

TWO MODELS FOR DROPLETS FORMATION

1	GAUSS FREE	ENERGY		BASED ON	
					0
	SHARP INTER	RFACE MODEL		CIRAOLO-M.	2013
	CL 0551 C01	COULIADITY	THORDEL		4 2014
	C1H221CHC	CHPILUARI	THEORY	KKUMMEL-	M, 2016

TWO MODELS FOR DROPLETS FORMATION

1	GAUSS FREE	ENERGY		BASED ON		
	SHARP INTE	RFACE MODEL		CIRAOLO-M.	2015	
	CLASSICAL	CAPILLARITY	THEORY	KROMMEL-1	9.2016	
2	GATES-PENROSE-LEBOWITZ (GPL) FREE ENERGY					
	DIFFUSED INTERFACE MODEL					
			6			
	STATISTICA	L MECHANIC	2			
	NONLOCHER		ALLEN-CAH	N FREE ENERI	- Y	
	BASED DU	CORIEN-M	2015			
	אס עסנות		2013			
		FIGALLI-M-	MOONRY 1	216		

PART ONE
GAUSS FREE ESR DROPLET REGION
ENERGY - NO
CONTAINER VOLUME OF E =]E]=m FIXED
= SURFACE + POTENTIAL = P(E) +
$$\int_E g(x) dx$$

TENSION ENERGY
PERIMETER OF E = $H(3E)$
m IS SMALL! \Rightarrow $P(E) = O(m^{\frac{1}{2}m+1}) \gg \int_E g = O(m)$

PART ONE
GAUSS FREE ESR DROPLET REGION
ENERGY-NO
CONTAINER VOLUME OF E =]E]=M FIXED
= SURFACE + POTENTIAL =
$$P(E) + \int_{E} q(m) dx$$

TENSION ENERGY
PERIMETER OF E = $H(3E)$
M IS SMALL! \Rightarrow $P(E) = O(m^{n+1}) \gg \int_{E} q = O(m)$
GLOBAL MINIMIZERS \Rightarrow ALMOST ISOPERIMETRIC
CRITICAL POINTS \Rightarrow ALMOST CONSTANT MEAN CURV.

GLOBAL MINIMIZERS -> ALMOST ISOPERIMETRIC

GLOBAL MINIMIZERS -> ALMOST ISOPERIMETRIC

GLOBAL MINIMIZERS -> ALMOST ISOPERIMETRIC

$$1 + O(m^{(n+1)}) \ge \frac{P(E)}{C_{iso}|E|^{N/(n+1)}} \ge 1$$

ADDITIONAL VARIATIONAL ARGUMENTS DE IS QUANTITAVELY C²-CLOSE FIGALLI M. (10)

TO A SPHERE

11 A CONTAINER M.- MIHAILA (15)

CRITICAL POINTS -> ALMOST CONSTANT MEAN CURV.

CRITICAL POINTS -> ALMOST CONSTANT MEAN CURV.

$$\begin{split} \delta_{CMC}(E) &= \left\| \begin{array}{c} H_{\partial E} \\ H_{\partial E}^{\circ} \end{array} - 1 \right\|_{C^{\circ}(\partial E)} = O(m^{1/n+1}) \\ C^{\circ}(\partial E) \\ \end{array} \\ C^{\circ}-CONST. MEAN CURV. \\ DEFICIT \\ H^{\circ}_{\partial E} = \frac{n}{n} \frac{P(E)}{(n+1)|E|} \\ ALEXANDROU THM \\ H_{\partial E} \equiv c \implies \partial E SPHERE \left(\& c = H_{\partial E}^{\circ} \right) \end{split}$$

CRITICAL POINTS => ALMOST CONSTANT MEAN CURV.

$$S_{CMC}(E) = \left\| \frac{H_{\partial E}}{H_{\partial E}^{\circ}} - 1 \right\|_{C^{\circ}(\partial E)} = O(m^{1/n+1})$$

ALEXANDROV THM
$$H_{\partial E} \equiv C \implies \partial \equiv SPHERE \left(\& C = H_{\partial E}^{\rho} \right)$$

CIRAOLO-VEZZONI (15)
$$\int \partial E E XT/INT BALL RADIUS g>0$$

 $H_{\partial E}^{2} = n = H_{\partial B}$ $B = UNIT BALL$

$$\Rightarrow hol(\partial E, \partial B_{1}(x)) \leq C(n, p, P(E)) \delta_{CMC}(E)$$

CRITICAL POINTS => ALMOST CONSTANT MEAN CURV.

$$\Rightarrow$$
 hol (∂E , $\partial B(\omega) \leq C(n, p, P(E)) \delta_{CMC}(E)$

CRITICAL POINTS
$$\Rightarrow$$
 ALMOST CONSTANT MEAN CURV.
KRUMMEL-M, 16 $H_{3E}^{o}=n$ $P(E) \leq (1+z) P(B)$ $0 < z < 1$
 $\int_{CMC}^{\infty} (E) \leq \delta_{o}(n, z)$
 $\Rightarrow \partial E = \{(1+u(m))x: x \in \partial B_{1}\}$ $||u||_{C^{1,K}} \leq C(n,z) \int_{CMC}^{\infty} (E)$
IN FACT WE CAN USE (AT LEAST IF $n \leq 3$)
 $\int_{CMC}^{*} (E) = \min \{ \| (\frac{H_{3E}}{H_{3E}^{o}} - 1)^{\dagger} \|_{L^{2}(3E)} \}$

CRITICAL POINTS
$$\Rightarrow$$
 ALMOST CONSTANT MEAN CURV.
KRUMMEL-M. 16 $\begin{cases} H_{\partial E}^{o}=n \quad P(E) \leq (1+\epsilon) P(E) \quad 0 < \tau < 1 \\ \int_{CMC} (E) \leq \delta_{o}(n, \tau) \end{cases}$
 $\Rightarrow \partial E = \{(1+\iota(n)) \times : \times \epsilon \partial B_{1}\} \quad ||\iota||_{C^{1,N}} \leq C(n,\tau) \int_{CMC} (E)$
IN FACT WE CAN USE (AT LEAST IF $n \leq 3$)
 $\int_{CMC}^{*} (E) = \min \{ \| (\frac{H_{\partial E}}{H_{\partial E}^{o}} - 1)^{\dagger} \|_{L^{2}(\partial E)} \}$
Related to ALMGREN ISOPERIMETRIC PRINCIPLE

(CODIMENSION 1 VERSION)

IF
$$H_{\partial E} \leq n$$
 THEN $P(E) \geq P(B_1)$

IF $H_{\partial E} \leq n$ THEN $P(E) \geq P(B_1)$

KRUMMEL-M. IS IF
$$H_{3E} \le n \ \& \ \delta(E) = P(E) - P(B_2) \le \delta_0(n)$$
 SMALL
 $O = E$
 $D = D = \partial D = \partial D$
 $D = D = D = D = D$
 $O = D = D$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{kRUMMEL-M, IG} & \mbox{ IF } & \mbox{H}_{JE} \leq n & \mbox{L} & \delta(E) = P(E) - P(B_{d}) \leq \delta_{0}(n) & \mbox{SMALL} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \mbox{I} & \mb$$

* BUT NOT TOO MUCH ... OTHERWISE UNIFORM STATE; SEE CARLEN SURVEY

PART TWO GPL FREE ENERGY

$$T^{n} \rightarrow (-1, 1)$$
 $\int_{T^{n}} u = m \in (-1, 4)$ $\int_{T^{n}} J = 1$
 $f(u) = \int_{T^{n}} [u(x) - h(y)]^{2} J(|x - y|) dx dy + \int_{T^{n}} W(u(x)) dx$
 $T^{n}_{x}T^{n}$
 $\int_{T^{n}} J^{(r)}$

BM INEQUALITY
$$|E+F|^{N} \ge |E|^{N} + |F|^{N} \quad \forall E, F \subseteq \mathbb{R}^{n}$$

 $= E, F + HOMOTHETIC CONVEX SETS$
QUANTITATIVE BM
 $\delta(E,F) = \max\left\{\frac{|F|}{|E|}, \frac{|E|}{|F|}\right\} \left(\frac{|E+F|^{N}}{|E|^{N}+|F|^{N}} - 1\right)$
 $\alpha'(E,F) = \inf\left\{\frac{|E \land (\alpha + \lambda F)|}{|E|} - s.t. |\lambda F| = |E|\right\}$

E GENERIC F=Brr>C	D ⇒ BM BECOMES
EUCLIDEAN CONCENTRATION INEQUALITY	$ I_r(E) \ge I_r(B_{r_E}) \forall r > 0$ $I_r(E) = \left\{ \text{DIST FROM } E < r \right\}$

$$E \text{ GENERIC } F = B_r \text{ row } BM \text{ Becomes}$$

$$EUCLIDEEAN CONCENTRATION |I_r(E)| \ge |I_r(B_{r_E})| \quad \forall r > 0$$

$$INEQUALITY \qquad I_r(E) = \left\{ \text{DIST FROM } E < r \right\}$$

$$SHARP \text{ QUANTITATIVE} \qquad FIGALLI-M.-MOONEY (G)$$

$$EUCLIDEEAN CONCENTRATION \qquad INEQUALITY$$

$$II_r(E)| \ge |I_r(B_{r_E})| \left\{ 1 + c(n) \min\left(\frac{r}{r_E}, \frac{r_E}{r}\right) \left[\frac{|E \triangle B_{r_E}(x)|}{|I_E|}\right]^2 \right\}$$

$$E GENERIC F = B_{r} r > 0 \Rightarrow BM Becomes$$

$$EUCLIDEAN CONCENTRATION |I_{r}(E)| \ge |I_{r}(B_{r_{E}})| \forall r > 0$$

$$INEQUALITY I_{r}(E) = \left\{ \text{DIST FROM } E < r \right\}$$

$$SHARP QUANTITATIVE FIGALLI-M, -MOONEY (6)$$

$$EUCLIDEAN CONCENTRATION$$

$$INEQUALITY II_{r}(E)| \ge |I_{r}(B_{r_{E}})| \left\{ 1 + c(n) \min \left\{ \frac{r}{r_{E}}, \frac{r_{E}}{r_{E}} \right\} \left[\frac{|E \land B_{r_{E}}(x)|}{|I_{E}|} \right]^{2} \right\}$$

$$* NO SYMMETRIZATION$$

$$(Fusco m Pratelli)$$

