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Résumé
Nous étudions deux opérateurs de filtrage local adaptatif.
Ils sont tous deux basés sur l'utilisation de la connexité
comme seule contrainte spatiale et mettent en oeuvre une
contrainte de luminosité morphologique. Leurs propriétés les
désignent tout particulierement pour une implémentation
dans un cadre automatisé.

Introduction

La restauration des images peut se ramener au probleme
suivant : que doit-on considérer comme de l’information
pertinente et que peut-on assimiler & du bruit? Le bruit
est cependant une notion trop subjective pour faire 1’ob-
jet d’une formalisation unique et globale. Notre étude sera
donc limitée & la restauration des images altérées par un
bruit blanc additif ou un bruit impulsionnel. Par ailleurs
nous envisagerons la restauration comme un moyen de dis-
tinguer l'information localement “cohérente” des données
non cohérentes — le bruit.

La quasi-totalité des filtres locaux de débruitage re-
posent sur la théorie de Marr—Hildreth ([5]) selon laquelle
les “edges” ou contours de 'image constituent l'informa-
tion de base; il suffirait donc de filtrer en préservant ces
contours pour que le débruitage soit optimal ([2, 4]).

Rappelons qu’un contour peut étre défini comme 1’en-
semble des points ol la fonction de luminosité comporte
un saut d’amplitude supérieure & un seuil donné; sa détec-
tion est donc intrinsequement liée aux valeurs exactes des
niveaux de gris et toute modification de ces valeurs —
par exemple par changement de contraste — entralnera la
détection d’une nouvelle famille de contours pas nécessai-
rement identique a la premiere. Les contours ne peuvent
donc constituer une information fiable et ce d’autant plus
qu'une méme image saisie par deux capteurs différents
n’aura pas les mémes caractéristiques de luminosité. 11 est
en outre bien connu que la vision humaine est sensible
aux valeurs relatives — telle forme est plus claire ou plus
sombre que telle autre — et non aux valeurs absolues. Cette
remarque, due aux Gestaltistes, a été reprise par la Mor-
phologie Mathématique ([7]) en traitement des images, et
c’est dans ce cadre que se situe notre étude. En d’autres
termes, les filtres T' que nous présentons sont morpholo-
giques, c’est-a-dire tels que si g est une fonction de change-
ment de contraste continue et strictement croissante alors
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Tg(u) = g(Tu). Afin de tenir compte de cet impératif
morphologique, on utilise en lieu et place des contours
les frontieres des ensembles de niveaux X = {z, u(z) >
A}, A € R qui forment une famille invariante pour tout
changement de contraste strictement croissant et qui per-
mettent de caractériser intégralement une image ([3]).
Dans [11], Leonid Yaroslavsky a développé une approche
synthétique du filtrage local & voisinage. Il a remarqué que
la plupart des opérateurs reposent d’abord sur le choix
d’un voisinage composé de points spatialement proches et
dont les luminosités sont similaires en un certain sens, puis
sur le choix d’un filtre régularisant appliqué a ce voisinage.
Deux voisinages génériques peuvent étre dégagés:
1. Les voisinages définis en chaque point en imposant une
amplitude maximale des oscillations par rapport & la va-
leur centrale et qui peuvent s’écrire comme suit :

Ni(z) ={y € B(z,a), u(z) —¢, <u(y) <u(@)+6}

2. Les voisinages définis en chaque point a partir de I’échel-
le variationnelle — ’ensemble des pixels classés par ordre
croissant de luminosité — et tels que la contrainte porte sur
le nombre maximal de points conservés en dessous et au-
dessus du niveau de gris central. Ces voisinages peuvent
étre définis dans le plan continu par:

Na(z) = {y € B(x,a), |{z € B, u(y) < u(2) < u(z)}| < 5}
Uty € B(x,a), [{z € B, u(z) < u(z) < u(y)}| < ek}

Une fois le voisinage choisi on peut lui appliquer un opéra-
teur de régularisation (moyenne, médian, inf, sup, etc.). Il
est clair que tous les filtres locaux ne peuvent stricto sensu
se ramener a cette définition mais ils n’en sont en général
que des versions pondérées.

Les filtres reposant sur 'utilisation d’un voisinage du
type N1 ne sont pas morphologiques et nous les écartons
d’emblée de notre étude. En revanche ceux qui font in-
tervenir N, sont morphologiques. Rappelons tout d’abord



que le filtre morphologique de référence est le filtre médian
appliqué & un disque et que son itération équivaut & une
évolution cohérente des lignes de niveau de 'image — les
frontieres des ensembles de niveau — en fonction de leur
courbure ([3]). Alors qu’une fonction suffisamment régu-
liere (par exemple C'(IR?, IR)) ne devrait pas étre altérée,
le médian fait évoluer toute ligne de niveau dont la cour-
bure n’est pas nulle. On peut montrer qu’en appliquant
le médian & un voisinage du type N» en un point autre
qu’un extremum, les seules lignes de niveau qui évoluent
sont celles dont la courbure est plus grande en valeur ab-
solue qu’un seuil strictement positif ([6]).

1 Filtre médian a voisinage connexe

Il apparait cependant que la seule fagon d’empécher
toute évolution — du moins en un point autre qu’un extre-
mum et pour une fonction réguliere — nécessite la suppres-
sion de la contrainte spatiale, & savoir le disque a 'intérieur
duquel on sélectionne un voisinage. Afin de conserver au
filtre son caractere local nous avons choisi d’imposer un
critere de connexité: & 'instar du voisinage N, nous défi-
nissons en chaque point un sous-voisinage, composé d’un
ensemble connexe de points dont le niveau de gris est infé-
rieur au niveau “central” et qui forment une aire inférieure
a un seuil donné A. Un sur-voisinage peut étre défini de
facon analogue et ’on calcule alors la valeur médiane sur
I’union de ces deux voisinages avant d’itérer le processus.
On obtient ainsi le filtre MFcn (Median Filter on Connected
Neighborhood). L’algorithme associé est le suivant, dans
une version qui n’est pas optimale mais lisible:

n+1
Etape 0 level min < inf{u(s, j)}, level_max + sup{u(i, j)}
(4,) « (0,0)

Etape 1 Calcul de W=

W™ <« composante connexe de (7, j) dans
{(k,1), u(k,1) = u(i,5)}

Si |W=| > A out(s, §)  u(i,7); aller & Pétape 7.

Etape 2 Calcul de W~
level < (i, )
W™ W=
Tant que |W_| < A et level > level_min
oW~ + composante connexe de (4, j) dans
{(k,1), level < u(k,l) < wu(i,7)}
elevel «+ level — 1

Etape 3 Calcul de W™
level < u(%, 7)
Wt w=
Tant que |W+| < A et level < level_max
oWt « composante connexe de (i, j) dans
{(k, 1), u(s,j) <ulk,l) <level}
elevel + level + 1

Etape 4
Si[W-|>Aet [WF|>A4

out (4, 7) < u(s, j); aller & I'étape 7.
Etape 5

Si|[W|>Aet [WF|<A
level < u(i, )
Wicwa < W=
Tant que |VV1;e1\W=| < A —1 et level > level min
oW,_,., « composante connexe de (i, ) dans
{(k, 1), level < u(k,l) <u(i,j)}
elevel + level — 1
level « sup(level, level_min)
Tant que |VV1;,61\W=| >A-1
eCalculer la distance géodésique entre W _ ., et chaque
point de W,_,,\W_,,,,- Les points les plus éloignés sont
supprimés de W,_,, en commengant par ceux dont le
niveau de gris est le plus éloigné de u(i, 7).
W™« Wea
Sinon si |W_ < Aet |W+| >A
level < u(i, )
Wika = W=
Tant que |VV1:,e1\W=| < A —1 et level < level max
oW, + composante connexe de (i,j) dans
{(k, 1), u(i,j) < u(k,l) <level}
elevel + level + 1
level + inf(level, level_max)
Tant que |I/[/'1:,el\W:| >A-1
eCalculer la distance géodésique entre W,I,_ , et chaque
point de Wl::rel\Wl-e'_vel—l'

supprimés de W, en commencant par ceux dont le

Les points les plus éloignés sont

niveau de gris est le plus éloigné de u(i, j).
W« Wi

level

Etape 6 Définir W < W~ UWT
out (4, j) ¢ median(W) = inf{, | (3, 5) € W, u(s, j) < A| > 21}
Etape 7 Si possible (¢, j) < point suivant; aller & I’étape 1
Sinon
Pour chaque point (4, j) de I'image, (%, j) < out(i, 5)
Incrémenter le nombre d’itérations (n) et revenir & Pétape 0
si n < itérations_max

Il nous faut préciser le sens de I'étape 5: elle permet
d’accorder le filtrage de certaines zones avec leur équiva-
lent tronqué. Supposons en effet que I’on se contente de
construire deux voisinages W~ et W les plus grands pos-
sibles tels que [W~| < A et W] < A. On obtiendrait
alors le résultat illustré ci-dessous (figure 1):
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F1G. 1 — mren conduit a des résultats incohérents lorsque

létape 5 de Ualgorithme n’est pas utilisée (A =17)

On peut en revanche vérifier que les résultats coincide-
ront si l'on utilise ’étape 5. Cette étape est d’autant plus
importante que la saisie d’une image s’accompagne sou-
vent de phénomenes de troncatures liés au capteur (satu-
ration, etc.).

Dans un article & paraitre ([6]) nous développons 1’ana-
lyse mathématique de ce filtre agissant sur ’espace des
fonctions & variation bornée ([12]). Nous y démontrons les
propriétés suivantes: MFCN est morphologique, invariant
pour toute transformation euclidienne du plan, admet une



grande classe de points fixes, converge en un nombre fini
d’itérations vers un point fixe ou un état oscillatoire (dans
le plan discret ou continu); contrairement aux autres filtres
locaux dont il faut surveiller les itérations successives pour
éviter que 'image soit trop régularisée, MFCN est parti-
culierement désigné pour ’automatisation : le choix du pa-
rametre A est tres souple et on peut itérer jusqu’a conver-
gence car ’évolution de l'image devient tres vite insigni-
fiante. MFCN ne dépend donc vraiment que du seul pa-
rametre A. En outre une image suffisamment réguliere sera
a peine altérée, et ceci pour A variant dans un intervalle
tres large de valeurs (figure 2).

Enfin mrcn fait décroitre la variation totale ||Dul| ce qui,
selon Rudin et Osher ([8]), est la conséquence mathéma-
tique d’un débruitage effectif de 'image.

F1G. 2 — Image originale u — med p(. 3yu — (MFCN20) "% (u)
Cette expérience illustre le fait que MFCN préserve les struc-
tures cohérentes d’une image y compris lorsque le filtrage est
effectué sur un grand voisinage (40 pizels au total). Appliqué
4 un voisinage de taille équivalente, le filtre médian classique
altére considérablement l’image dés la premiére itération. En
outre le résultat obtenu par mrcn est un point fize.

Fi1G. 3 — Image originale — Image bruitée u (bruit impulsion-
nel, f =20%) — (MrcN1o)” (med p(1yu) (point fize).

Les images altérées par un bruit impulsionnel sont bien traitées
par MFCN qui préserve les fonctions peu oscillantes et réduit les
oscillations lorsqu’elles sont importantes. Cette derniére pro-
priété est une conséquence de la décroissance de la variation
totale.

2 Filtrage des extrema

MFCN a été élaboré de fagon & préserver les fonctions
régulieres aux points ou, pour parler simplement, il est
possible de construire un sous-voisinage et un sur-voisinage
ayant la méme aire. Au voisinage des extrema de la fonc-
tion cette construction n’est pas possible: I'un des deux
ensembles W~ et W est toujours plus petit que 'autre et
il y a donc nécessairement évolution ainsi que nous ’avons
représenté sur la figure 4 ot1 une fonction C! devient C°
apres plusieurs itérations de MFCN.

Cette remarque nous a conduits & un autre filtre, plus
simple que MFCN, qui agit sur les seuls extrema de la fonc-
tion. Sa définition et ses propriétés mathématiques d’opé-

Fic. 4 — Ewvolution d’une fonc-
tion réguliére au seul voisinage d’un

extremum par itérations successives
de MFCN

rateur agissant sur l'espace BV N L* sont développées
dans [6]. Luc Vincent ([10]) est le premier & avoir introduit
ce filtre dans le cadre de la Morphologie Mathématique
et le principe en est le suivant: partant du niveau lmax
correspondant & la plus forte luminosité dans I'image on
considere les composantes connexes de ’ensemble de ni-
veal Ximax = {z,u(z) > lmax}. Dés qu’une composante
connexe a une aire inférieure & une limite A, on la sup-
prime de I’ensemble Xima, en lui affectant la valeur Imax—1.
On réitere 'opération pour les ensembles de niveau Ximax—1,
Ximax—2,- - - jusqU’a ce qu’aucune composante connexe ne
soit d’aire inférieure & A.

La seconde étape consiste & traiter selon le méme principe
les ensembles de niveau duaux Yimin, Yimin+1, Yimin42, ... OU
Y\ = {z,u(x) < A}L

FI1G. 5 — 1. Image u (bruit blanc gaussien, 0 = 5)
2. Susan—s,1—12)4 — 3. IsSs(med p( 1yu)
4-5-6. Images 1-2-8 avec contours renforcés (u < v — Au)

Nous comparons ici IS avec un filtre non morphologique mais
trés bien adapté auz bruits blancs, Susan (Smallest Univalue
Segment Assimilating Nucleus, [9]), qui constitue une bonne
synthése de la plupart des filtres locauz. Il est défini par :

f u )e_|y2—;;|2 e_|u(y)—l2u<w)|2 i
(Susan)u(z) = B(e.a) 1Y Y
_ly==2 _ |u(y)—u(=)|?
fB(ac,a)e 2% e ” dy

Les principauz défauts de ce filtre, outre qu’il est non morpho-
logique, résident dans la difficulté a régler les paramétres et la
nécessité de controler la diffusion. IS fournit une solution sa-
tisfaisante, moins réguliére mais ot sont encore présentes des
textures fines de l'image et qui a l’avantage d’étre un point fize.
En outre la distance L* & Uimage non bruitée est plus faible
et le rapport signal/bruit meilleur que pour Susan. Cependant
IS est bien adapté pour des bruits faibles mais ne permettra
pas Dobtention d’une solution suffisamment réguliére lorsque
le bruit est fort.

Il est facile de montrer que ce filtre 14S4 (inf — sup,
voir [6, 10]) n’est pas équivalent & mrcn. I1 conduit ce-
pendant & des résultats numériques similaires pour la plu-



part des images que nous avons testées, est nettement plus
simple & mettre en oeuvre et plus rapide. Mais le fait de
ne pas considérer simultanément un voisinage inférieur et
un voisinage supérieur en chaque point peut amener des
solutions non souhaitables, notamment lorsque les signaux
traités sont périodiques ([6]). 1454 est morphologique,
croissant, idempotent, invariant pour toute transforma-
tion affine du plan, fait décroitre la variation totale ||Dul|
— mais presque toujours dans une moindre mesure que
MFCN pour une méme valeur de A — et est totalement
indépendant de la courbure des lignes de niveau de I'image.

Nous avons mis ’accent sur le caractére non régularisant
de mrcn et IS. 11 est toujours possible d’effectuer une
pré-régularisation, ce qui est le cas dans la plupart des
expériences présentées, ou (et) une post-régularisation. Le
filtre médian classique semble étre le mieux adapté du
fait de son caractere morphologique. II nous faut toute-
fois préciser que la post-régularisation peut ne pas étre
effectuée partout, mais seulement aux points que MFCN ou
IS aura modifiés et donc implicitement désignés comme
des points de bruit. La diffusion interviendra donc aux
seuls voisinages de ces points, évitant par 14 méme une
altération globale de ’image.

Conclusion

A la suite des travaux de Leonid Yaroslavsky nous avons
introduit un opérateur de débruitage, MFCN, qui peut étre
défini comme 'application du filtre médian & un voisinage
s’adaptant parfaitement & la conformation des lignes de
niveau en chaque point. Nous avons par ailleurs étudié un
filtre auquel il est étroitement 1ié, I.S, introduit par Luc
Vincent dans le cadre de la Morphologie Mathématique.
Ces deux filtres dépendent d’un seul parametre, aire A,
sont morphologiques et préservent remarquablement bien
les structures de 'image. MFCN est invariant euclidien et
IS invariant affine. Tous deux font décroitre la variation
totale. Ils permettent surtout 1’obtention d’une solution
satisfaisante qui est aussi un point fixe, a la différence de
la plupart des autres filtres locaux et que ce soit dans leur
définition discréte ou continue. Le choix du parametre A
étant par ailleurs trés souple, ces opérateurs sont parti-
culierement désignés pour ’automatisation.
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