Omega = \mathbb{R}^3 \setminus B_1(0)$.
- Explicit solution, $Q_w(x)$!! In spherical coordinates (r, θ, φ) , $Q_w = \alpha(r)(e_r \otimes e_r I/3) + \beta(r)(e_z \otimes e_z I/3)$, (r > 1), with $\alpha(r) = s_* \frac{w}{3+w} \frac{1}{r^3}$, $\beta(r) = s_* (1 \frac{w}{1+w} \frac{1}{r})$.
- ullet The eigenvalues of Q_w may also be calculated explicitly,

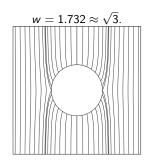
$$\lambda_{1,2}(x) = \frac{[\alpha+\beta]}{6} \pm \sqrt{\frac{[\alpha+\beta]^2}{4} - \alpha\beta\sin^2\varphi}, \quad \lambda_3(x) = -\frac{\alpha+\beta}{3} < 0.$$

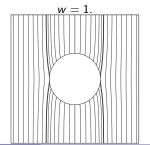
- At eigenvalue crossing $\lambda_1 = \lambda_2$, eigenvectors exchange \Longrightarrow discontinuous director!
- This occurs along a circle, $(r_w, \theta, 0)$, with r_w root of: $r^3 \frac{w}{1+w}r^2 \frac{w}{3+w} = 0.$

The Saturn Ring









Colloidal cuboids (homeotropic)

"Superellipsoid"

$$\left(\frac{x}{b}\right)^{2p} + \left(\frac{y}{b}\right)^{2p} + \left(\frac{z}{a}\right)^{2p} = 1$$

Aspect ratio: a/b. "Sharpness": p.

$$a/b = 1$$

Beller, Gharbi & Liu, Soft Matter, 2015, 11, 1078

Large particle limit

Now we consider $L \to 0$, with Dirichlet $Q|_{\partial B_1} = s_*(e_r \otimes e_r - \frac{1}{3}I)$.

- Coincides with singular limit as elastic constant $L \to 0$. (Majumdar-Zarnescu; Nguyen-Zarnescu)
- Minimizer converges to uniaxial Q-tensor, $Q_* = s_*(n \otimes n \frac{1}{3}I)$, locally uniformly, away from a discrete set of singularities.
- Director $n(x) \in \mathbb{S}^2$ is a minimizing harmonic map.
- No "Saturn ring", or any other line defects are possible. (Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)
- Solution must have at least one singularity; but generally, neither boundary topology nor energy determine the number of defects.
 - ▶ Hardt-Lin-Poon (1992) There exist axisymmetric harmonic maps in $\Omega = B_1(0)$, with degree-zero Dirichlet BC and arbitrarily many pairs of degree ± 1 defects on the axis.
 - ▶ Hardt-Lin (1986) For any N, $\exists g : \partial B_1(0) \to \mathbb{S}^2$ with degree zero such that the *minimizing* harmonic map has N defects in $B_1(0)$.

Our result: large particle limit

- We assume axial symmetry; this improves regularity (D. Zhang) and constrains the possible singularities.
- Axial symmetry is consistent with physical intuition and numerical studies.

Theorem

For any sequence of axisymmetric minimizers with $L \to 0$, a subsequence converges to a map $Q_*(x) = s_*(n(x) \otimes n(x) - I/3)$, locally uniformly in $\overline{\Omega} \setminus \{p_0\}$. Here n minimizes the Dirichlet energy in Ω , among axially symmetric \mathbb{S}^2 -valued maps satisfying the boundary conditions

$$n=e_r \ on \ \partial B_1, \qquad and \ \int_{\Omega} \frac{(n_1)^2+(n_2)^2}{|x|^2} \, dx < \infty,$$

and n is analytic away from exactly one point defect p_0 , located on the axis of symmetry.

Lyon 2016

17 / 1

Why only one singularity?

- Use cylindrical coords (ρ, θ, z) in $\Omega = \mathbb{R}^3 \setminus B_1$; by axial symmetry,
 - it suffices to consider the cross-section Ω_{cvl} with $\theta = 0$;
 - $ightharpoonup \Omega_{cyl}$ is simply connected, so the director n is oriented;
 - $n \in \mathbb{S}^2$ is determined by the spherical angle $\phi = \psi(\rho, z)$,

$$n = \sin \psi(\rho, z) e_{\rho} + \cos \psi(\rho, z) e_{z}$$

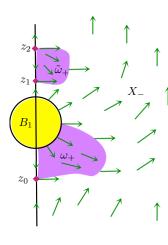
ullet Harmonic map energy, integrated in a cross-section $\Omega_{\it cyl}$:

$$E(\psi) = \int_{\Omega_{cyl}} \left[|\partial_{\rho}\psi|^2 + |\partial_{z}\psi|^2 + \frac{1}{\rho^2} \sin^2 \psi \right] \rho d\rho dz$$

Single nonlinear PDE,

$$\partial_z^2 \psi + \partial_{\rho}^2 \psi + \frac{1}{\rho} \partial_{\rho} \psi = \frac{1}{2 \rho^2} \sin(2 \psi)$$
 in Ω_{cyl}

Key observation: $X_- = \{\psi(\rho, z) < \frac{\pi}{2}\}$ and $X_+ = \{\psi(\rho, z) > \frac{\pi}{2}\}$ are both connected.



- Assume several defects; each lies on the z-axis, degree ± 1 , n is vertical away from z_i on axis.
- ψ turns between $\psi=0$ and $\psi=\pi$ around defect, creates components of X_{\pm} in Ω_{cyl}
 - If X_+ has a component $\tilde{\omega}_+$ whose boundary is disjoint from ∂B_1 , replace ψ in $\tilde{\omega}_+$ by $\tilde{\psi}(\rho,z)=\pi-\psi(\rho,z);$
- The new function has the same energy as ψ , so it also solves the PDE;
- Solutions are analytic away from the z-axis (Zhang), so this is not possible.
- X_{\pm} connected + topological argument \Longrightarrow exactly one defect!