Image restoration involving connectedness

Simon Masnou and Jean-Michel Morel

Centre de Recherches en Mathématiques de la Décision (CEREMADE)
Université Paris-1X Dauphine, 75775 Paris Cedex 16, France

ABSTRACT

Two local adaptative nonlinear filters for image denoising are described and compared to other methods. The first one
is a median filter computed over a connected neighborhood that fits the local conformation of level lines. The second
one deals with the size of grains in image. Both filters depend on a single parameter, the area A, are morphological
and associated with smooth as well as unsmooth fixed points. They make the total variation decrease and are able
more than other classic morphological filters to denoise while preserving image structures. They are particularly
designed for automation.

Keywords: Local adaptative morphological filtering, blind restoration, additive or impulse noise, connectedness,
smooth and unsmooth fixed point, automation.

1. INTRODUCTION

Image restoration is essentially concerned with the following problem: what has to be kept in an image and what can
be considered as noise ? But noise is generally image-sensor dependent so that no global mathematical formalization
is possible. Assuming no a priori knowledge or estimate on the statistics of noise, we shall consequently restrain
our analysis to those kinds of noise that do not involve any specific geometric pattern and are defined by a random
process like Gaussian or uniformly distributed additive white noises or impulse noises. Moreover, we shall define
restoration of so-corrupted images as a way of discriminating between “coherent” data (which must be preserved)
and “non coherent” data (which should be modified). By “coherence” we mean that gray level at each point of an
image can be in some way related to gray levels in a neighborhood of this point. We are therefore interested in local
filtering.

Local filtering techniques have been widely studied in recent years, under both analytic and geometric considera-
tions within a framework of axiomatization.! Most of the ones involving no a priori knowledge on noise are based on
the assumption that “edges” are primitives of an image and have consequently to be detected and enhanced, whereas
regions they enclose must be strongly smoothened. This approach, due to Marr and Hildreth,? resulted in most of
the linear®* and non-linear®” filters encountered in image restoration. However “edges” are no reliable data: by
definition they relate to the gray level scale, which is not representative of an image. Indeed, two different sensors
capturing the same scene may produce two images with different gray level scales whereas basic information (shapes
for instance) remains the same. Therefore, any filter based on edge detection may not yield the same result for the
two images, assuming of course that parameters remain the same.

This remark, due to the Mathematical Morphology school,®? led to a new class of filters — the morphological
filters — which are invariant with respect to any increasing contrast change. They are closely related to the level
sets (or equivalently to level lines, the boundaries of level sets) defined for every image u : @ C IR*> — IR by
Xu = {z € Q, u(x) > t},t € R. The family of level sets is a morphological and complete representation of u,'°
and thereby much more reliable than the set of regions enclosed by edges. Furthermore, there is an intrinsic and
very natural link between level sets and shapes in image.!! Since any reliable method for image restoration must be
shape-oriented, we shall develop our filters within the framework of morphological denoising.

In Refs. 6,12, Leonid Yaroslavsky developed a synthetic approach to local filtering techniques based on smoothing
over some neighborhood. He noticed that this neighborhood can be basically defined with two selecting criteria: a
spatial criterion so that filtering be local and a brightness criterion in order to select only points which are similar
in some sense — belonging to the same shape for instance. Two types of neighborhoods generically arise from this
point of view:
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1. Neighborhoods defined at each point x of image u as a subset of a disk B,(z) with radius a under constraints
on the maximal variation in the brightness domain and which can be generically defined by:

Ni(2) = {y € Ba(2), u(z) — €, <u(y) <u(a) +€}

2. Neighborhoods defined at z as a subset of B,(x) under constraints on the maximal variation within variational
row (the set of all points of the disk ordered with respect to their gray level values). Generic definition can be
written in the discrete plane as

No(i, j) = {(k,1) € Ba(i, ), Rlui;) - e < Rlurs) < Rluiy) + ex}
where R(.) denotes rank within variational row, and in the continuous plane (|S| denotes the area of set S)

No(z) = {y € Bu(2), uly) <u(z), {z € Ba(x), u(y) < u(z) <u(2)}| <eptU
{y € Ba(2), u(y) > u(@), [{z € Ba(2), u(@) < u(2) <u(y)}| < e}

A smoothing filter (median, mean, inf, sup and all weighted derived operators) can afterwards be computed over the
selected neighborhood. Of course this formalization is generic and some filters cannot be strictly described such a
way, like the following operator, Susan (Smallest Univalue Segment Assimilating Nucleus) filter, introduced in Ref. 7:
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and a is taken large enough so that spatial limitation be mainly due to the term e~ “Z . In view of Yaroslavsky

neighborhoods, this operator can be seen as the average over a neighborhood derived from Nj(x) by weighting in
both spatial and brightness domains. Susan filter shall be considered in the sequel as a reference filter — a synthesis
— among those local, non-linear and non-morphological operators that involve average.

Almost every local filter, linear or non-linear, morphological or not, has generally to be iterated before it yields
the desired solution. But too many iterations may result in a much too smooth image. Moreover, smoothing effect
occurs even for initial smooth data. This is particularly confusing since the goal of image restoration is generally to
denoise while preserving uncorrupted data. The lack of preservation is actually due to the definition of coherence
which is implicitly related to each filter. Let us say that an image is coherent with respect to some operator if it is
a fixed point for this operator.

For instance, every filter based on the Hildreth—-Marr approach implicitly defines a coherent image as made of
pieces in which local variation of brightness is small and regular and such that this variation is larger than some
threshold between two connected pieces. A coherent image with respect to the conventional median filter (the
morphological reference filter) in the continuous plane is such that curvature is zero at every point of any level line.'°
If it is with respect to the median filter computed over some Ns-like neighborhood, then the curvature at any point of
any level line must not exceed some upper limit.'® On the discrete grid these last two conditions can be weakened due
to numerical approximations. But the classes of coherent images with respect to both operators are still restricted
to smooth images (the larger the size of working window, the smoother the image). Therefore, iterating one of these
filters on a “natural” image until convergence often yields a result that is too smooth to be satisfactory.

Figure 1 illustrates why conventional median filter and median filter computed over some N,-like neighborhood
are associated with such a restricted class of coherent images: they involve a neighborhood that cannot fully fit the
local conformation of level lines for it is constrained inside a disk.'® Now, is there a way to remove spatial constraint
while letting filtering be local ? Simplest answer seems to be connectedness.

2. MEDIAN FILTER ON CONNECTED NEIGHBORHOOD (MFCN)

Since N;-like neighborhoods are not morphological, we shall concentrate our study on local filtering involving N,-like
neighborhoods. We now examine how the definition of the Yaroslavsky set N2 can be modified so that connectedness
be involved. Recall that N(z) is made of two subsets of a disk. A “monotone” set of area eJlg made of points with gray
level larger than u(z) and a “monotone” set of area e made of points with gray level less than u(z). By “monotone”
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Figure 1. The evolution of a regular function at a regular point (1) can be avoid only by removing spatial constraint

Conventional median filter: evolution of level line u(y) = u(x) as soon as |curvu(z)| > 0.

(indeed [{y, u(y) > u()} < {y, u(y) < u(@)})
3-4 | Median filter applied on N-like neighborhood: evolution as soon as |curvu(z)| > C.

5-6 | Median filter on connected neighborhood: no evolution V curv u(z).

we mean that Na(z) can be constructed by progressively adding points y with respect to the distance |u(y) — u(z)|
(the lower this distance, the sooner y is added). The way we shall construct our neighborhood is equivalent, except
that we combine the “monotone” characteristic of set with connectedness and that we posit A4 := €}; = e5. The most
natural way of doing this is the following.

Let W, be the set of all points y such that u < u(y) < u(z) and for every p < u(z) we define W, as the
connected component of z in W, (i.e. the maximal connected subset of W, containing z).
Then, assuming for the sake of simplicity that Wu_(z) is of area less than A (general point of view shall be respected
later), we define A := inf{u < u(z), |Wu_| < A} If A > —oo and |W/\_| < A, the situation is as illustrated in
Figure 2. The set W~ whose area equals A and such that W,” C W~ C W, is constructed by selecting points in
W5, \W, with respect to the geodesic distance to Wy within W, ,. This way of proceeding is much more natural
than taking the distance to x since it involves the shape of Wy .

Wiy
Figure 2. If |W>\_| < Aand |W>\__1| > A, the set W~ such that
|W_| = A is constructed with respect to the geodesic distance
to W, within W,_,.
-

If now A = —o0 or |W;| = A we simply define W~ =W, .

The set W™ can be constructed exactly the same way by taking into account points having a gray level larger than
u(z). The main advantage of both sets W~ and W is their property to fit perfectly the local conformation of level
lines as illustrated in Figure 3 (the set W= denotes the connected component of = within the set {y, u(y) = u(z)} -
naturally W= Cc W+ and W= Cc W™).

We shall say that an image u defined on Q C IR? is locally A-coherent if for every point of Q, [W~| = [W+| = A.
Of course any u defined on (2 is at least 0-coherent. With such a definition, A is in some way the scale at which we
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Figure 3. W (z), W=(z) and W*(z) on a formal example
Left : 3D plot of a smooth function — Right : shapes of W~ (z), W=(z) and W*(z)

check out coherence. But here coherence takes into account only the ordering of gray level values (in contrast to non-
morphological definitions) and does not involve any restriction on the shape of level sets (in contrast to conventional
median filter or median filter computed over Ns-like neighborhoods). Now which morphological operator shall be
used so that any A-coherent image be a fixed point ? The simplest filter satisfying this property is median filter, so
that we define our Median Filter on Connected Neighborhood (MFcn) with scale A by

W-uUw+
MFCNgu(z) = inf{A, |{y eEW-UWT u(y) < )\}| > %}
It is easily seen that if [W~| = |IWT| = A then mMFcNgu = u(z) so that any A-coherent image u is a fixed point for

MFCN4. This class of coherent images is much bigger than the classes of fixed points related to classic local filters;
therefore Mmrcny shall be able to preserve regular data much better than these filters.

Actually, the rough definition we gave for W~ and W is not satisfactory. The two functions u; and us illustrated
in Figure 4 are equal up to some saturation effect (which characterizes any image sensor). Since A is larger than
the area of set M made of points modified by truncation, MmFcn 4 should yield the same result for u; and wuy, which
is not the case. This is due to the relation |W=| = |[W+| = 4L > |W~\W=| satisfied at any point  of M so that
MFCN gua () = u2(x).

ug MFCNp uq
A Figure 4.
MFCNp Saturation effect is not properly
R processed by MFcN (MFcNAu; and
MFCN 4u2 denote actually the re-
sults obtained after several iter-
uz MFCNp up ations until convergence).
(A+1)/2
MFCNp
—_—=

The algorithm that we are now going to describe is a way to get rid of this drawback; it allows, if necessary, W~
or W+ to have an area larger than A in order to force evolution (step 5 of algorithm). More generally, the filter we
define uses three types of information:

1. Area (as a way of measuring coherence).
2. Geodesic distance (to achieve if possible the exact area).

3. Area disparity between sub- and super-neighborhoods (to deal correctly with truncation effects).



Algorithm | (this version is not optimal but understandable):

level min < inf u; ; ; level_max < sup us,;.
For (n < 1; n < number of iterations; n < n + 1)
(%,7) « first point of image
Compute W=
W™ <« connected component of (¢,7) in {(k,1), uk,; = ui;}
If [W=| > A then out; ; < u;; ; Goto (IW=|> A=W CW=and Wt C W= so that med - y+ = ui;)

Compute W~

level < u;j 5 Wi < W™
While |Wf < A and level > level min do

evel

Wiever = connected component of (¢, ) in {(k,1), level < up; < u;;}
level < level — 1

If level < level_min then level < level_min

W™ = Wiga

Compute W+

level < wij ; Wit < W=

While |I/Vl:",el < A and level < level max do
Wik, < connected component of (4,7) in {(k,1), ui; < ug,; < level}
level < level +1

If level > level_max then level < level max

W Wik

If |W‘| > A and |W+| > A then out; j < u;; ; Goto

[6]1 |[W™|>Aand [WH| < A
level <= u;; 3 Wi o <+ W™
While |W_,.,\W~| < A and level > level_min do
Wiever < connected component of (¢, j) in {(k,1), level < wup,; < u;;}
level < level — 1
If level < level_min then level < level_min
While [W,2,,\W=|> A do
Compute geodesic distance between W_, 11 and every point of Wi_, ,\W_., T
Furthest points are removed from W_, ., with respect to the difference between their gray level and u;,;
(the more different they are the sooner they are removed).
W™ = Wiga
Else if [W~| < A and [WT| > A
level < wu;,; ; Wik «w=
While |[W,%,_\W=| < A and level < level_max do
W\l « connected component of (,7) in {(k,1), u; ; < ug,; < level}
level < level +1
If level > level_max then level + level max
While [W,5,\W=|> A do
Compute geodesic distance between W,I,__, and every point of W,%,_\WiL._.,.
Furthest points are removed from W;},_, with respect to the difference between their gray level and u; ;

(the more different they are the sooner they are removed).
W« wi

level

@ Define W «+ W~ UW™; out; ; < median(W)

If possible (4, j) < next point
Else for each point (7, j) of image, u;,; < out; ; ; Next iteration.



Properties of MrcN defined by previous algorithm are the following (see Ref. 13 for a definition of MFCN as an operator
acting on the space BV of functions of bounded variations mapping IR? onto R and for proofs):

1.

MFCN makes the total variation [, |Du| decrease.

MFCN is morphological. Indeed, points are taken into account with respect to their only gray level ordering
(u(2) <u(y) <u(z)).

MFCN is invariant with respect to any Euclidean mapping of the plane (rotation, translation, reflection, ...).

Like almost every filter defined on the discrete grid, the sequence (MFCN™u) e converges after some iterations
to a fixed point. But in contrast to other classic morphological filters, this solution may be unsmooth since the
class of fixed points does not reduce to smooth functions. This result is particularly relevant for automation
since it allows to iterate until convergence. There is finally only one parameter needed: the area A.

Figure 5.
Original image u
MFcN10) (1) (fixed point)
MFCN20) "% (w) (fixed point)
MFCN30) () (fixed point)

[l e =]

(
(
(
(medB(_,g,))zu

(to be compared with )
(med (. 4))°u

(to be compared with )
7 (medB(_,g))mu

(still no fixed point)

Normalized differences
between images 2-6 and original

EIRNEY

image 1

Figure 5 is related to Property
4; it illustrates the existence of
unsmooth fixed points and the
remarkable stability of unnoisy
data through filtering. In con-
trast, conventional median filter
with a working window of area
2 A yields much too smooth solu-
tions which are not fixed points
(other classic morphological fil-
ters have exactly the same draw-
back). Finally we deduce from
these experiments that choosing
a value for parameter A (gen-
erally taken between 5 and 20)
is not a drawback in contrast
to most of denoising filters for
which the choice is often crucial
and highly delicate.

In the following experiments we compare MFCN with reference filters. Conventional median filter is taken as the
reference morphological filter, Susan filter can be considered as a synthesis of classic local and non-linear filters



involving average — and therefore non morphological. We also compare MFCN with a global and non-linear denoising
method, introduced by Rudin and Osher,'* which involves a minimization of total variation / | Du| under constraints
based on an a priori knowledge about the statistics of noise.

Figure 6 illustrates the performances of these filters when original image (detail of an aerial CNES photograph) is
corrupted by a large amount of impulse noise (f = 25%). The best result — which is also a fixed point in contrast to
the other methods — is obviously performed by mrcn. This is not surprising in view of our approach. Indeed, a point
is not modified through filtering if it belongs to some sub- and super-neighborhoods of same area; most of the points
that do not satisfy this property are noisy points, so that filtering performs a real denoising while unnoisy points
are not altered. The decay of total variation is particularly large since an impulse noise creates large and frequent
variations.

Figure 6. Original image uo (aerial CNES photograph) Noisy image u (impulse noise, f = 25%)
(mFens ) (med p(.,1yu) (fixed point, 4-connectivity) E (med p(.,1.5))° (u)
(Susan(;—12, g—0.4))% @ Rudin-Osher (e =1, dt =1, To =0, T = 40)

In contrast, the Rudin—Osher method performs quite badly for it was not designed for this kind of noise (but we
are interested in blind restoration). Conventional median filter yields a solution that is too smooth when Susan filter
does not succeed in removing noise (a less noisy result could be obtained but associated with a high loss of definition
in image).

The ability of MFcN to preserve structure much better than other filters is due to its weak smoothing property.
This may be a drawback on a qualitative point of view: the original lack of smoothness of level lines or the one
generated by noise will remain unless a smoothing process is introduced. Take for instance the example illustrated
in Figure 7. The white square is processed by MFCN as a noisy region because of its small area and is correctly
removed. But the local “deviation” of “the” main level line due to the square has been preserved. A solution consists
in computing median filter inside the only region previously occupied by the square; the smoothness of the line
is then recovered without any global evolution. Drawback of this post-smoothing method is that the fixed point
property is lost and that two more parameters have to be introduced: the radius of the disk on which median is
computed and the number of iterations. Now let us emphasize the difference between this method and a denoising



Figure 7.
I| Noisy image u
E MFCN'4 1%
E Cmed p(. »y(MFCNT w)
E Level lines in images 1-2-3

with conventional iterated median filter. The latter induces a global diffusion from the only curvature of level lines.
The former recovers local coherence from the area of bilevel sets —i.e. Xy, = {z € Q, A < u(x) < v} — and points
which have been modified are considered as noisy points; they are the only points where the diffusion process occurs,
so that there is no global alteration of image structures.

We currently study a morphological and idempotent (yielding a fixed point in one iteration) method that would
replace the conventional iterated median for post-smoothing of modified zones. Theses zones may indeed be con-
sidered as occlusions and the problem of their smoothing may reduce to the minimization of some functional with
Dirichlet constraints or, in other words, with constraints on the boundaries of occlusions.

Another way of obtaining a smoother result without losing the fixed point property consists in applying the
conventional iterated median to the whole image before mrcn. Naturally, this pre-smoothing has to be slight in
order to avoid a serious alteration of structures in image: radius of the structuring element and the number of
iterations have to be small. It arises from our experiments that pre-smoothing is particularly interesting in case of
images corrupted with white additive noises. The following equation synthetizes the joining of MFcN to both pre-
smoothing and post-smoothing — values of disk radius and iterations number are empirically the ones offering the
best compromise between smoothing and structure preservation:

med p(. 1.5 Pu(.) if Tu(.) # u(.)

Du(.) else

and n is the number of iterations until convergence. Let us however notice that we generally avoid using post-

smoothing: we used for example the only pre—smoothmg in Figure 6 (one iteration of median filter on a ball D(.,1)).
LIy

v(.) = Cmed p(1.5)MFcNmed p( 1)(u)(.) where Cmed p( 1.5 %u(.) = {

Figure 8.
Original image
Image u corrupted with white
additive Gaussian noise (o = 10)
(MFcN10)®(med (., 1yu)
(fixed point for MFcNig)

(medB(.,l.s))2U
Rudin-Osher method

(e=1,dt=1 To=0, T = 6)
IEI Susan(g=1.4, t=12) ()

This figure illustrates the re-
sults obtained by applying the
filters described above to an
image corrupted with a white
Gaussian additive noise of stan-
dard deviation 10.

Rudin—Osher method performs obviously well — it was specifically designed for this type of noise — but it is not
morphological, parameters are hardly adjustable, the solution is not a fixed point and too many iterations yield a
piecewise constant solution made of large and artificial pieces. In contrast MFCN converges to a solution which is
less fair but is a fixed point and therefore depends of only one parameter (A). Moreover, MFcN is morphological and



yields better result than the reference conventional median filter in view of preserving structures: details are sharper
and there was no global diffusion. Finally Susan filter performs well in removing noise, but the use of average filter
induces a strong regularization that makes the fine textures disappear: the result looks a bit artificial.

3. GRAIN FILTER

One of the main characteristic of MFCN is its ability to preserve functions at points where roughly speaking sub- and
super-neighborhoods have the same area. In contrast, it is not possible to construct simultaneously such neighbor-
hoods near any extreme value. Either W~ or W7 are too small so that regions surrounding extrema will evolve as
illustrated in Figure 3 where a C! function becomes C° when iterating MFCN.

by Figure 9. Evolution of a smooth function near the only
e extreme values by iterating mrcn.

This simple remark yields two operators, denoted by 7454 and Sql4. They were introduced by Luc Vincent in
Ref. 15 within the framework of Mathematical Morphology. Basic idea is to remove connected components of level
sets having small area and this can be done by combining two operators defined for every z in €2 in the following
way (algorithm can be found in Refs. 15,16):

Tyu(z) = inf{\, A > u(x), |connected component of z in {y € Q, u(y) < A} > A}
Sau(z) =sup{A, A < u(z), |connected component of z in {y € Q, u(y) > A\}| > A}

It is easily seen that I4 acts on neighborhoods of minima of u whereas S acts on neighborhoods of maxima. Both
filters have consequently to be combined for denoising a conventional image and they do not commute. Now, is there
a possibility to process simultaneously minimal and maximal values in an image ? The following algorithm, which
allows to remove grains of small area, is a possible answer:

u being an image, compute the level sets Xy = {y € Q, u(y) > A} with respect to 4-connectivity (or equivalently the
level sets X, = {y € Q, u(y) <v}).

Let v be the topographic map of u (the set of level lines). Each level line is a union of Jordan curves (simple closed
curves) enclosing a connected set with finite area (a grain). Each Jordan curve is associated with an exterior value and
an interior value (it is crucial to notice that each of these curves is defined between pixels of image).

Compute the family of Jordan curves J, enclosing a set S, such that any other J,r enclosing S, is associated with
a set S, of area larger than or equal to A.

For every a, all the points of S, are given the exterior value of J,.

Properties of this grain filter, that we shall denote by G 4 in the sequel, are the following (see Ref 13 for proofs):
1. G4 is an idempotent and morphological operator depending on the only parameter A.
2. (G4 is invariant with respect to any affine area-preserving mapping of the plane onto itself.

3. G 4 makes the total variation decrease (the decay of total variation due to grain filter is generally smaller than
the one due to MFCNy4).

4. Like MFcN, G 4 is associated with a large set of fixed points that can be unsmooth as well as smooth functions.

It is worth noticing that G4 is not increasing, in contrast to I4 and S4. Moreover, it is equivalent to work in
4-connectivity with either sets X, = {y € Q, u(y) > A} or sets X, = {y € Q, u(y) < v}. But the equivalence does



not hold in 8-connectivity due to saddle-points; nevertheless, G 4 still has the advantage of processing simultaneously
minima and maxima, which seems more natural.

Grain filter has more and fairest properties than MrcN4. In particular, the idempotence property implies that
algorithm converges after only one iteration, which is computationally much more interesting. The results obtained
with both methods are quite similar when image is slightly corrupted but they clearly differ if the quantity of noise
is large ; in such a case, MFCN 4 yields a “smoother” result since it converges more progressively to the solution than
G 4 and since every point is related to its neighbors when grain filter acts on the only extreme values.

Conventional median filter, median filter applied to some N»-like neighborhood, MFCN, 1454 or grain filter are
able to remove impulse noise better than most of other denoising filters since they are closely related to occlusions
removal. However, it arises from Figure 10 that conventional median filter (like median applied to N» neighborhood)
induces a smoothing effect that is very corrupting for image structure (the two crossing whiskers of the baboon have
been nearly removed). In contrast, grain filter leads to a solution very close to the uncorrupted image (this is also
true for MFcN and I4.54). Moreover, it is easily seen that post-smoothing introduced in the last section and used in
this experiment does not corrupt image globally.
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Figure 10. Part of a baboon image 3D-plot of subimage enclosed by a white rectangle in image 1
Noisy subimage u (3D plot, impulse noise, f = 20%) (med p(.,1.5))° (u) (3D plot)
G1o(u) (3D plot) E (CmedD(_,l))z(G’lou) (3D plot)

Both mrcN and grain filter are mainly based on the adaptation of noisy points to some underlying local coherence.
This approach is particularly efficient for denoising images corrupted with impulse noise since image local coherence
is more or less preserved. In contrast, any white additive noise introduces a new coherence (images corrupted with
white additive Gaussian noise look quite natural) to which mrcn and grain filter shall remain fastened so that their
performances are limited (see Figs. 11,12). A strong smoothing filter like Susan — but it is not morphological — is
more adapted to this kind of noise because of its ability to force the construction of a coherence quite different from
the one in corrupted image. The drawback is, however, that some fine details or texture may be lost. A strong
smoothing effect seems actually not to be compatible with a real preservation of structures.



Figure 11. From left to right and up to bottom
. Original image (aerial CNES photograph) . Noisy image u (white additive Gaussian noise ; o = 10)
. Gs(med p(.,1yw) (fixed point) n (Susan(g—s, ;= 12)) u

Rudm Osher (e=0.5, dt =1, To—O T1—6 Rudansher(e—05 dt =1; To = 0; Th = 13)

Figure 12. Same image as in Fig. 11 after histogram equalization



The quality of results obtained in Figs. 11,12 with Rudin—Osher global method originates, as it was already said,
in the perfect designation of this method for Gaussian noise removal. The difference between images 11-5 and 11-6
shows, however, that this method is highly sensitive to the choice of parameters. Now, if we ask a denoising filter to
have a small number of parameters easily adjustable, to perform well with both additive and impulse noise and to
yield a fixed point, then MFcN or G4 should be preferred to Rudin—Osher method.

4. CONCLUSION

In view of Leonid Yaroslavsky’s work, we introduced a denoising filter, mFcn, which roughly corresponds to the
computation of median value inside a neighborhood that fits perfectly at each point of image the local conformation
of level lines. We also introduced a grain filter G 4, closely related to mFcN, and which derives from filters defined by
Luc Vincent within the framework of Mathematical Morphology. mrFcN and G4 depend on a single parameter, the
area A, are morphological and remarkable in preserving image structures and shapes since both are associated with
a large set of fixed points containing unsmooth as well as smooth functions. Both make the total variation decrease,
the decay being more progressive and generally larger with MFcN. The choice for A being particularly easy, the two
filters are perfectly designed for automation.
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