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Abstract

We propose a variational approach for the reconstruction of a volume from slices. The recon-
structed set is obtained as a minimizer of a geometric regularity criterion, either the perimeter or the
Willmore energy, with inclusion-exclusion constraints associated with the cross-sections. We propose
a phase field approximation of this model, and we analyze it when the regularity criterion is the
perimeter. We derive simple and accurate numerical schemes for both the perimeter-based and the
Willmore-based formulations, and we illustrate with several numerical examples the performances of
our approach, which proves to be effective for a large category of constraints.

The aim of this work is to develop and justify a new approach to reconstruct a surface or a volume
from a collection of given cross-sections. It is motivated by the many applications in medical imaging
(CT or MRI scans) and computer graphics [8, 33].

There is a rich literature on surface or volume reconstruction from cross-sections. Roughly speaking,
methods can be divided into two categories. In the first category, a first rough approximation of the sur-
face is found based on topological assumptions, then a more accurate surface is interpolated using either
a parametric [8, 9, 25, 29, 31, 35, 33] or an implicit representation [1, 3, 13, 14, 17]. The second category
of approaches involves a variational viewpoint: the surface is obtained as the result of an optimization
problem with constraints [15, 20, 22, 26, 32, 40] but, in general, without topological assumptions.

We propose in this paper a geometric variational method for the reconstruction of the best possible
set E∗ fitting (exactly or approximately, see below) a given collection of cross-sections and minimizing
a geometric criterion as the perimeter or the Willmore energy. For simplicity, we formulate the problem
for planar cross-sections, but as will be seen with the numerical experiments, our approach is general
enough to handle also non-planar cross-sections, or even less structured partial data as point clouds

Let us now describe informally our model (a more rigorous formulation will be given later). We
assume that we are given in Rd a finite family of hyperplans {Πn}n on each of which inner and outer
constraints ωinn , ωoutn ⊂ Πn are prescribed. We impose for every reconstruction candidate E ⊂ Rd that
ωinn ⊂ E∩Πn ⊂ Πn\ωoutn . Obviously, ωin∩ωout = ∅ but we do not require ωinn ∪ωoutn to cover Πn. This is
an important point: our method is not restricted to spanning-type situations (i.e., the surface boundary
∂E must contain a given collection of curves) in the sense that it can handle also loose constraints
where only parts of the interior volume E and the exterior volume Ec are prescribed. Among all shapes
satisfying the constraints, which ones may be considered as “natural”? Since area and curvature are key
ingredients in many models which consider real life shapes as optimal shapes, e.g. bubbles, red cells,
etc., it is quite natural to look for shapes which minimize either the perimeter or the Willmore energy
(see below). Therefore, a natural model for the reconstruction of a volume from few slices is variational
and consists in finding a minimizer E∗ such that

E∗ = argmin
ωin⊂E

E∩ωout=∅

J(E), (1)
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where ωin =
⋃
ωinn and ωout =

⋃
ωoutn , and J is either the perimeter or the Willmore energy, depending on

the applications and the desired smoothness of the boundary ∂E∗, see [11, 32] where a similar viewpoint
is used.
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Figure 1: Examples of 2D (left) and 3D (right) reconstruction problems. Inner constraints are shown in
red color and outer constraints in green color.

Beyond the theoretical issues raised by this model, which will be discussed later, we also tackle its
numerical approximation. We use a phase-field formulation [5, 7, 6, 18, 37] which allows the approxima-
tion in the sense of Γ-convergence of the geometric energy J by a sequence of diffuse energies Jε which
are easier to handle numerically. The notion of Γ-convergence was introduced by De Giorgi as a suitable
notion of convergence in a variational setting for functionals defined on metric spaces. If (X, d) is a
metric space and (Gn) is a sequence of functionals mapping X onto R, one says that (Gn) Γ-converges
in X to G : X → R as n→∞ if both following conditions hold [10]:

[Γ− lim inf] ∀u ∈ X, ∀(un) ⊂ X, un → u =⇒ G(u) 6 lim inf
n→∞

Gn(un);

[Γ− lim sup] ∀u ∈ X, ∃(un) ⊂ X, un → u, lim sup
n→∞

Gn(un) 6 G(u).

A nice connection between Γ-convergence and minimizers is the following: if (Gn) Γ-converges to G, and
(xn) ∈ X is such that xn minimizes Gn, then every cluster point of (xn) is a minimizer of G.

In the case J=perimeter=P , a phase field approximation is the celebrated Van der Waals-Cahn-
Hilliard energy

Pε(u) =

∫
Rd

(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx.

where ε > 0 is a small parameter, and W is the double well potential defined by W (s) = 1
2s

2(1 − s)2,
s ∈ R.

Modica and Mortola [36, 37] have shown the Γ-convergence with respect to the L1-topology of (Pε)ε>0

(the convergence is intended for a sequence (εn) converging to 0 as n → ∞) to the L1 extension of λP
defined as

u 7−→
{
λP ({u = 1}) if u is the characteristic function of a measurable set
+∞ otherwise,

with λ =
∫ 1

0

√
2W (s)ds. A key element in Modica-Mortola’s proof, which will be used in this paper,

is the property that the indicator function of any set E (of finite perimeter) can be approximated by a
sequence (uε) defined by uε = q

(
1
εd(x,E)

)
and such that Pε(uε) → λP (E). Here, d(·, E) is the signed

distance function to E in Rd (negative in E, positive outside), and q is the so-called profile function
associated to W and defined by q(s) = 1

2 (1− tanh(s/2)), s ∈ R.

2



The second regularization energy that can be used in our framework is the Willmore energy, defined
for any set E ⊂ Rd with smooth boundary by

W(E) =
1

2

∫
∂E

|H|2dHd−1,

with H the mean curvature on the boundary ∂E. The (L1-extension of the) Willmore energy can be
approximated by various phase field models, see [21, 5, 6, 38, 39, 41, 43] for more details. We shall
consider here the most classical one [21, 6, 41] defined as:

Wε(u) =
1

2ε

∫
Rd

(
ε∆u− 1

ε
W ′(u)

)2

dx.

Using phase field methods for the reconstruction of 3D surfaces from cross-sections has been recently
proposed in [20], where the inclusion-exclusion constraints are imposed with a penalization technique.
Our idea is slightly different, and consists in incorporating the constraints ωin ⊂ E and E ∩ ωout = ∅ in
the phase field approximation as the following linear obstacle constraints on uε:

uinε 6 uε 6 uoutε ,

where uinε = q
(
d(x, ωin)/ε

)
and uoutε = 1−q (d(x, ωout)/ε). Having linear obstacle constraints makes the

theoretical analysis of the model much easier, and opens the way to simple and very accurate numerical
schemes. The direct phase field formulation of the original optimization problem (1) reads now as

u∗ε = argmin
uinε 6uε6uoutε

Jε(uε), (2)

where Jε is a Γ-converging approximation of the L1-extension of J .
We will show, however, that such direct phase field formulation is actually not appropriate, in the

sense that the reconstructed sets do not satisfy strictly the constraints. We will therefore propose a
variant model, based on a suitable fattening of the constraints, with the following nice properties which
were the main motivations for this paper:

1. The minimizers of our model, using either the perimeter or the Willmore energy, can be approx-
imated with a simple and accurate numerical method. Numerical results (see Section 3) confirm
that fattening the constraints yields a better approximation of the relaxation of problem (1), and
that using the Willmore energy gives smoother and more natural reconstructed surfaces.

2. A rigorous convergence analysis of the model can be provided (at least in the case of perimeter),
which is new in this context to the best of our knowledge.

The characterization of limit energies when the Willmore functional is used is an open problem. This
is due to the high non locality of the L1-relaxation of the unconstrained Willmore energy, see [5, 6]. In
particular, we expect that the contribution to the energy of volume-less ghost parts cannot be represented
by integration.

The paper is organized as follows: the next section is devoted to setting the problem in the particular
case of perimeter, for which the necessity of fattening the constraints can be easily justified. The same
fattening method can be used as well for the Willmore-based formulation. In Section 2, and in the very
case of the perimeter, we prove the convergence of our phase-field formulation to a limit energy which
coincides (up to a multiplicative constant) with the relaxation in L1 of the perimeter under constraints.
In Section 3 we address the numerical approximation of solutions to Problem (2) when Jε is a phase-
field approximation of either the perimeter or the Willmore energy, and when the constraints are either
previously fattened or not. We introduce two numerical schemes, and we provide a series of numerical
simulations illustrating the performances of our approach in various situations, with either the perimeter
or the Willmore energy as regularization criterion.
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1 Problem setting: the perimeter case

1.1 Constrained perimeter, relaxation, and phase field approximation
1.1.1 Geometric constrained problem and relaxation

Recall that, for any measurable set E ⊂ Rd and t ∈ [0, 1], the set of points with density t with respect
to E is

Et =

{
x ∈ Rd, lim

r→0

|E ∩B(x, r)|
|B(x, r)| = t

}
,

where B(x, r) is an open ball and | · | the Lebesgue measure. If E has locally finite perimeter then
the limit in the definition of Et exists Hd−1-almost everywhere, and Federer’s Theorem states that
Rd = E0 ∪E1/2 ∪E1 up to a Hd−1-negligible subset, see [2] for a full account on sets of finite perimeter.
The set E1 is the measure-theoretic interior of E, E0 is the exterior and E1/2 is the boundary. If E
has locally finite perimeter then, for all Borel sets A ⊂ Rd, the perimeter of E in A satisfies P (E,A) =
Hd−1(E1/2 ∩A). As usual, we denote P (E) = P (E,Rd) the total perimeter of E.

Problem (1) is not well defined for sets of finite perimeter because the constraints are imposed on
Lebesgue-negligible sets. A more convenient reformulation reads as follows:

E∗ = argmin
ωin⊂E1

ωout⊂E0

P (E), (3)

The natural energy associated with this new constrained problem is

Pωin,ωout(E) =

{
P (E) if ωin ⊂ E1 and ωout ⊂ E0,

+∞ otherwise.

It is not difficult to see that Pωin,ωout is not lower semicontinuous with respect to the L1-topology,
thus problem (3) is ill-posed. To be convinced, consider in R2 the sequence Eh = [−1, 1]× [−h, h] with
ωin = [−1, 1] × {0} and ωout = ∅. Then (for the L1 convergence of characteristic functions) Eh → ∅ as
h→ 0, but Pωin,ωout(Eh)→ 4 whereas Pωin,ωout(∅) = +∞. To define a well-posed problem, we proceed
as usual and consider the relaxation Pωin,ωout of Pωin,ωout with respect to the L1-topology, defined as

Pωin,ωout(E) = inf
Eh→E

{
lim inf
h→0

{
Pωin,ωout(Eh)

}}
.

In the remaining of the paper, we address the new following minimization problem

E∗ = argmin
E

Pωin,ωout(E). (4)

We shall see in Theorem 2.2 that the relaxed energy Pωin,ωout can be identified with F2,ωin,ωout , where

F2,ωin,ωout(E) = P (E) + 2Hd−1(E0 ∩ ωin) + 2Hd−1(E1 ∩ ωout).

In particular, in our previous example with Eh = [−1, 1]× [−h, h], we have F2,ωin,ωout(∅) = 4.

1.1.2 Phase field approximation

We define the phase field constrained Van der Waals-Cahn-Hilliard energy on L1(Rd) as

Pε,u1,u2(u) =


∫
Rd

(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx if u ∈ H1(Rd) and u1 6 u 6 u2,

+∞ otherwise,

and a natural minimization problem to address is

u∗ε = argmin
u
{Pε,uinε ,uoutε

(u)}, (5)
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where uinε = q
(
d(x, ωin)/ε

)
and uoutε = 1− q (d(x, ωout)/ε).

However, we will see in subsection 1.3 that Pε,uinε ,uoutε
does not Γ-converge with respect to the L1-

topology to λF2,ωin,ωout . More precisely, we conjecture that Pε,uinε ,uoutε
Γ-converges to λF1,ωin,ωout where

we denote for every u ∈ L1:

F1,ωin,ωout(u) =

{
F1,ωin,ωout(E) if u = 1E

+∞ otherwise.

with
F1,ωin,ωout(E) = P (E) +Hd−1(E0 ∩ ωin) +Hd−1(E1 ∩ ωout).

We will see in this paper that a technique to obtain the good relaxation, i.e. λF2,ωin,ωout , consists in
fattening the inclusion-exclusion constraints. We will denote Ωinεα and Ωoutεα the fattened constraint sets
(see Section 1.2.1), which depend on a thickness parameter α ∈]0, 1[ so that the associated fattened
diffuse fields have width of order εα, i.e. larger than the initial phase field approximation whose width
is of order ε. Therefore, we now consider the new phase field constraints uinε,α 6 u 6 uoutε,α with

uinε,α = q
(
d(x,Ωinεα)/ε

)
and uoutε,α = 1− q

(
d(x,Ωoutεα )/ε

)
.

The main theoretical result of this paper is the Γ-convergence (with respect to the L1-topology) of
Pε,uinε,α,uoutε,α

to λF2,ωin,ωout .

Remark 1.1. As already mentioned, we will prove in Theorem 2.2 that Pωin,ωout , i.e. the relaxation of
Pωin,ωout with respect to the L1 convergence of characteristic functions, coincides with F2,ωin,ωout . We
actually believe that F1,ωin,ωout does also correspond to a relaxation of Pωin,ωout when phase fields are
used for approximation instead of binary functions. Recalling that, when a set E satisfies the constraints,
Pωin,ωout(E) coincides with the total variation |D1E |(Rd), one can define the following relaxation of the
constrained perimeter:

P̃ωin,ωout(E) = inf

{
lim inf
ε→0

∫
Rd
|∇uε|dx,

uε ∈ C∞c , uε → 1E in L1, uε >
1

2
on ωin, uε 6

1

2
on ωout

}
.

i.e., the total variation of 1E is approximated by the total variations of smooth functions which are
constrained on ωin and ωout. An equivalent perspective is the following: Pωin,ωout(E) coincides with
the mass of the varifold VE = |D1E | ⊗ δ(D1E)⊥ which can be approximated (with respect to the weak-?
convergence of measures) by diffuse varifolds Vε = |∇uε|dx ⊗ δ(∇uε)⊥ with uε ∈ C∞c , uε > 1

2 on ωin,
and uε 6 1

2 on ωout. In view of the example discussed in Section 1.3, it is natural to conjecture that
P̃ωin,ωout(E) = F1,ωin,ωout .

1.1.3 Comparing minimizers of F1,ωin,ωout and F2,ωin,ωout

To understand the main difference between F1,ωin,ωout and F2,ωin,ωout , we focus on the local configurations
illustrated in Figure 2, and we compare their energies.

In the left example of Figure 2, P (E) = AB+BC, Hd−1(E0∩ωin) = 0, and Hd−1(E1∩ωout) = BD.
In the right configuration, P (E) = AD +DC and Hd−1(E0 ∩ ωin) = Hd−1(E1 ∩ ωout) = 0. Thus

F1,ωin,ωout(left configuration) = AB +BC +BD < AD +DC = F1,ωin,ωout(right configuration).

For F2,ωin,ωout , using the triangular inequality, we have

F2,ωin,ωout(left) = AB + 2BD +BC > AD +DC = F2,ωin,ωout(right).

This simple example indicates that, in general, minimizers E of F1,ωin,ωout need not be suitable
for our reconstruction problem for they will not satisfy the constraints ωin ⊂ E1 and E0 ∩ ωout = ∅.
For this very example, F2,ωin,ωout behaves better. More generally, numerical experiments suggest that
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Figure 2: Two local configurations where E is in gray and ωout is the horizontal half-line starting at D.

minimizers of F2,ωin,ωout do satisfy the constraints on reasonable examples where minimizers of F1,ωin,ωout

do not. Although no theoretical characterization of the minimizers of F2,ωin,ωout which satisfy the
constraints is known, here is another simple comparison example. Let ωin = [0, 1] × ({0} ∪ {h}) and
ωout = ∅. Then for every h, a minimizer of F1,ωin,ωout is the empty set. In contrast, for h 6 1, the set
[0, 1] × [0, h] minimizes F2,ωin,ωout and do satisfy the constraints. But for h > 1, the empty set is the
unique minimizer. Summarizing, using F2,ωin,ωout does not guarantee that the constraints are always
satisfied by the minimizers, but this energy behaves better than F1,ωin,ωout .

Reformulating for the phase field approximations, and in view of the discussion in the previous
paragraph, the constraints uinε 6 u 6 uoutε are not enough coercive to give a good approximation of our
geometric problem. It will be necessary to consider the fattened constraints uinε,α 6 u 6 uoutε,α , see figure 6
for a numerical illustration.

1.2 Definitions and notations
1.2.1 Interior-exterior constraints and thickness

Let d ∈ N∗ and Q be an open bounded subset of Rd. We consider a finite collection of restrictions to Q
of hyperplanes, denoted as {Πn}n, and we assume that Πn∩Πn′ = ∅ for any n 6= n′. Our constraints are
given as two subsets ωin, ωout ⊂ Q such that, for any n, both ωin ∩ Πn and ωout ∩ Πn are finite unions⋃
k ω

in
n,k and

⋃
` ω

out
n,` of disjoint, connected, open, bounded and Lipschitz sets in Πn as a subset of Rd−1.

Let dn denote the signed distance function to subsets of Πn (as a subset of Rd−1), i.e. for any A ⊂ Πn

and y ∈ Πn, dn(y,A) = dist(y,A)−dist(y,ΠnrA), with dist the Euclidean distance in Rd. In a suitable
orthonormal system of coordinates in Rd such that

Πn = {(y, 0) | y ∈ Rd−1}

we define for every k, ` the fattened constraints with thickness parameter h > 0 (see figure 3, where in,
out, and k are dropped for simplicity, and h = εα):

Ωinn,k,h =
{

(y, z) ∈ (Rd−1 × R) ∩Q, y ∈ ωinn,k, |z| < h|dn(y, ωinn,k)|
}

Ωoutn,`,h =
{

(y, z) ∈ (Rd−1 × R) ∩Q, y ∈ ωoutn,` , |z| < h|dn(y, ωoutn,` )|
}
. (6)

Being the Π′ns pairwise disjoint, there exists h0 > 0 small enough such that any two elements of the
united collection {Ωinn,k,h,Ωoutn,`,h}n,k,` are disjoint. Lastly, we define

Ωinh =
⋃
n,k

Ωinn,k,h and Ωouth =
⋃
n,`

Ωoutn,`,h.

Remark 1.2. We opt for a conic fattening rather than a rectangular fattening in the normal direction
in order not to prescribe the tangential direction of the reconstructed domain around the slices. Indeed,
if slices are tied (i.e. if ωinn ∪ ωoutn = Πn) then a rectangular fattening forces the reconstructed domain
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•
x

|dn(x, ωn)|

εα|dn(x, ωn)|
l

Ωn,εα

ωn

Figure 3: Constraint fattening with thickness parameter h = εα: being ωn the horizontal half-line, the
fattened set Ωn,εα = {(y, z) ∈ (Rd−1 ×R) ∩Q, y ∈ ωinn,k, |z| < εα|dn(y, ωn)|} is (partially) represented
in gray.

to be orthogonal to slice hyperplanes. This is not really a problem if we use the perimeter because the
domain may have singularities (typically angles) to balance these tangential constraints. However, for
the Willmore energy, the control of mean curvature prevents angles, thus a rectangular fattening forbids
non-orthogonal reconstructions. This issue is avoided with a conic fattening.

Remark 1.3. A truncated distance function can be used to avoid the overlap of fattened constraints
sets. This does not change the theoretical analysis, but it can be useful for numerical purposes.

1.2.2 Phase field approximation with constraints

Let q : R→ [0, 1] be the optimal profile associated withW , defined as the solution to the Cauchy problem{
q′ = −

√
2W (q)

q(0) = 1/2.

For the aforementioned potential W (s) = 1
2s

2(1 − s)2, it can be proven that q(t) = 1
2 (1 − tanh(t/2)).

Given ε > 0 and α ∈]0, 1[, we define as before

uinε,α(x) = q

(
1

ε
d(x,Ωinεα)

)
and uoutε,α(x) = 1− q

(
1

ε
d(x,Ωoutεα )

)
.

where, again, d denotes the signed distance function to subsets of Q. For all subset E ⊂ Q and the
associated phase field function uε(x) = q(d(x,E)/ε), we have the equivalence

uinε,α 6 u 6 uoutε,α ⇐⇒ Ωinεα ⊂ E ⊂ Rd r Ωoutεα .

Remark 1.4. Using standard density arguments, the following convergence results can be proven

uinε,α(x)
ε→0−→


1 if x ∈ ωin
1/2 if x ∈

⋃
n,k

∂nω
in
n,k

0 otherwise

, and uoutε,α(x)
ε→0−→


0 if x ∈ ωout
1/2 if x ∈

⋃
n,`

∂nω
out
n,`

1 otherwise

where ∂n is the boundary within the subspace Πn. On the contrary, without the fattening constraints,
there holds

uinε (x)
ε→0−→


1/2 if x ∈ ωin
1/2 if x ∈

⋃
n,k

∂nω
in
n,k

0 otherwise

, and uoutε (x)
ε→0−→


1/2 if x ∈ ωout
1/2 if x ∈

⋃
n,`

∂nω
out
n,`

1 otherwise
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These convergence results can be of interest for the numerical approximation when a sharp representation
of the set contraints is difficult to compute (for instance in 3D) and can be replaced instead by smooth
approximations with phase field functions.

1.3 Necessity of constraints fattening
In this subsection, we give a simple example for which the limit of Pε,uinε ,uoutε

appears to be λF1,ωin,ωout

and not λF2,ωin,ωout . In particular, one expects that the limit of Pε,uinε ,uoutε
, if it exists, is at most equal

to λF1,ωin,ωout . We already gave the drawbacks of using F1,ωin,ωout , and this example motivates the
necessity of fattening the constraints so as to rather approximate F2,ωin,ωout .

Let E = B ⊂ R2 be a ball, ωin be a segment outside the ball and ωout = ∅ (see Figure 4).

d(x,B) = d(x, ωin)

B
ωin

{uε = 1/4}

{uε = 3/4}

{uε = 1/4}

Figure 4: An example for which the limit of Pε,uinε ,uoutε
is λF1,ωin,ωout

We consider the phase field profiles associated with B and ωin:

uBε (x) = q

(
1

ε
d(x,B)

)
and uinε (x) = q

(
1

ε
d(x, ωin)

)
.

As ωin has no interior, d(x, ωin) > 0 for all x in R2, therefore the level lines {uinε = t} are empty for
1/2 < t < 1. Then, we define uε = max(uBε , u

in
ε ), which is equal to uBε near B, and uinε near ωin. In

particular, uε is smooth except on the set {uinε = uBε } which is given by {x | d(x,B) = d(x, ωin)}. In
our case, this set is negligible and coincides with some parabolic line between B and ωin (see Figure 4).
In addition, uε is a phase field profile i.e.

ε

2
|∇uε|2 +

1

ε
W (uε) = |∇uε|

√
2W (uε)

except on the parabolic line, and it satisfies uinε 6 uε and uε 6 uoutε = 1. By the coarea formula,

Pε,uinε ,uoutε
(uε) =

∫
R2

(
ε

2
|∇uε|2 +

1

ε
W (uε)

)
dx =

∫ 1

0

√
2W (t)P ({uε > t})dt.

For t ∈]0, 1[, there exists ε > 0 small enough such that {uε > t} remains far from the parabolic line
{d(x,B) = d(x, ωin)} and so

P ({uε > t}) =

{
H1({uBε = t}) +H1({uinε = t}) if 0 < t < 1/2

H1({uBε = t}) if 1/2 < t < 1.

As {uBε = t} is a ball and {uinε = t} is a stadium, we see that

H1({uBε = t})→ P (B) and H1({uinε = t})→ 2H1(ωin)

when ε→ 0. By the Dominated Convergence Theorem,

Pε,uinε ,uoutε
(uε)

ε→0−→
∫ 1/2

0

√
2W (t)

(
P (B) + 2H1(ωin)

)
dt+

∫ 1

1/2

√
2W (t)P (B)dt.
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Using the symmetry relation W (1− t) = W (t), we get that

lim
ε→0

Pε,uinε ,uoutε
(uε) = λ

(
P (B) +H1(ωin)

)
= λF1,ωin,∅(B).

The key point in this example is that the thin constraint ωin generates t-level lines only for t ∈]0, 1/2[,
but not for t ∈]1/2, 1[.

1.4 Approximation with fattened constraints
In view of the above discussion, and extending also to the Willmore regularity criterion, we propose as
a relaxation of the initial problem (1) the following model:

u∗ε = argmin
uinε,α6u6u

out
ε,α

Jε(u),

where Jε is a phase-field approximation of either the perimeter or the Willmore energy.

2 Convergence and relaxation results for the perimeter-based
formulation

The main theoretical results of this paper are given in the following theorems, whose proofs are detailed
in the subsequent sections. As mentioned in the introduction, no similar results are known for the
Willmore-based formulation.

Theorem 2.1 (Fat constraints case). Let Q be a bounded open subset of Rd, and let ωin, ωout and
uinε,α, u

out
ε,α be defined as in Sections 1.2.1 and 1.2.2. Then, for all α ∈]0, 1[,

Pε,uinε,α,uoutε,α
Γ− converges to λF2,ωin,ωout ,

with respect to the L1(Q)-topology as ε goes to 0.

Theorem 2.2 (Identification of the relaxation). With the notations above, for all E ⊂⊂ Q, we have

Pωin,ωout(E) = F2,ωin,ωout(E),

Remark 2.3. This result implies that for all Eε → E ⊂⊂ Q, we have

lim inf
ε→0

Pωin,ωout(Eε) > F2,ωin,ωout(E),

and for all E ⊂⊂ Q, there exists a sequence Eη → E such that

lim sup
η→0

Pωin,ωout(Eη) 6 F2,ωin,ωout(E).

2.1 Proof of Theorem 2.1: Γ− lim sup inequality
Let E be a set with finite perimeter in Q. We now give a construction of a sequence (uε)ε>0 which
converges in L1(Q) to the characteristic function of E and satisfies

lim sup
ε→0

Pε,uinε,α,uoutε,α
(uε) 6 λF2,ωin,ωout(E).

Let η > 0 and consider the set Eη = (E ∪ Ωinη ) r Ωoutη . Notice that for ε sufficiently small and
satisfying εα < η, the set Eη satisfies the fat constraint, i.e

Ωinεα ⊂ Eη ⊂ Qr Ωoutεα .

The canonical phase field function associated with Eη is

uηε(x) = q

(
d(x,Eη)

ε

)
,
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which satisfies phase field constraints, i.e. uinε,α 6 uηε 6 uoutε,α as soon as εα < η. Then, using the original
result of Modica and Mortola [37], we get that

Pε,uinε,α,uoutε,α
(uηε)

ε→0−→ λP (Eη, Q).

Let us now consider the sequence (vε)ε>0 defined by vε = u2εα

ε which satisfies vε
ε→0−→ 1E almost every-

where on Q. Indeed,

• if x ∈ Qr(E∪ωin) then d(x,E∪ωin) > 0 and there exists ε0 small enough such that d(x,E2ε0) > 0.
Then, for all ε < ε0, d(x,E2ε) > d(x,E2ε0) > 0, which leads to

vε(x)
ε→0−→ lim

s→+∞
q(s) = 0.

• if x ∈
◦
E rωout then d(x,E ∪ ωout) < 0, and there exists ε0 small enough such that d(x,E2ε0) < 0

and, for all ε < ε0, d(x,E2ε) 6 d(x,E2ε0) < 0, which implies that

vε(x)
ε→0−→ lim

s→−∞
q(s) = 1.

Without loss of generality, we can assume thanks to [34, Proposition 12.19] that Ld(∂E) = 0. Since, in
addition, |ωin| = |ωout| = 0, we have vε

ε→0−→ 1E almost everywhere on Q.
Furthermore, the sequence (vε) satisfies the constraints uinε 6 vε 6 uoutε as 2εα > εα, which implies
together with Lemma 2.4 below that

lim sup
ε→0

Pε,uinε,α,uoutε,α
(vε) 6 lim sup

η→0
lim sup
ε→0

Pε,uinε,α,uoutε,α
(uηε)

6 λ lim sup
η→0

P (Eη, Q) 6 λF2,ωin,ωout(E),

and the proof is complete.

Lemma 2.4. The sequence (Eη)η with Eη = (E ∪ Ωinη ) r Ωoutη satisfies

lim sup
η→0

P (Eη, Q) 6 P (E,Q) + 2Hd−1(E0 ∩ ωin) + 2Hd−1(E1 ∩ ωout)

Proof. See Section A.1 in the Appendix.

2.2 Proof of Theorem 2.1: Γ− lim inf inequality
Let (uε)ε>0 be a sequence such that

uε
ε→0−→ u in L1(Q)

and
lim inf
ε→0

Pε,uinε,α,uoutε,α
(uε) < +∞.

Using the same arguments as in the original proof of Modica and Mortola [36], we can prove that
there exists a Borel set E such that u = 1E and

lim inf
ε→0

Pε,uinε,α,uoutε,α
(uε) >

∫ +∞

−∞

√
2W (s) lim inf

ε→0
P ({uε > s}, Q)ds.

Using Lemma 2.5 below, it follows that

lim inf
ε→0

Pε,uinε,α,uoutε,α
(uε) >

∫ +∞

−∞

√
2W (s) lim inf

ε→0
P ({uε > s}, Q)ds

>
∫ 1

0

√
2W (s) lim inf

ε→0
P ({uε > s}, Q)ds

>
∫ 1

0

√
2W (s)

(
P (E,Q) + 2Hd−1(E0 ∩ ωin) + 2Hd−1(E1 ∩ ωout)

)
ds

= λF2,ωin,ωout(1E),

which completes the proof.
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Lemma 2.5. Assume that α ∈]0, 1[ and uε satisfies uinε,α 6 uε 6 uoutε,α. Then, for almost every s in [0, 1],
lim infε→0 P ({uε > s}, Q) > P (E,Q) + 2Hd−1(E0 ∩ ωin) + 2Hd−1(E1 ∩ ωout).

Proof. See section A.2.

2.3 Proof of Theorem 2.2
Take a sequence (Eε)ε>0 converging to E for the L1(Q) topology and satisfying

Pωin,ωout(Eε) < +∞.

Notice that for all ε > 0, we have ωin ⊂ E1
ε and ωout ⊂ E0

ε . Let α ∈]0, 1[ and consider the sequence (uε)ε
defined by uε = 1Eε for all ε > 0. It is not difficult to see that uε satisfies the constraints uinε,α 6 uε 6 uoutε,α

as soon as ε is sufficiently small. In particular, we can apply Lemma 2.5 to deduce that

lim inf
ε→0

Pωin,ωout(Eε) = lim inf
ε→0

P ({uε > 1/2}, Q) > F2,ωin,ωout(E).

Let E be a set with finite perimeter in Q. The sequence Eη = (E ∪ Ωinη ) r Ωoutη → E for the L1(Q)

topology. Furthermore, for all η > 0, Eη satisfies the constraints ωin ⊂ E1
η and ωout ⊂ E0

η , and Lemma
2.4 implies that

lim sup
η→0

Pωin,ωout(Eη) 6 F2,ωin,ωout(E),

which completes the proof of Theorem 2.2.

3 Numerical approximations for both perimeter- and Willmore-
based formulations

This section is devoted to the design of a numerical algorithm for the approximation of local minimizers
to the following phase field optimization problem:

u∗ε = argmin
u16u6u2

Jε(u), (2)

where Jε is a phase-field approximation of either the perimeter or the Willmore energy. More precisely,
we consider three different problems in space dimension d = 2 or d = 3 (with Q = [0, 1]d the computation
box, see the beginning of Section 1.2.2 for the other notations):

(P1) Perimeter with sharp constraints:

Jε(u) = Pε(u) =

∫
Q

(
ε|∇u|2 +

1

ε
W (u)

)
dx and u1 = uinε,+∞, u2 = uoutε,+∞.

(P2) Perimeter with fat constraints:

Jε(u) = Pε(u) =

∫
Q

(
ε|∇u|2 +

1

ε
W (u)

)
dx, and u1 = uinε,1/2, u2 = uoutε,1/2.

(P3) Willmore energy with sharp constraints:

Jε(u) =Wε(u) =
1

2ε

∫
Q

(
ε∆u− 1

ε
W ′(u)

)2

dx and u1 = uinε,+∞, u2 = uoutε,+∞.
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3.1 Approximation of phase field constraints
We assume that inner constraints ωin and outer constraints ωout belong to the box Q (see Section 1.2.1
for notations). In order to simplify the numerical construction of Ωinε,α and Ωoutε,α , we extend the constraint
only in the direction orthogonal to the slice plane Πn with a thickness of size εα (see Figure 5). A Fast
Marching method [42] can be used to compute the signed distance functions d(·,Ωinε,α) and d(·,Ωoutε,α) on
Q, and the phase field functions uinε,α and uoutε,α are simply estimated using the expressions

uinε,α = q

(
d(x,Ωinεα)

ε

)
and uoutε,α = 1− q

(
d(x,Ωoutεα )

ε

)
with q(s) =

1

2
(1− tanh(s/2)).

Notice that from a numerical point of view, it is sometimes easier to consider the following approximating
phase field constraints (see Section 1.2.1):

uinε,α =
1

2
1Ωin

εα
and uoutε,α = 1− 1

2
1Ωout

εα
.
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Figure 5: Examples of inner/outer constraints and the associated phase fields. On first row with α =∞,
on second row with α = 1/2. Left image: Ωinεα (in red) and Ωoutεα (in green), middle image: uinε,α, right
image: uoutε,α .

3.2 A projected gradient descent approach
We propose a classical iterative splitting approach to approximate (local) solutions of the problem:

u∗ε = argmin
u16u6u2

Jε(u).

The approach consists in alternatively applying one step of a L2 gradient descent for the energy Jε,
followed by a projection onto the set of inclusion-exclusion constraints. Therefore, we introduce an
approximating sequence (un)n defined recursively with an artificial time step δt as:

1. u0 is the phase field function u0 = q(d(x,E0)/ε), where E0 is an initial set built so as to satisfy
the constraints, i.e. Ωinεα ⊂ E0 ⊂ Rd r Ωoutεα .

2. un+1/2 is an approximation of v(δt), with v the solution to the Cauchy problem{
vt = −∇Jε(v) on Q
v(x, 0) = un(x);
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3. un+1 is the L2 orthogonal projection of un+1/2 onto the constraints, i.e.

un+1 = argmin
u

{
1

2δt

∫
Q

|u− un+1/2|2dx+ χu1,u2
(u)

}
= min(max(un+1/2, u1), u2).

Here, χu1,u2
is the constraints indicator function defined by

χu1,u2
(u) =

{
0 if u1 6 u 6 u2

+∞ otherwise.

Remark 3.1. Our formulation being non convex, the initial choice for E0 and the initial value of ε
have a strong influence on the final solution. The non convexity arises in particular from the locality
of the energies integrands. In practice, choosing initially a large value for ε reduces the influence of E0

for it tends to convexify the problem, in the sense that the locality of the energy is reduced and more
topological changes are allowed. Therefore, a possible strategy is to set a large initial value for ε and to
reduce it gradually during the evolution, in order to improve both accuracy and sharpness of the phase
field. This multiscale approach for ε gives more freedom for the initial choice of E0, and it is coherent with
the Γ-convergence of the approximating energies. In practice, however, for all the numerical experiments
presented in this paper, using a fixed value for ε seems to be enough to obtain consistent results.

3.3 Numerical schemes for the L2 gradient flow
Various numerical methods have been proposed to approximate the solution to the Cauchy problem:{

∂tv = −∇Jε(v) on Q
v(x, 0) = un(x).

For the particular case of Allen-Cahn equation, i.e. J = perimeter, there are efficient finite difference
methods [4, 19, 30], or finite element methods [27, 28, 23]. We opt as in [16, 24] for a Fourier method
with periodic boundary conditions on Q, which yields very accurate solutions and is computationally
light. The method is based on the following Euler implicit discretization in time:

un+1/2 − un = −δt∇Jε(un+1/2), (7)

which ensures that the energy Jε decreases. Indeed, the solution un+1/2 also satisfies

un+1/2 = argmin
v

{
1

2δt

∫
Q

(v − un)2dx+ Jε(v)

}
,

therefore
Jε(u

n+1/2) 6 1

2δt

∫
Q

(un+1/2 − un)2dx+ Jε(u
n+1/2) 6 Jε(u

n).

Schemes to solve (7) using either the perimeter or the Willmore energy are described in the two following
sections.

3.3.1 Perimeter case

For the perimeter case, the L2 gradient flow of Pε reads as the rescaled Allen Cahn equation

∂tv = ε∆v − 1

ε
W ′(v).

Equation (7) gives that un+1/2 − un = δt

(
ε∆un+1/2 − 1

ε
W ′(un+1/2)

)
, thus

(Id − δt∆)un+1/2 = un +
δt
ε
W ′(un+1/2).
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It follows that un+1/2 is a fixed point of

φP (v) = (Id − δtε∆)−1

[(
un +

δt
ε
W ′(v)

)]
.

Moreover, as φ′P (v)(w) = (Id − δtε∆)−1 δt
εW

′′(v)w, it is not difficult to see that

‖φ′P (v)‖ 6 δt
ε
c2 where c2 = sup

s∈[0,1]

{|W ′′(s)|}.

Typically, when W (s) = 1
2s

2(1 − s)2, we have c2 = 1. We then deduce that the fixed point iteration
converges as soon as δt < ε. In practice, the operator (Id− δtε∆)−1 can be computed in Fourier domain
using the Fast Fourier Transform and by remarking that its associated symbol simply reads as

σP (ξ) =
1

1 + 4π2εδt|ξ|2
.

3.3.2 Case of Willmore energy

In the case of the Willmore energy, notice that the L2-gradient flow of Wε reads as{
∂tv = ∆µ− 1

ε2W
′′(v)µ,

µ = 1
εW
′(v)− ε∆v,

and Equation (7) becomes{
un+1/2 = un + δt

[
∆µn+1/2 − 1

ε2W
′′(un+1/2)µn+1/2

]
µn+1/2 = 1

εW
′(un+1/2)− ε∆un+1/2.

Obviously, (un+1/2, µn+1/2) is a fixed point of

φW

(
u
µ

)
=

(
Id −δt∆

+ε∆ Id

)−1(
un − δt

εW
′′(u)µ

1
ε2W

′(u)

)
,

where the operator
(

Id −δt∆
+ε∆ Id

)−1

=
(
Id + δtε∆

2
)−1

(
Id δt∆
−ε∆ Id

)
can be easily computed in Fourier

domain. Note that the fixed point iterative scheme is locally stable if

δt 6 C min
{
ε3,

ε

N2

}
where N is the number of Fourier modes in each direction and C is a constant which depends only on
the double well potential W [12].

As above, the operator
(

Id −δt∆
+ε∆ Id

)−1

can be computed in Fourier domain using Fast Fourier

Transform and observing that its associated symbol simply reads as:

σW(ξ) =
1

1 + 16π4δtε|ξ|4
(

1 −4π2δt|ξ|2
4π2ε|ξ|2 1

)
.

3.4 A first experiment in dimension 2
In this first example, we compare various results obtained by solving numerically problems (P1), (P2),
and (P3) with the following numerical parameters: N = 29, and ε = 1.5/N . Concerning time-step, we
set δt = ε for problems (P1), (P2) which involve the perimeter, and δt = 1/N3 for problem (P3) where
the Willmore energy is used as regularization criterion.

In the first picture (top left) of figure 6, inner constraints are shown in red and outer constraints in
green. The second picture (top right) shows the reconstruction obtained with the sharply constrained
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perimeter where the boundary of the optimal set E∗ is plotted in black. We can observe that E∗ is not
smooth and does not satisfy the constraints. For the perimeter with fat constraints (problem (P2)) the
numerical solution is plotted on the third picture (bottom left). As expected, E∗ satisfies the constraints
but the use of constraints fattening can be seen on the numerical solution.

Lastly, the last example on the bottom right figure shows a result obtained with the Willmore energy
(problem (P3)). The reconstructed curve is visually smooth, and it satisfies the constraints despite they
are not fattened.

Another numerical experiment using the Willmore energy is plotted on Figure 7, for which we use
non complementary inner-outer constraints, i.e. ωinn ∩ ωoutn 6= Πn. As explained in the introduction, our
approach does not require that the two constraints be mutually complementary. Again, the reconstructed
surface looks smooth and natural, and it satisfies the constraints (right picture in Figure 7).

To conclude, we can deduce from this first set of experiments that the Willmore approach allows the
reconstruction of very natural sets, and we will focus on problem (P3) for 3D cases in the sequel.
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Figure 6: Reconstruction example with three different methods: (top left) input data: interior/exterior
constraints - (top right): reconstruction using perimeter with sharp constraints - (bottom left): recon-
struction using perimeter with fat constraints - (bottom right): reconstruction using the constrained
Willmore energy.

3.5 3D numerical experiments using Willmore energy
We present here a few numerical tests in space dimension 3 using the reconstruction with the constrained
Willmore energy from a given set of 2D slices. In each experiment we used N = 27, ε = 1.5/N and
δt = 1/N3.

In the experiment of Figure 8, we use as initial data two sets of 2D slices of the Standford Bunny: as
can be observed, the reconstruction is effective even when the number of slices is low, although in this
latter case rabbit’s feet cannot be reconstructed since the associated information is fully missing in the
slices input data.
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Figure 7: Reconstruction example where interior-exterior constraints are not complementary (i.e., ωinn ∪
ωoutn 6= Πn). Left: input data constraints and initial reconstructed set E0 - Right: final reconstructed
surface using the constrained Willmore energy.

Figure 8: Two experiments with Stanford bunny using either 24 slices (first line) or 12 slices (second
line). On each row, the given interior constraints are shown on the left column, the initial reconstruction
E0 is shown in middle, and the final reconstructed surface is provided on the right column. Observe on
the second line that bunny’s feet cannot be properly reconstructed since they are missing in the initial
cross-sections.

In the second example (see Figure 9), we test how the method behaves with respect to topology
changes between slices, each slice being either a circle of the union of two circles. Similar configurations
are very common in medical imaging. Our experiment illustrates the efficiency of the reconstruction
using Willmore energy, which yields a surface close to branching cylinders when the density of slices
is large enough. In contrast, even with many slices, using perimeter as regularization energy will yield
undesirable surfaces made of glued catenoids. Remark also that the Willmore energy ensures a smooth
closure of the surface at top and bottom, whereas minimizing with the perimeter and fat constraints
yields a surface with almost two disks as closing caps.

The last example shows an application to the reconstruction of real MRI data (Figure 10), which was
the initial main motivation of this work. Although no information is provided about the topology of the
surface, using the constrained Willmore energy yields a very realistic solution.
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Figure 9: Reconstruction of branching cylinders. Top: initial data (inner constraints). Bottom left:
reconstruction using perimeter and fat constraints. Bottom right: reconstruction using Willmore energy
and fat constraints.

4 Conclusion
We propose in this paper a phase field model for the consistent reconstruction of d-dimensional surfaces
from (d − 1)-dimensional slices, using approximations of either the Willmore energy or the perimeter
as a regularization criterion. A crucial property of the phase field approximation in this context is
that constraints admit a linear obstacle formulation uin 6 u 6 uout, which is very useful both for
the convergence analysis and the design of our numerical scheme. Due to the dimensionality of the
constraints, we show that no consistency can be expected unless the constraints are fattened in the phase
field model. In the particular case of perimeter, we prove that the associated phase field approximation
with fat constraints Γ-converges to some L1-relaxation of perimeter with sharp constraints. Our approach
is flexible enough so that similar convergence results can be expected for more general, not necessarily
parallel and not necessarily (d − 1)-dimensional, input slices, e.g. non planar slices, slices living on a
manifold, volumetric point clouds, etc.

In the case of the Willmore energy as regularization criterion, a fine characterization of the limit
energy remains an open problem due to the non locality of the L1-relaxation of the (unconstrained)
Willmore energy.

We propose efficient schemes for the numerical approximation of critical points of both constrained
phase-field models, either Willmore-based or perimeter-based. Our schemes are not restricted to planar
or parallel constraint slices, as illustrated in Figure 11 where non planar slices or volumetric point clouds
are used as constraints. We also emphasize that constraints need not be complementary, i.e. some
freedom can be allowed between inner and outer constraints (see figure 7). This is potentially very useful
for considering noisy or statistical data for which uncertainties arise naturally.

The extension of our approach to multiphase and/or anisotropic situations is a work in progress. Pre-
liminary reconstruction results of multiphase surfaces using Willmore energy is shown in Figure 12, which
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Figure 10: Three different views of a reconstruction from real MRI data - Left: input data (interior
constraints) - Right : reconstructed surface using the constrained Willmore energy.

opens interesting perspectives for the reconstruction of segmented data. More generally, we strongly
believe that our method is very promising for numerous applications to surface reconstruction or inter-
polation.
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Figure 11: Possible adaptations of the method - Left : interior constraints - Right : reconstructed surface
- First line with non parallel bowed surfaces - Second line : with point clouds filling the interior of the
domain.

A Technical proofs

A.1 Proof of lemma 2.4
Let η > 0 and consider the sequence (Eη)η>0 defined by Eη = (E ∪Ωinη )rΩoutη . We will now prove that

lim sup
η→0

P (Eη, Q) 6 P (E,Q) + 2Hd−1(E0 ∩ ωin) + 2Hd−1(E1 ∩ ωout) (8)

The idea consists in introducing a partition of Q = B0 ∪ (∪n,kBinn,k) ∪ (∪n,`Boutn,` ) where the boxes
Binn,k and Boutn,` are associated with ωinn,k and ωoutn,` , respectively. We recall that ωin ∩ Πn and ωout ∩ Πn

both are a finite union of disjoint, connected, open, bounded and Lipschitz sets in Πn denoted as ωinn,k
and ωoutn,` , respectively.

More precisely, for each (n, k, `), we can define respectively (see definition 6) the boxes Binn,k = Ωinn,k,h
and Boutn,` = Ωoutn,`,h where h > 0 is assumed to be well chosen (see Lemma A.1 below). We define also the

free part box B0 = Qr
(

(∪n,kBinn,k) ∪ (∪n,kBoutn,k)
)
. For convenience, we introduce the boxes {B̃m} as a

simple reindexation of boxes Binn,k and Boutn,` , i.e.

Q = B0 ∪

⋃
n,k

Binn,k

 ∪
⋃
n,`

Boutn,`

 =
⋃
m

B̃m.

We use the following lemma to set h > 0 (proof is given in Section A.3 of Appendix):

Lemma A.1. There exists h > 0 such that the family of sets {B̃m}m is pairwise disjoint and, for all m,
Hd−1(E1/2 ∩ B̃m) = ∅.
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Figure 12: Possible adaptations of the method in a multiphase context - Reconstruction of two surfaces
E1 (red surface) and E2 (green surface) with two sets of inclusion-exclusion constraints ; First line with
E1 ∩ E2 = ∅ - Second line with E1 ⊂ E2 ; Left - inclusion constraints - Right : reconstructed surfaces.

Therefore h is independent of ε and (n, k, `), and it satisfies that each intersection of two boxes is
empty and for all (n, k, `) and Hd−1(E1/2 ∩ ∂Binn,k) = Hd−1(E1/2 ∩ ∂Boutn,` ) = 0. Then, as {B̃m}m is a
pairwise disjoint family of sets, we have P (Eη, Q) =

∑
m>0 P (Eη, B̃m).

Inequality (8) will be established locally by considering the following three cases:

1) if B̃m = B0, prove that lim supη→0 P (Eη, B̃m) 6 P (E, B̃m).

2) if B̃m = Binn,k, prove that lim supη→0 P (Eh, B̃m) 6 P (E, B̃m) + 2Hd−1(ωinn,k ∩ E0).

3) if B̃m = Boutn,` , prove that lim supη→0 P (Eh, B̃m) 6 P (E, B̃m) + 2Hd−1(ωoutn,` ∩ E1).

We then gather these three cases to have a global inequality.

1) On the free part: B̃m = B0.
In this case, the result follows immediately as P (Eη, B0) = P (E,B0).

2) Near an inside constraint: B̃m = Binn,k.
First, notice that P (Eη, B̃m) = P (E∪Ωinn,k,η, B̃m). We use the classical following inequality for perimeter
(see [2, Proposition 3.38]):

Proposition A.2.
P (A ∪B,Ω) + P (A ∩B,Ω) 6 P (A,Ω) + P (B,Ω).
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Taking A = E, B = Ωinn,k,η and Ω = B̃m, we obtain

P (E ∪ Ωinn,k,η, B̃m) 6 P (E, B̃m) + P (Ωinn,k,η, B̃m)− P (E ∩ Ωinn,k,η, B̃m)

We can also apply the following lemma (see Section A.3 for a proof) in the case A = E ∩ Ωinn,k,η and
Π = Πn.

Lemma A.3. Let A be a set with finite perimeter and Π be a hyperplane of Rd. Then

P (A) > 2Hd−1(Π ∩ (A1 ∪A1/2)).

As E ∩ Ωinn,k,η is included in B̃m (except possibly along ∂nωinn,k which has zero Hd−1-measure), we have
P (E ∩ Ωinn,k,η, B̃m) = P (E ∩ Ωinn,k,η). Notice also that on Πn, we have (E ∩ Ωinn,k,η)1 = E1 ∩ Ωinn,k,η up to
a Hd−1- negligible set because Ωinn,k,η is open. Indeed, using the notation

θrx(A) =
|A ∩B(x, r)|
|B(x, r)| ,

we have:

• if x ∈ Πn ∩ Ωinn,k,η then θrx(E ∩ Ωinn,k,η) = θrx(E);

• if x ∈ Πn ∩ (Ω r Ωinn,k,η) then θrx(E ∩ Ωinn,k,η) 6 θrx(Ωinn,k,η) = 0 for r small enough;

• otherwise x belongs to ∂Ωinn,k,η ∩Πn = ∂nω
in
n,k which has zero Hd−1-measure.

Similarly we have (E ∩ Ωinn,k,η)1/2 = E1/2 ∩ Ωinn,k,η. Consequently, we obtain

Hd−1

(
Πn ∩

(
(E ∩ Ωinn,k,η)1 ∪ (E ∩ Ωinn,k,η)1/2

))
= Hd−1

(
Πn ∩ Ωinn,k,η ∩ (E1 ∪ E1/2)

)
= Hd−1(ωinn,k ∩ (E1 ∪ E1/2)).

which shows that P (E ∩ Ωinn,k,η, B̃m) > 2Hd−1(ωinn,k ∩ (E1 ∪ E1/2)), and then

P (E ∪ Ωinn,k,η, B̃m) 6 P (E, B̃m) + P (Ωinn,k,η, B̃m)− 2Hd−1(ωinn,k ∩ (E1 ∪ E1/2)).

Finally, taking the lim sup when η → 0 and using the following lemma (see Section A.3 for a proof) leads
to

lim sup
η→0

P (E ∪ Ωinn,k,η, B̃m) 6 P (E, B̃m) + 2Hd−1(ωinn,k)− 2Hd−1(ωinn,k ∩ (E1 ∪ E1/2))

6 P (E, B̃m) + 2Hd−1(ωinn,k ∩ E0).
,

as E1 ∪ E1/2 ∪ E0 is a Hd−1-almost partition of Rd.

Lemma A.4. The fat constraints Ωinn,k,η and Ωoutn,`,η satisfy P (Ωinn,k,η, B
in
n,k)

η→0−→ 2Hd−1(ωinn,k) and P (Ωoutn,`,η, B
out
n,` )

η→0−→
2Hd−1(ωoutn,` ).

3) Near an outside constraint: B̃m = Boutn,` .
There holds P (Eη, B̃m) = P (E r Ωoutn,`,η, B̃m), and taking the complementary set in Q leads to

P (E r Ωoutn,`,η, B̃m) = P (E ∩ (Qr Ωoutn,`,η), B̃m) = P ((Qr E) ∪ Ωoutn,`,η, B̃m)

6 P ((Qr E), B̃m) + P (Ωoutn,`,η, B̃m)− P ((Qr E) ∩ Ωoutn,`,η, B̃m).

We use exactly the same argument as in the previous case with Qr E instead of E and we obtain

lim sup
η→0

P (E r Ωoutn,`,η, B̃m) 6 P (Qr E, B̃m) + 2Hd−1(ωoutn,` ∩ (Qr E)0)

6 P (E, B̃m) + 2Hd−1(ωoutn,` ∩ E1).
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From local to global
Then we have

lim sup
η→0

P (Eη, Q) = lim sup
η→0

∑
m>0

P (Eη, B̃m)

6 lim sup
η→0

P (Eη, B0) +
∑
n,k

lim sup
η→0

P (Eη, B
in
n,k,η) +

∑
n,`

lim sup
η→0

P (Eη, B
out
n,`,η)

6 P (Eη, B0) +
∑
n,k

(
P (E,Binn,k) + 2Hd−1(ωinn,k ∩ E0)

)
+
∑
n,`

(
P (E,Boutn,` ) + 2Hd−1(ωoutn,` ∩ E1)

)
6 P (E,Ω) + 2Hd−1(E0 ∩ ωin) + 2Hd−1(E1 ∩ ωout).

A.2 Proof of Lemma 2.5
As in the proof of the Γ-limsup, we consider a partition of the computation box Q = B0 ∪

(⋃
n,k B

in
n,k

)
∪(⋃

n,`B
out
n,`

)
=
⋃
m B̃m and we will first prove the lemma locally in each box B̃m and then globally.

A.2.1 Near an inside constraint B̃m = Binn,k

Let us look at one constraint ωinn,k and its box B̃m = Binn,k. As uε → 1E in L1 we have, up to a
subsequence, for almost every s ∈ [0, 1]

{uε > s} ε→0−→ E in measure in Q.

Due to Pε,uinε,α,uoutε,α
(uε) < +∞, we have uinε 6 uε and then {uinε > s} ⊂ {uε > s}. Notice that

uinε (x) > s ⇔ d(x,Ωinn,k,εα) 6 εq−1(s).

• If s 6 q(0) = 1/2 then εq−1(s) > 0 and so, for every εα < h,

Ωinn,k,εα ⊂ {x ∈ Bn,k | d(x,Ωinn,k,εα) 6 εq−1(s)}.

That means Ωinn,k,εα is an open subset enclosing ωinn,k and separating Binn,k into two parts (see Figure
13 [left])

B+
n,k =

{
(y, z) ∈ (Rd−1 × R) ∩Q

∣∣∣ y ∈ ωinn,k, z > 0, |z| < εα|dn(y, ωinn,k)|
}

and B−n,k =
{

(y, z) ∈ (Rd−1 × R) ∩Q,
∣∣∣ y ∈ ωinn,k, z < 0, |z| < εα|dn(y, ωinn,k)|

}
.

We denote Sn,k,ε = Ωinn,k,εα .

• If s > q(0) = 1/2 then εq−1(s) < 0 and so {x ∈ B̃m | d(x,Ωinn,k,εα) 6 εq−1(s)} does not enclose
necessarily ωinn,k anymore (see Figure 13 [right]). Thus we have to reduce Bn,k in order to be in the
previous case (see Figure 14). Let δ > 0 and consider Binn,k,δ = Ωinn,k,εα0 ,δ

and Sn,k,ε,δ defined by

Ωn,k,εα,δ =
{

(y, z) ∈ (Rd−1 × R) ∩Q, y ∈ ωinn,k, |dn(y, ωinn,k)| > δ, |z| < εα|dn(y, ωinn,k)|
}
,

and Sn,k,ε,δ =
{

(y, z) ∈ (Rd−1 × R) ∩Q, y ∈ ωinn,k, |z| < `ε, |dn(y, ωinn,k)| > δ
}

where `ε = δεα − εq−1(s)
√

1 + ε2α (see Figure 14). For ε small enough, Sn,k,ε,δ is an open subset
enclosing ωinn,k ∩ Ωn,k,εα,δ and separating Binn,k,δ into two parts B+

n,k,δ and B−n,k,δ.
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ωin
n

Ωin
n,εα

Bn

{uε > s}
Bn

Ωn,εα

{d(·,Ωn,εα) 6 εq−1(s)}

{uε > s}

ωin
n

Figure 13: Level sets.

δ

δεα

lε

εq−1(s)

Bn

Ωn,εα

{d(·,Ωn,εα) 6 εq−1(s)}

Sn,ε,δ

Bn,δ

ωinn

Figure 14: The small open Sn,k,ε,δ for the second case.

In both cases, the proof is the same and we denote B and S to treat both cases together (Binn,k and
Sn,k,ε for the first and Binn,k,δ and Sn,k,ε,δ for the second). As S is an open subset included in {uε > s} and
containing ωinn,k ∩B the interface between B+ and B−, we have the following relation on the perimeter:

P ({uε > s}, B) = P ({uε > s}, B+) + P ({uε > s}, B−)
= P ({uε > s} ∪B−, B+) + P ({uε > s} ∪B+, B−)
= P ({uε > s} ∪B−, B) + P ({uε > s} ∪B+, B).

(9)

Moreover, recall that for almost every s, {uε > s} ε→0−→ E in measure in Q. Then, it holds that
{uε > s}∪B+ ε→0−→ E ∪B+ in measure in B, and {uε > s}∪B− ε→0−→ E ∪B− in measure in B. So, taking
the lim inf in (9), we have

lim inf
ε→0

P ({uε > s}, B) > P (E ∪B−, B) + P (E ∪B+, B). (10)

In the case B = Binn,k, it means that lim infε→0 P ({uε > s}, Binn,k) > P (E ∪ B−n,k, Binn,k) + P (E ∪
B+
n,k, B

in
n,k). In the case of B = Binn,k,δ, let us consider (δp) a decreasing sequence converging to 0, then

Binn,k,δp ⊂ Binn,k,δp+1
⊂ Binn,k, P (E ∪B−n,k,δp , Bn,k,δp) = P (E ∪B−n,k, Bn,k,δp) and P (E ∪B+

n,k,δp
, Bn,k,δp) =

P (E ∪ B+
n,k, Bn,k,δp). Using the increasing limit property of measures Binn,k =

⋃
p∈N

Bn,k,δp for A 7→

P ({uε > s}, A), A 7→ P (E ∪ B+
n,k, A) and A 7→ P (E ∪ B−n,k, A), we can take the limit p → +∞, and

thus P ({uε > s}, Bn,k,δp)
p→+∞−→ P ({uε > s}, Binn,k), P (E ∪ B−n,k, Bn,k,δp)

p→+∞−→ P (E ∪ B−n,k, Binn,k), and
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P (E ∪B+
n,k, Bn,k,δp)

p→+∞−→ P (E ∪B+
n,k, B

in
n,k). So, taking the lim inf on δp → 0 in (10), we have

lim inf
δ→0

lim inf
ε→0

P ({uε > s}, Bn,k,δ) > P (E ∪B−n,k, Bn) + P (E ∪B+
n,k, B

in
n,k).

Noticing that the quantities are increasing as δp and ε decrease to 0, we have:

lim inf
δ→0

lim inf
ε→0

P ({uε > s}, Bn,k,δ) = sup
p∈N

sup
ε>0

inf
ε′<ε

P ({uε′ > s}, Bn,k,δp)

= sup
ε>0

sup
p∈N

inf
ε′<ε

P ({uε′ > s}, Bn,k,δp)

6 sup
ε>0

inf
ε′<ε

sup
p∈N

P ({uε′ > s}, Bn,k,δp)

= sup
ε>0

inf
ε′<ε

P ({uε′ > s}, Binn,k)

= lim inf
ε→0

P ({uε > s}, Binn,k).

Thus, (10) is valid for almost every s in [0, 1] with B = Binn,k. We use the following lemma (see Section A.3
for a proof).

Lemma A.5. Let E be a set with locally finite perimeter. If Bn,k is a box enclosing ωinn,k, then P (E ∪
B−n,k, Bn,k) + P (E ∪B+

n,k, Bn,k) = P (E,Bn,k) + 2Hd−1(E0 ∩ ωin ∩Bn,k).

We finally obtain lim inf
ε→0

P ({uε > s}, Binn,k) > P (E,Binn,k) + 2Hd−1(E0 ∩ ωin ∩Binn,k).

A.2.2 Near an outside constraint B̃m = Boutn,`

For a constraint ωoutn,` and its associated box Boutn,` , we apply the "inside constraint" result to the comple-
mentary set in Q. As uε → 1E in L1(Q) we have, up to a subsequence, for almost every s ∈ [0, 1]

Qr {uε > s} ε→0−→ Qr E in measure in Q.

The constraint uε 6 uoutε leads us to Q r {uoutε > s} ⊂ Q r {uε > s}. The same proof using these
complementary sets shows that

lim inf
ε→0

P (Qr {uε > s}, Boutn,` ) > P (Qr E,Boutn,` ) + 2Hd−1((Qr E)0 ∩ ωout ∩Boutn,` ).

Notice also that as for any Borel set A, Q r A coincides with Boutn,`
r A in Boutn,` , we have P (A,Bn) =

P (QrA,Bn). Moreover, as (Qr E)0 ∩Boutn,` = E1 ∩Boutn,` implies that

lim inf
ε→0

P ({uε > s}, Boutn,` ) > P (E,Boutn,` ) + 2Hd−1(E1 ∩ ωoutn,` ∩Boutn,` ).

A.2.3 On the free part B̃m = B0

As uε → 1E in L1(Q), then, for almost every s, {uε > s} ε→0−→ E in measure in B0, and lim infε→0 P ({uε >
s}, B0) > P (E,B0).

A.2.4 From local to global.

As (B̃m) are pairwise disjoint, we can gather the results of the previous subsections in one inequality:

lim inf
ε→0

P ({uε > s}, B̃m) > P (E, B̃m) + 2Hd−1(E0 ∩ ωin ∩ B̃m) + 2Hd−1(E1 ∩ ωout ∩ B̃m).

Remembering we have chosen our boxes B̃m in order to have Hd−1(E1/2 ∩ ∂B̃m) = 0 and knowing that{
{ωin ∩ B̃m}m, {ωout ∩ B̃m}m

}
is a pairwise disjoint family of set covering ωin and ωout, we can write

lim inf
ε→0

P ({uε > s}, Q) > lim inf
ε→0

P ({uε > s},
⋃
m>0

B̃m) = lim inf
ε→0

∑
m>0

P ({uε > s}, B̃m)

>
∑
m

lim inf
ε→0

P ({uε > s}, B̃m)

>
∑
m

[P (E, B̃m)+2Hd−1(E0∩ωin∩B̃m)+2Hd−1(E1∩ωout∩B̃m)]

= P (E,Q) + 2Hd−1(E0 ∩ ωin) + 2Hd−1(E1 ∩ ωout),
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which concludes the proof of lemma 2.5.

A.3 Sublemmas
Lemma (Lemma A.1). There exists h > 0 such that the family of sets {B̃m}m is pairwise disjoint and,
for all m, Hd−1(E1/2 ∩ B̃m) = ∅.

Proof. Firstly, consider B̃m = Binn,k. Remember h0 > 0 was defined in (6) to ensure that the family
{Ωinn,k,h,Ωoutn,`,h}n,k,` is pairwise disjoint. Using the affine system coordinates of Πn, let ϕn,k : Ωinn,k,h0

→ R

be defined by ϕn,k(y, z) =
|z|

|dn(y, ωinn,k)| . The function ϕn,k is bounded by h0 and its level set {ϕn,k <

εα} is exactly the open set Ωinn,k,εα . However it is only locally Lipschitz continuous and we want to

apply a result requiring a Lipschitz continuous function. Let δ > 0 and Ωinn,k,h0,δ
=
{

(y, z)
∣∣∣ y ∈

ωinn,k, |dn(y, ωinn,k)| > δ, |z| < h0|dn(y, ωinn,k)|
}
. The restriction of ϕn,k to Ωinn,k,h0,δ

is 1/δ2-Lipschitz

continuous and then, using [2, Lemma 2.95 p.102] and |E1/2| = 0, we have, for almost every ε such that
0 < εα < h0,

Hd−1
(
E1/2 ∩ Ωinn,k,h0,δ ∩ ϕ−1

n,k({εα})
)

= 0. (11)

Let (δp) be a decreasing sequence converging to 0 and Nn,k,p the negligible set of ]0, h0[ where (11) is
not true. Then, except for the negligible set Nn,k =

⋃
p∈N

Nn,k,p, we have

Hd−1
(
E1/2 ∩ Ωinn,k,h0,δp ∩ ϕ−1

n,k({εα})
)

= 0

and Ωinn,k,h0,δp
⊂ Ωinn,k,h,δp+1

. Thus, by increasing limit Ωinn,k,h0
=
⋃
p∈N

Ωinn,k,h0,δp , we recover, for all

εα ∈]0, h0[rNn,k, Hd−1
(
E1/2 ∩ Ωinn,k,h0

∩ ϕ−1
n,k({εα})

)
= 0. We have the same result with Ωoutn,`,h0

and a
similar function ϕn,` with a negligible set denoted by Nn,`.

Secondly, since there are finitely many indexes n, k, `, we can define a negligible setN =
(⋃

n,kNn,k

)
∪(⋃

n,`Nn,`

)
and choose h ∈]0, h0[rN such that the equality above holds for all n, k, ` with εα = h. We

have then Binn,k = Ωinn,k,h0
∩ ϕ−1

n,k({h}) = Ωinn,k,h and Boutn,` = Ωoutn,`,h0
∩ ϕ−1

n,`({h}) = Ωoutn,`,h which satisfies
Hd−1(E1/2 ∩ ∂B̃m) = 0 as expected, for all m, independently of ε.

Lemma (Lemma A.3). Let A be a bounded set with finite perimeter and Π be a hyperplane of Rd. Then
P (A) > 2Hd−1(Π ∩ (A1 ∪A1/2)).

Proof. We denote by Π+ and Π− the open half-spaces whose boundary is Π. If |A∩Π+| > 0 and |A∩Π−| >
0 then, using [34, Proposition 19.22] we have P (A,Π+) = P (A∩Π+,Π+) > Hd−1

(
∂∗(A∩Π+)∩Π

)
and

P (A,Π−) = P (A ∩Π−,Π−) > Hd−1
(
∂∗(A ∩Π−) ∩Π

)
.

We recall that for a set A with locally finite perimeter, we denote ∂∗A the set of points for which
the generalised normal ν exists. Using [34, Theorem 16.3] we obtain ∂∗(A ∩ Π+) =

(
(Π+)1 ∩ ∂∗A

)
∪(

A1 ∩ ∂∗(Π+)
)
∪ {νA = νΠ+} and ∂∗(A∩Π−) =

(
(Π−)1 ∩ ∂∗A

)
∪
(
A1 ∩ ∂∗(Π−)

)
∪ {νA = νΠ−}, where

{νA = νΠ+} = {x ∈ ∂∗A ∩ ∂∗(Π+) | νA(x) = νΠ+(x)}.
Moreover, as we consider open half-spaces, we have (Π+)1 = Π+, (Π−)1 = Π−, ∂∗(Π+) = ∂∗(Π−) = Π

and νΠ+ = −νΠ− . Furthermore,

Hd−1
(
∂∗(A ∩Π+) ∩Π

)
= Hd−1(A1 ∩Π) +Hd−1({νA = νΠ+})

and Hd−1
(
∂∗(A ∩Π−) ∩Π

)
= Hd−1(A1 ∩Π) +Hd−1({νA = −νΠ+}).
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Denoting e a normal vector to Π, we have {νA = νΠ+} ∪ {νA = −νΠ+} = Π ∩ {νA = ±e} and, using
[34, Proposition 10.5] as in the previous lemma, we obtain

Hd−1
(
∂∗A ∩H

)
= Hd−1({νA = νΠ+}) +Hd−1({νA = −νΠ+}).

Therefore

P (A) = P (A,Π+) + P (A,Π−) +Hd−1(∂∗A ∩Π)
= P (A ∩Π+,Π+) + P (A ∩Π−,Π−) +Hd−1(∂∗A ∩Π)

> Hd−1
(
∂∗(A ∩Π+) ∩Π

)
+Hd−1

(
∂∗(A ∩Π−) ∩Π

)
+Hd−1(∂∗A ∩Π)

= 2Hd−1(A1 ∩Π) +Hd−1({νA = νΠ+}) +Hd−1({νA = −νΠ+}) +Hd−1(∂∗A ∩Π)
= 2Hd−1(A1 ∩Π) + 2Hd−1(∂∗A ∩Π)

= 2Hd−1
(

(A1 ∪ ∂∗A) ∩Π
)
.

To conclude, we use the fact that ∂∗A = A1/2 up to a Hd−1-negligible set.
Notice that if |A ∩Π+| = 0 then A1 ∩Π+ = ∅ and {νA = νΠ+} = ∅. The proof remains valid in that

case. The same holds if |A ∩ Π−| = 0. If both |A ∩ Π+| = 0 and |A ∩ Π−| = 0 then |A| = 0 and the
statement of the lemma is clearly true.

Lemma (Lemma A.4). The fat constraints Ωinn,k,η and Ωoutn,`,η satisfy P (Ωinn,k,η, B
in
n,k)

η→0−→ 2Hd−1(ωinn,k)

and P (Ωoutn,`,η, B
out
n,` )

η→0−→ 2Hd−1(ωoutn,` ).

Proof. The key point is that the boundary of Ωinn,k,η is Lipschitz continuous and we can write it as two
graphs over ωinn,k. Indeed, we recall that Ωinn,k,η = {(y, z) | y ∈ ωinn,k, |z| < η|dn(y, ωoutn,k)|}. Introducing,
for y ∈ Πn, f±η (y) = ±ηdn(y, ωinn,k), we have

∂Ωinn,k,η = graph(f+
η , ω

in
n,k) ∪ graph(f−η , ω

in
n,k) ∪ ∂nωinn,k,

where sets are disjoint. The functions f+
η and f−η are differentiable Hd−1-almost everywhere on Πn and

as Hd−1(∂nω
in
n,k) = 0, we have

Hd−1(∂Ωinn,k,η) =

∫
ωinn,k

√
1 + |∇f+

η |2dHd−1 +

∫
ωinn,k

√
1 + |∇f−η |2dHd−1.

Moreover, |∇dn(y, ωinn,k)| 6 1 so
√

1 + |∇f±η |2 η→0−→ 1. The set ωinn,k is bounded so, by Lebesgue

dominated convergence theorem, we haveHd−1(∂Ωinn,k,η)
η→0−→ 2Hd−1(ωinn,k). Recall that P (Ωinn,k,η, Bn,k) =

Hd−1(∂Ωinn,k,η ∩Bn,k) = Hd−1(∂Ωinn,k,η) because Ωinn,k,η ⊂ Bn,k and
∂Ωinn,k,η ∩ ∂Bn,k = ∂nω

in
n,k has zero Hd−1-measure. We have exactly the same result for Ωoutn,` and then,

the lemma is proved.

Lemma (Lemma A.5). Let E be a set with locally finite perimeter. If Bn,k is a box enclosing ωinn,k, then
P (E ∪B−n,k, Bn,k) + P (E ∪B+

n,k, Bn,k) = P (E,Bn,k) + 2Hd−1(E0 ∩ ωin ∩Bn,k).

Proof. Using [34, Theorem 16.3], we have

P (E ∪B−n,k, Bn,k) = P (E, (B−n,k)0 ∩Bn,k) + P (B−n,k, E
0 ∩Bn,k) +Hd−1

(
{νE = νB−n,k

} ∩Bn,k
)

where νE stands for the generalized exterior normal to E and

{νE = νB−n,k
} = {x ∈ ∂∗E ∩ ∂∗B−n,k | νE(x) = νB−n,k

(x)}

with ∂∗E the set of points where νE exists. Notice, for set with finite perimeter, ∂∗E = E1/2 modulo a
Hd−1-negligible set. As we work with open boxes Bn,k, we have (B−n,k)0∩Bn,k = B+

n,k and ∂
∗B−n,k∩Bn,k =

ωinn,k. We define e the unit vector orthogonal to ωinn,k pointing in B+
n,k. Then, we can write

P (E ∪B−n,k, Bn,k) = P (E,B+
n,k) +Hd−1(ωinn,k ∩ E0) +Hd−1

(
{x ∈ ∂∗E ∩ ωinn,k | νE(x) = e}

)
. (12)
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Similarly, we have

P (E ∪B+
n,k, Bn,k) = P (E,B−n,k) +Hd−1(ωinn,k ∩ E0) +Hd−1

(
{x ∈ ∂∗E ∩ ωinn,k | νE(x) = −e}

)
. (13)

Moreover, ωinn,k and ∂∗E are (d−1)-rectifiable then, using [34, Proposition 10.5], we have, for Hd−1-every
x ∈ ∂∗E ∩ ωinn,k, νE(x) = ±e. Therefore,

Hd−1(∂∗E ∩ ωinn,k)=Hd−1
(
{x ∈ ∂∗E ∩ ωinn,k | νE(x) = e}

)
+Hd−1

(
{x ∈ ∂∗E ∩ ωinn,k | νE(x) = −e}

)
.

Finally, summing (12) and (13), we obtain

P (E ∪B−n,k, Bn,k) + P (E ∪B+
n,k, Bn,k) = P (E) + 2Hd−1(ωinn,k ∩ E0)

since P (E,Bn,k) = P (E,B+
n,k) + P (E,B−n,k) +Hd−1(∂∗E ∩ ωinn,k).
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