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ABSTRACT

Blotches are very common, localized, and non persistent im-
pairments in digitized film archive. Many methods have been
proposed so far for detecting them and restoring the underly-
ing regions. Most detection techniques rely on the hypothesis
that blotches contradict a model of motion regularity and,
up to a prior motion compensation, correspond to signifi-
cant temporal variations of intensity with respect to a global
threshold. In this paper, we propose a statistical approach to
detect blotches in image sequences, which yields thresholds
adapted to the local statistics of the frames, and which takes
into account gray level differences in neighborhoods instead
of isolated points. This approach is combined with a block-
based motion estimation. The whole procedure is confronted
with classical approaches on several sequences.

Index Terms— Film restoration, Blotches, Adaptive de-
tection, Statistical test, A contrario methods.

1. INTRODUCTION

Inevitable physical aging of film archive has dramatic conse-
quences: the potential disappearing of a significant part of the
world cultural heritage. Several programs have been funded
in the past twenty years to transfer films and videos on a dig-
ital support in order to preserve and restore them. After dig-
itization, there is a huge variety of impairments that may be
seen on the resulting motion pictures. An exhaustive list can
be found on the BRAVA project page1. We address in this
paper the question of detecting and removing the so-called
blotches in a digital sequence. Blotches are these non per-
sistent, localized impairments usually due either to a loss of
pieces of gelatin on the original film, or to the electrostatic ad-
hesion of dust, hair, etc. that could not be cleaned out before
digitization. There is a significant literature on this problem,
that we will briefly survey in the next section. As we will see,
the major problem is the definition of a criterion for detect-
ing blotches because it can hardly be uniform on the whole
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image, but depends whether the pixels under examination lie
on a quickly changing and highly contrasted region, or on a
homogeneous region that does not change much in time. In
order to avoid the so-called false alarms, i.e. the erroneous
detection of uncorrupted pixels, many methods require the
delicate tuning of several parameters.

In contrast, we propose in this paper an adaptive criterion
for detecting blotches in image sequences. After a prior mo-
tion estimation by a block-based technique, we derive from
the local distribution of intensity differences a local threshold
above which a difference can hardly be due to noise, but more
certainly to a blotch. The key point in this adaptive definition
of blotchiness is inspired by a contrario approaches [2]. We
illustrate at the end of the paper the efficiency and versatility
of our approach on several examples.

2. STATE OF THE ART

A classical way to tackle the blotch removal problem is to
proceed in three stages : motion estimation, blotch detec-
tion and restoration of the impaired regions. Each of these
steps has been tackled in the literature with many differ-
ent approaches. Surveys can be found in the book by A.
Kokaram [6], R. Bornard’s PhD thesis [1] and in the pa-
per [4]. As for the motion estimation step, classical meth-
ods include variational approaches, block-based methods,
prediction-correction methods and Bayesian methods. These
latter usually perform well but at a rather high computational
cost. In contrast, block-based methods, if implemented cor-
rectly, offers a reasonable tradeoff between efficiency and
speed. Once the motion has been compensated, simple meth-
ods rely on a thresholding of various temporal coherence
measures (SDIa [5], SDIp, ROD [7], sROD[9]). More in-
volved approaches make use of Markov Random Fields to
account for the spatial regularity of blotches [5]. Among
thresholding methods, the sROD algorithm is known for its
efficiency and we will recall its definition in the next section.
There have been several attempts to tune properly the thresh-
olds associated with these methods, using for instance an
hysteresis [10], a prediction-correction technique [3], etc. We
do not address in this paper the problem of blotch restoration,



after the detection step, but here also many methods have
been proposed in the literature: inpainting methods – either
based on a PDE or on texture synthesis mode [1, 3], median
filters (or more general rank filters), autoregressive models,
parametric Markov random fields, etc. [1, 4]. Finally, observe
that other approaches fuse the three aforementioned steps in
a Bayesian framework, enabling a more robust estimation of
motion and the handling of occlusions, see [4].

Before detailing the proposed detection methodology, we
introduce some notations and recall two classical tests, SDIp
and sROD.

2.1. Notations

We define now the notations and vocabulary that will be used
throughout this paper: the film is denoted as u = (ut(x)),
where ut is the frame at time t and x is the spatial variable on
a fixed domain Ω.

For each point x of the current frame ut, assume for the
moment that we know x− its corresponding point in the pre-
vious frame ut−1 and x+ its corresponding point in the next
frame ut+1. Then we define d−(x) = ut(x)− ut−1(x−) and
d+(x) = ut(x)− ut+1(x+).

2.2. Two classical tests

Most of the classical tests consist in thresholding a function of
d+ and d−. The threshold is usually chosen globally in time
and space. The oldest one, called SDIp [5], detects a blotch
at x if the quantity

b(x) = min(|d−(x)|, |d+(x)|) ∗ sign[d−(x) ∗ d+(x)] (1)

is larger than a threshold α. The so-called SDIa test does not
impose a sign conservation, a simplification that significantly
decreases the performances.

Other approaches rely on order statistics computed on the
neighbors of x+ and x−. The ROD detector [7] is known
for its efficiency, but requires the delicate tuning of three
threshold values. A simplified and very efficient version,
called sROD, was introduced in [9]. Let us denote (r1, r2, r3)
and (r4, r5, r6) the values of gray level observed in a col-
umn of three consecutive pixels centered respectively on x+

and x−. The point is detected as blotchy if one of the fol-
lowing conditions is met: u(x) − max(r1, . . . , r6) > S or
min(r1, . . . , r6)− u(x) > S, where S is a positive constant.

3. AN ADAPTIVE BLOTCH DETECTION

In this section, we propose a simple statistical test to detect
blotches in image sequences. Following the general ideas of
a contrario approaches to image analysis [2], blotches are de-
tected as image structures contradicting some simple null hy-
pothesis. This test offers two advantages. First, it is adaptive,
in the sense that it yields thresholds which adapt to the local

statistics of the frames, and therefore vary spatially. Second,
it is spatially coherent: gray level differences are observed
in a whole neighborhood of the current point. Motion esti-
mation will be discussed in section 4 and we assume for the
moment that, for each pixel x in the current frame ut, the as-
sociated past and future points x− and x+ in the previous and
next frames are known. Before describing our test in detail,
let us mention that an a contrario approach to blotch removal
was previously used in [10], in order to disregard false alarms
after a prior blotch detection using the sROD criterion. Our
approach is completely different, since the statistical setting
is used to drive the detection step itself.

3.1. Null hypotheses

For each pixel x, the goal is to decide whether the differences
between the neighborhood of x and the neighborhood of x−

(or x+) are meaningful, i.e. due to a blotch, or if they can be
explained by the local statistics of the frames. The idea is to
fix detection thresholds in such a way that patches following
a naı̈ve modelH0 will not be detected as containing blotches.

LetN0 be a fixed neighborhood of 0 and |N0| its size. For
a point x and a time t, consider the patch ut(x +N0) and its
corresponding patch ut−1(x− + N0) in the previous frame.
The naı̈ve modelHx0 (or null hypothesis) states that the point
differences ut(x + y) − ut−1(x− + y), when y spans N0,
are realizations of iid random variables following a centered
normal distribution N(0, σ2

x). We make the same assumption
on the differences ut(x + y) − ut+1(x+ + y), when y spans
N0.

3.2. Decision criterion

If the hypothesisHx0 is satisfied, then the sum

D−x :=
1
|N0|

∑
y∈N0

(
ut(x+ y)− ut−1(x− + y)

)
is a realization of the distribution N(0, σ2

x/|N0|), and the
same result holds for D+

x . The hypothesis Hx0 can thus be
tested by computing Fx(|D−x |) and Fx(|D+

x |), where Fx(δ)
denotes the tail of the Gaussian distribution

Fx(δ) := 1−
√
|N0|√
2πσx

∫ δ

−δ
e
− |N0|s

2

2σ2
x ds. (2)

If Fx(|D−x |) and Fx(|D+
x |) are too small, i.e. if the observed

differences |D−x | and |D+
x | are too large, we can conclude that

these differences can hardly be explained by the null hypoth-
esis. In this case,Hx0 is rejected, which means that a blotch is
detected at x.

Our adaptive spike detection index (ASDI) is defined as

ASDI(x) := max(Fx(|D−x |), Fx(|D+
x |)). sign(D−x .D

+
x ).

For a given threshold ε, the point x in the frame ut is detected
as a blotch if 0 ≤ ASDI(x) ≤ ε

|Ω| . Observe that the function



Fx only depends on the size of the patches N0 and on the
local standard deviation σx. We will see in Section 4 how this
standard deviation is estimated. The coefficient 1

|Ω| is used to
balance the number of tests per frame.

For a given threshold ε, this approach yields different
adaptive thresholds on the absolute values |D−x |, |D+

x |, when
x varies. Indeed, the smaller the value σx, the smaller the
threshold on the absolute differences will be. In other words,
a low contrasted blotch has a better chance to be detected on
a flat background than on a highly textured background.

4. TAKING MOTION INTO ACCOUNT

4.1. Block matching and blotch detection

Our motion estimation scheme relies on block matching. In
order to be fast, we divide the domain Ω into a fixed grid of
overlapping blocks of size (2f + 1)2. Neighboring blocks
overlap over a band of width f pixels. For each of these
blocks W in the frame ut, its best corresponding block in
ut−1 is denoted as W−. The best corresponding block is
searched for over all blocks (not only on the fixed grid) in
a region of size (2s + 1)2. The best corresponding block is
the one minimizing the L2 distance between blocks. A best
corresponding block W+ in ut+1 is computed in the same
way.

The test ASDI is then applied to each pixel x of W , the
standard deviation σx being estimated empirically as the stan-
dard deviation of the pixel differences betweenW+ andW−
(this standard deviation is thus the same for all points inW).
If the frame ut contains a blotch around x, this permits to
avoid the blotch to affect the variance estimation. If a point
x belongs to several blocks, it is detected as a blotch if it is
detected as such in at least one of these blocks.

4.2. Speed-up

In the motion estimation described above, the past and future
blocks W− and W+ associated with W are seeked in a re-
stricted neighborhood of W , i.e. a square of size (2s + 1)2.
The parameter s should be larger than the largest motions be-
tween two successive frames, yielding heavy computations in
presence of large motions. However, the whole process can
be speeded up in the following way. The blotch detection is
applied for increasing values of s, starting at s = 0. At each
step, the detection is restricted to the points detected at the
previous value. This yields a major reduction of the computa-
tional cost. Another way to reduce the cost could be to remove
from the sequence (before the detection step) the dominant
motion due for instance to camera motion. This can be done
with the approach of [8]. Observe also that common com-
pression schemes incorporate block-wise motion estimations,
that could be used for the detection procedure presented in
this paper.

5. EXPERIMENTS

This section confronts the detector ASDI with SDIp and
sROD on two sequences, called cmovie and super8. The ex-
periments are obtained using the block-based implementation
described in Section 4. Blocks are always chosen as squares
of size 21× 21, and the overlap between these blocks is cho-
sen as half the size of a block (i.e. 10). The neighborhood
N0 used for the test ASDI is a 3 × 3 centered square. As
explained in Section 4.2, the detections are performed for
increasing values of s (maximum motion taken into account),
starting from s = 0 and up to s = 10 for the sequence cmovie,
and up to s = 30 for the sequence super8.

Figure 1(a) shows one frame of the sequence cmovie, con-
taining two low contrasted blotches, a bright spot and a dark
string. As illustrated in Figures 1(c), 1(e), the dark string can
be detected by SDIp and sROD using very low thresholds,
but only at the price of many spurious detections. Besides,
the dark blotch quickly disappears from detection maps when
these thresholds are increased, while false detections persist
(Fig. 1(d), 1(f)). On the contrary, ASDI correctly detects this
blotch at ε = 1, and ε = 10−2, while limiting the number
of false detections, as illustrated in Figures 1(g) and 1(h).
This experiment demonstrates the importance of the adap-
tive threshold, which yields better results here than the best
thresholds of the classical tests.

Figure 2 illustrates the behavior of the three detectors on
a frame of the sequence super8. ASDI detects all the blotches
present in the frame at ε = 1, in particular the two blotches
on the left of the window and the scratch at the bottom of
the frame, with a few false detections on the hands and arm
of the man, due to motion. In comparison, SDIp and sROD
give many false detections (especially on zones affected by
motion) at thresholds for which they barely detect the first of
the three aforementioned blotches.
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(a) One frame of cmovie (b) Extract of Fig. 1(a), with a con-
trast change, revealing two blotches.

(c) SDIp, α = 2 (d) SDIp, α = 5

(e) sROD, S = 1 (f) sROD, S = 4 (g) ASDI, ε = 1 (h) ASDI, ε = 10−2

Fig. 1. Adaptive blotch detection: Figure 1(b) shows a subpart of Figure 1(a) with a change of contrast, revealing two low
contrasted blotches, a bright spot and a dark string (surrounded by red lines). The other figures show the results of SDIp, sROD
and ASDI (proposed in this paper) for different thresholds. For SDIp and sROD, the low contrasted blotches quickly disappear
as the threshold increases, while many false detections remain. In contrast, ASDI is much more robust.

(a) One frame of super8 (b) SDIp, α = 15 (c) sROD, S = 15 (d) ASDI, ε = 1.

Fig. 2. Another example where SDIp and sROD miss some blotches and return many false detections whereas ASDI gives
satisfactory results (original blotches and their detection can be better seen when zooming in on a digital version of the paper).
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