Université Lyon 1 Licence Sciences, Technologies, Santé Mention Mathématiques Topologie Générale Simon Masnou Lundi 4 novembre 2013

Partiel (2h) - énoncé + corrigé

(Les appareils électroniques et les documents sont interdits)

L'énoncé comporte deux exercices et un problème

Exercice 1.

- 1. Soient (E, d) et (F, δ) deux espaces métriques et $f: E \to F$. Montrer que les propositions suivantes sont équivalentes :
 - (i) f est uniformément continue
 - (ii) Pour toutes suites (x_n) , (y_n) d'éléments de E,

$$si\ d(x_n,y_n) \to 0 \ alors\ \delta(f(x_n),f(y_n)) \to 0$$

- (iii) Pour toutes suites (x_n) , (y_n) d'éléments de E, si $d(x_n, y_n) \to 0$ alors il existe une sous-suite (n_k) de la suite des entiers telle que $\delta(f(x_{n_k}), f(y_{n_k})) \to 0$.
- [Correction] L'implication $(i) \Rightarrow (ii)$ est une conséquence immédiate de l'uniforme continuité de f. L'implication $(ii) \Rightarrow (iii)$ est immédiate en choisissant comme sous-suite la suite elle-même. Nous allons montrer la dernière implication $(iii) \Rightarrow (i)$ en prouvant la contraposée. Supposons que f n'est pas uniformément continue, c'est-à-dire qu'il existe $\epsilon > 0$ tel que pour tout $\eta > 0$ il existe x, y tels que $d(x, y) < \eta$ mais $\delta(f(x), f(y)) \geq \epsilon$. On va construire deux suites (x_n) et (y_n) qui contredisent (iii). D'après ce qui précède, pour chaque n > 0 et en posant $\eta = \frac{1}{n}$, il existe x_n, y_n tels que $d(x_n, y_n) < \frac{1}{n}$ mais $\delta(f(x_n), f(y_n)) \geq \epsilon$. Il est clair que cela contredit (iii) puisque quelle que soit la sous-suite (n_k) on aura toujours $\delta(f(x_{n_k}), f(y_{n_k})) \geq \epsilon$.
 - 2. En déduire que la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin(x^2)$ n'est pas uniformément continue.
- [Correction] On choisit $x_n = \sqrt{n\pi}$ et $y_n = \sqrt{n\pi + \frac{\pi}{2}}$. On a $x_n y_n = \sqrt{n\pi}(1 \sqrt{1 + \frac{1}{2n}}) = \sqrt{n\pi}(-\frac{1}{4n} + o(\frac{1}{n}))$ donc $|x_n y_n| \to 0$ mais $|f(x_n) f(y_n)| = 1$ donc f n'est pas uniformément continue sur \mathbb{R} .

Exercice 2. On appelle base d'une topologie \mathcal{T} un sous-ensemble \mathcal{B} de \mathcal{T} tel que tout ouvert $\mathcal{O} \in \mathcal{T}$ s'écrit comme $\mathcal{O} = \bigcup_{i \in I} B_i$, où $B_i \in \mathcal{B}$ pour tout $i \in I$.

- 1. Montrer que \mathcal{B} est une base de \mathcal{T} si et seulement si pour tout ouvert \mathcal{O} et tout point $x \in \mathcal{O}$ il existe un $B \in \mathcal{B}$ tel que $x \in B \subset \mathcal{O}$.
- [Correction] \Longrightarrow Si \mathcal{B} est une base de \mathcal{T} alors $\mathcal{O} = \bigcup_{i \in I} B_i$ où $\{B_i, i \in I\} \subset \mathcal{B}$ donc pour tout $x \in \mathcal{O}$ il existe $i \in I$ tel que $x \in B_i$.

 \Leftarrow Réciproquement, soit \mathcal{O} un ouvert et notons pour chaque $x \in \mathcal{O}$ B_x l'ouvert de \mathcal{B} tel que $x \in B_x \subset \mathcal{O}$. Alors on a

$$\mathcal{O} = \bigcup_{x \in \mathcal{O}} \{x\} \subset \bigcup_{x \in \mathcal{O}} B_x \subset \mathcal{O},$$

donc $\mathcal{O} = \bigcup_{x \in \mathcal{O}} B_x$.

2. Soit \mathcal{T}_n la topologie sur \mathbb{R}^n induite par la métrique euclidienne

$$\operatorname{dist}(\bar{x}, \bar{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Montrer que la collection \mathcal{B} des boules ouvertes ayant leur centre dans \mathbb{Q}^n et leur rayon dans \mathbb{Q} est une base de \mathcal{T}_n .

- [Correction] On va utiliser l'équivalence précédente. Soit \mathcal{O} un ouvert de \mathbb{R}^n pour la topologie usuelle (qui est exactement \mathcal{T}_n) et $x \in \mathcal{O}$. Alors il existe $\epsilon > 0$ tel que $B(x, \epsilon) \subset \mathcal{O}$. Par densité de \mathbb{Q} dans \mathbb{R} on peut trouver $q \in \mathbb{Q}^n$ tel que $d(x,q) < \frac{\epsilon}{3}$ et $\epsilon_{\mathbb{Q}} \in \mathbb{Q}$ tel que $\frac{\epsilon}{3} < \epsilon_{\mathbb{Q}} < \frac{\epsilon}{2}$. On a $x \in B(q, \epsilon_Q) \subset B(x, \epsilon) \subset \mathcal{O}$. On conclut par l'équivalence précédente que \mathcal{B} est une base de \mathcal{T}_n .
 - 3. Soit \mathcal{B}' l'ensemble des parallélépipèdes ouverts dans \mathbb{R}^n dont les arêtes sont parallèles aux axes de coordonnées. Est-ce que \mathcal{B}' est une base de \mathcal{T}_n ?
- [Correction] Oui puisqu'on peut utiliser un raisonnement similaire au précédent et observer que toute boule $B(x,\epsilon)$ contient le parallélépipède $]x-\frac{\epsilon}{\sqrt{n}},x+\frac{\epsilon}{\sqrt{n}}[^n]$. En effet si y est dans un tel parallélépipède alors pour tout $i\in\{1,\cdots,n\},\ |x_i-y_i|\leq\frac{\epsilon}{\sqrt{n}}$ donc $d(x,y)<\sqrt{n\frac{\epsilon^2}{n}}=\epsilon.$
 - 4. Est-ce que $\{]-\infty, a[\;;\;a\in\mathbb{R}\}\cup\{]b, +\infty[\;;\;b\in\mathbb{R}\}$ est une base pour \mathcal{T}_1 ?
- [Correction] Non puisqu'on ne peut trouver aucun intervalle de la forme $]-\infty,a[$ ou $]b,+\infty[$ qui soit inclus dans l'intervalle]0,1[.
 - 5. Pour tout $a \in \mathbb{Q}$ on note par δ_a la droite d'équation y = ax dans \mathbb{R}^2 , et on note par Y la réunion des droites δ_a . Soit \mathcal{T} la topologie sur Y induite par la topologie sur \mathbb{R}^2 et soit \mathcal{T}' la topologie dont une base \mathcal{B}' est composée de tous les segments ouverts $]M, N[\subset \delta_a$ tels que $O \not\in]M, N[$, et de toutes les réunions $\bigcup_{a \in \mathbb{Q}, O \in]M_a, N_a[}]M_a, N_a[$. Les deux topologies \mathcal{T} et \mathcal{T}' sont-elles équivalentes?

[Correction] Supposons que $\mathcal{T}' \subset \mathcal{T}$. En particulier $\mathcal{B}' \subset \mathcal{T}$.

Pour tout $a = \frac{m}{n} \in \mathbb{Q}$, où $m \in \mathbb{Z}^*$, $n \in \mathbb{N}^*$, p.g.c.d. (m, n) = 1, on choisit M_a , N_a deux points sur la droite δ_a tels que $O \in M_a$, N_a [et dist O, M_a] = dist O, M_a] = $\frac{1}{n}$. Pour a = 0 on choisit $M_0 = (1, 0)$, $M_0 = (-1, 0)$. Soit

$$\mathcal{C} = \bigcup_{a \in \mathbb{Q}}]M_a, N_a[.$$

Par hypothèse $C \in \mathcal{B}' \subset \mathcal{T}$. En particulier, puisque O est un point de C, il existe r > 0 tel que $Y \cap B(O, r) \subset C$. Pour tout $a \in \mathbb{Q}$ on a donc $\delta_a \cap B(O, r) \subset M_a$, $N_a[$, d'où $r < \operatorname{dist}(O, M_a) = \frac{1}{n}$. Comme ceci est vérifié pour tout $n \in \mathbb{N}^*$, il s'ensuit que $r \leq 0$, ce qui contredit le choix de r.

On a obtenu une contradiction. Donc on ne peut pas avoir $\mathcal{T}' \subset \mathcal{T}$.

Problème. Soit E l'espace des fonctions réelles définies sur $I = [0, 1] \subset \mathbb{R}$ et lipschitziennes, c'est-à-dire telles que

$$\sup_{(x,y)\in I\times I, \, x\neq y} \frac{|f(x) - f(y)|}{|x - y|} = K(f) < +\infty$$

où K(f) est une constante finie positive ou nulle ne dépendant que de f.

1. Montrer que E est un sous-espace vectoriel de l'espace vectoriel $C^0(I,\mathbb{R})$ des fonctions réelles continues sur I = [0,1] et que

$$K(\lambda f + \mu g) \leq |\lambda| K(f) + |\mu| K(g)$$

$$|K(f) - K(g)| \leq K(f - g)$$

 $si\ f,g\in E\ et\ \lambda,\mu\in\mathbb{R}.$

[Correction] Remarquons d'abord que

$$\sup_{(x,y)\in I\times I,\,x\neq y}\frac{|f(x)-f(y)|}{|x-y|}=K(f)\quad\Longrightarrow\quad |f(x)-f(y)|\leq K(f)|x-y|,\ \forall x,y\in I,$$

donc $\lim_{y\to x} f(y) = f(x)$ ce qui montre que $E \subset C^0(I,\mathbb{R})$. En outre, la fonction nulle est clairement lipschitzienne et, pour tous $f,g\in E$ et pour tous $\lambda,\mu\in\mathbb{R}$,

$$|\lambda f(x) + \mu g(x) - \lambda f(y) - \mu g(y)| < |\lambda| |f(x) - f(y)| + |\mu| |g(x) - g(y)| < (|\lambda| K(f) + |\mu| K(g)) |x - y|$$

donc $\lambda f + \mu g \in E$ et $K(\lambda f + \mu g) \leq |\lambda| K(f) + |\mu| K(g)$. Ainsi, E est un sous-espace vectoriel de $C^0(I, \mathbb{R})$.

On a

$$|f(x) - f(y)| \le |f(x) - g(x) - (f(y) - g(y)) + g(x) - g(y)|$$

$$\le |f(x) - g(x) - (f(y) - g(y))| + |g(x) - g(y)| \le K(f - g)|x - y| + K(g)|x - y|$$

On en déduit que

$$K(f) = \sup_{(x,y)\in I\times I, x\neq y} \frac{|f(x) - f(y)|}{|x - y|} \le K(f - g) + K(g)$$

donc $K(f)-K(g) \le K(f-g)$. En échangeant f et g on obtient $K(g)-K(f) \le K(g-f)$. Or K(f-g)=K(g-f) d'où

$$|K(f) - K(g)| \le K(f - g)$$

Montrer que les fonctions réelles continues sur [0,1], admettant des dérivées à droite $f'_d(z) = \lim_{h>0, h\to 0} \frac{f(z+h)-f(z)}{h}$ bornées (pour tout $z \in]0,1[$), appartiennent à E. (On admettra qu'elles vérifient l'inégalité des accroissements finis

$$|f(y) - f(x)| \le \sup_{z \in]x,y[} |f'_d(z)| |x - y|, \ \forall \ 0 < x < y < 1).$$

[Correction] Si f admet des dérivées à droite bornées alors on déduit de l'inégalité des accroissements finis que

$$K(f) = \sup_{(x,y)\in I\times I, x\neq y} \frac{|f(x) - f(y)|}{|x - y|} \le \sup_{z\in]x,y[} |f'_d(z)| < +\infty$$

donc f est lipschitzienne sur [0,1]

2. Pour chaque $f \in E$, on pose

$$M(f) = \sup_{x \in I} |f(x)|$$
 et $N(f) = M(f) + K(f)$

Montrer que $N: f \mapsto N(f)$ est une norme sur E mais que $K: f \mapsto K(f)$ n'est pas une norme sur E.

[Correction] M coïncide avec la norme uniforme donc $N(f) = 0 \Rightarrow M(f) = 0 \Rightarrow f(x) = 0$ pour tout $x \in [0, 1]$ car les fonctions lipschitziennes sont continues. On remarque ensuite que

$$K(\lambda f) = \sup_{(x,y) \in I \times I, \, x \neq y} \frac{|\lambda f(x) - \lambda f(y)|}{|x - y|} = |\lambda| \sup_{(x,y) \in I \times I, \, x \neq y} \frac{|f(x) - f(y)|}{|x - y|} = |\lambda| K(f)$$

et en appliquant le premier résultat de la question 1. avec $\lambda = \mu = 1$ on obtient

$$K(f+g) \le K(f) + K(g)$$

Pour conclure, N = M + K est une norme sur E.

En revanche K n'est pas une norme sur E puisque toute fonction constante est 0-lipschitzienne donc $K(f) = 0 \not\Rightarrow f \equiv 0$.

- 3. Montrer que les normes M et N ne sont pas fortement équivalentes (pour cela on cherchera à construire une suite de fonctions f_n telles que $K(f_n)$ soit fixe tandis que $\lim_{n\to\infty} M(f_n) = 0$).
- [Correction] Il suffit de construire une suite de fonctions sur [0,1] dont la norme sup tend vers 0 mais qui admet des dérivées à droite égales à ± 1 sur un intervalle (au moins) ouvert. On peut par exemple considérer $f_n(x) = \frac{1}{n}(1-nx)$ sur $[0,\frac{1}{n}]$ et 0 sur $[\frac{1}{n},1]$ (faire un dessin). Alors $f'_n(x) = -1$ sur $[0,\frac{1}{n}]$ et $f'_n(x) = 0$ sur $[\frac{1}{n},1]$. On a donc $f'_n(x) \geq 1$ mais $f'_n(x) = \frac{1}{n} = 1$ of $f'_n(x) = 1$ cet exemple montre que les normes $f'_n(x) = 1$ ne sont pas fortement équivalentes.
 - 4. Montrer que (E, N) est complet. (On rappelle que $(C^0(I, \mathbb{R}), M)$ est complet et on considèrera une suite de Cauchy $(f_n)_n$ sur E pour la norme N. On montrera qu'il existe $f \in C^0(I, \mathbb{R})$ telle que $\lim_{n\to\infty} f_n = f$ pour la norme M dans $C^0(I, \mathbb{R})$; puis on en déduira que $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}$ indépendant de $x \neq y$ dans I tel que

$$p \ge n_0, \ q \ge n_0 \ impliquent \ \frac{|f_p(x) - f_q(x) - (f_p(y) - f_q(y))|}{|x - y|} \le \epsilon, \qquad \forall x \ne y$$

puis que $f - f_n \in E$ et $\lim_{n \to \infty} f_n = f$ pour la norme N dans E).

[Correction] Si $(f_n)_n$ est une suite de Cauchy sur (E,N) pour la norme N alors c'est aussi une suite de Cauchy pour la norme M (puisque $M(f) \leq N(f)$). Comme $(E,M) \subset (C^0(I,\mathbb{R}),M)$ la suite est donc également de Cauchy dans $(C^0(I,\mathbb{R}),M)$ qui est complet. Par conséquent elle converge pour la norme M vers une fonction continue f. Comme la suite (f_n) est de Cauchy dans (E,N) on a

$$\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} \ p \ge n_0, \ q \ge n_0 \ \Rightarrow N(f_p - f_q) \le \epsilon$$

donc

$$\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} \ p \ge n_0, \ q \ge n_0 \ \Rightarrow K(f_p - f_q) \le \epsilon$$

d'où

$$\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} \ p \ge n_0, \ q \ge n_0 \ \Rightarrow \frac{|f_p(x) - f_q(x) - (f_p(y) - f_q(y))|}{|x - y|} \le \epsilon \ \forall x \ne y$$

Comme la suite (f_n) converge vers f pour la norme uniforme, on a $f_n(x) \to f(x)$ pour tout $x \in [0, 1]$. En faisant tendre q vers l'infini dans la proposition précédente, on en déduit que

$$\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} \ p \ge n_0 \Rightarrow \frac{|f_p(x) - f(x) - (f_p(y) - f(y))|}{|x - y|} \le \epsilon \ \forall x \ne y$$

Ceci montre que $K(f_p - f) \to 0$ quand $p \to \infty$ (en particulier $f \in E$). Comme $M(f_p - f) \to 0$ on obtient également que

$$N(f_p - f) \to 0$$
 quand $p \to \infty$

donc $\lim_{n\to\infty} f_n = f$ pour la norme N dans E. En conclusion (E, N) est complet.