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Abstract

It has been recently conjectured that, in the context of the Heisenberg group Hn endowed
with its Carnot-Carathéodory metric and Haar measure, the isoperimetric sets (i.e., minimizers
of the H-perimeter among sets of constant Haar measure) could coincide with the solutions to
a “restricted” isoperimetric problem within the class of sets having finite perimeter, smooth
boundary, and cylindrical symmetry. In this paper, we derive new properties of these restricted
isoperimetric sets, that we call Heisenberg bubbles. In particular, we show that their boundary
has constant mean H-curvature and, quite surprisingly, that it is foliated by the family of
minimal geodesics connecting two special points. In view of a possible strategy for proving that
Heisenberg bubbles are actually isoperimetric among the whole class of measurable subsets of
Hn, we turn our attention to the relationship between volume, perimeter and ε-enlargements.
In particular, we prove a Brunn-Minkowski inequality with topological exponent as well as the
fact that the H-perimeter of a bounded, open set F ⊂ Hn of class C2 can be computed via a
generalized Minkowski content, defined by means of any bounded set whose horizontal projection
is the 2n-dimensional unit disc. Some consequences of these properties are discussed.

2000 AMS Subject Classification. 28A75; 22E25; 49Q20.

1 Introduction

It is well-known that Euclidean balls in R
n are, up to negligible sets, the unique solutions to the

isoperimetric problem in R
n, that is, the unique minimizers of the perimeter among all measurable

sets with same n-dimensional Lebesgue measure. Therefore, we say that Euclidean balls are the
isoperimetric sets in R

n.
Here, we consider the isoperimetric problem in the Heisenberg group H

n, where the Euclidean
geometry of R

2n+1 is replaced by a sub-Riemannian geometry induced by a certain family of hor-
izontal vector fields. Recent years have seen a growing attention to the study of sub-Riemannian
spaces (and even more general metric measure spaces) from the viewpoint of the theory of BV
functions and sets of finite perimeter, and, more generally, in the framework of geometric measure
theory (see for instance [2, 3, 4, 14, 15, 16, 18, 23, 28]). These spaces naturally arise from differ-
ent areas of mathematics and physics, such as harmonic analysis, control theory, non-holonomic
mechanics [1, 5, 11, 12], and, recently, from the theory of human vision [8].

Before giving the definition and discussing some properties of H
n, let us point out the relation-

ship between the isoperimetric problem and the isoperimetric inequalities. We recall that both R
n
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and H
n belong to the wider class of Carnot groups, i.e., structures of the form (G, ·, δλ, dc), where

(G, ·) is a connected and simply connected Lie group, δλ is a (family of) dilation(s) and dc is the
Carnot-Carathéodory metric (see Section 2 for more precise definitions concerning H

n). It is known
that isoperimetric inequalities of the type

C |F |
Q−1

Q ≤ PG(F ) (1.1)

hold for all measurable F ⊂ G with |F | < ∞, and for some positive C depending only on G [18, 30].
Here, | · | denotes the n-dimensional Lebesgue measure (the Haar measure of the group G ' R

n), Q
is the homogeneous dimension of G and PG(F ) denotes the G-perimeter defined with respect to the
family of horizontal vector fields (see Section 2). Since | · | and PG are, respectively, Q and (Q− 1)-
homogeneous with respect to dilations δλ, one can write (1.1) for |F | = 1 and easily obtain that
the best (the largest) constant C that can be plugged into (1.1) is exactly the infimum of PG(F )
under the volume constraint |F | = 1, that is, the perimeter of any possibly existing isoperimetric
set, scaled to have unit volume.

The existence of isoperimetric sets in Carnot groups has been recently proved in [22], where some
general properties of those sets are also carried out: more precisely, one can show that these sets
are bounded, with Alhfors-regular boundary verifying a condition of “good” geometric separation
(the so-called condition B). Moreover, at least for Carnot groups of step 2 and in particular for the
Heisenberg group H

n, the connectedness can also be proved as a consequence of being a domain of
isoperimetry. Yet a more precise characterization of isoperimetric sets in a general Carnot group
is still an open (and difficult) problem.

One could expect that the natural candidate isoperimetric sets in H
n are the balls associated to

the Carnot-Carathéodory metric, as they are the counterparts of the Euclidean balls in R
n. How-

ever, as shown in a recent work by Monti [26], these balls are not isoperimetric. In the particular
case of the first Heisenberg group H

1, a reasonably good approximation of an isoperimetric set can
be obtained as the output of a numerical simulation, that we have performed with Brakke’s Surface
Evolver [6]. This simulation finds a theoretical justification in an approximation result of sets of
finite H-perimeter with polyhedral sets [24]. Starting from different polyhedra as initial configura-
tions, the minimization of the H-perimeter at constant volume leads, up to left-translations, to a
unique, apparently smooth and convex body with an evident cylindrical symmetry (see Figure 1)
plus a symmetry with respect to the z-plane (recall that the points of H

n can be seen as the pairs
[z, t] ∈ C

n ×R ' R
2n+1). Of course, the simulation cannot guarantee that what we find is a global

minimizer instead of a local one, but surely adds credit to the natural conjecture about the sym-
metries of such isoperimetric sets, which should be coherent with the symmetries of H

1: indeed,
all rotations around the t-axis, as well as the map (x, y, t) 7→ (x,−y,−t), are automorphisms of H

1

(see [11]) preserving both volume and H-perimeter.

Motivated by the results of our simulations and generalizing to H
n, n ≥ 1, we are naturally led to

consider a “restricted” isoperimetric problem, that is the minimization of the ratio PH(F )/|F |
Q

Q−1

on the subclass F of sets F whose boundary ∂F can be decomposed as the union S+ ∪ S−,
where S+ = ∂F ∩ {t ≥ 0} is the graph of some radial, smooth and non identically zero function
g(z) = f(|z|), whereas S− is the symmetric of S+ with respect to the z-plane.

It can be proved that this restricted isoperimetric problem admits solutions (see Theorem 3.3)
that we call Heisenberg bubbles. We believe that these are the right candidates to solve the (global)
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Figure 1: Using Brakke’s Surface Evolver, the minimization of the H-perimeter at constant volume
in the Heisenberg group H

1, taking a polyhedron as a starting configuration, produces this ap-
proximate “isoperimetric” set that notably differs from the Carnot-Carathéodory ball having same
volume (which, for instance, is not convex - see the figure in [26]).

isoperimetric problem in H
n, as suggested by our numerical results and, above all, because their

intrinsic mean curvature turns out to be constant (see Theorem 3.3), as happens for Euclidean
balls in R

n. Unfortunately, our belief remains conjectural because it is still unknown whether
isoperimetric sets are cylindrically symmetric and have a smooth boundary. In addition, if this
symmetry seems natural in H

1 for the reasons mentioned before, it is less evident in H
n when

n ≥ 2, because a generic rotation around the t-axis is no more necessarily a group automorphism.
Nevertheless, we find new properties of Heisenberg bubbles that could be of help for the search

of a rigorous proof of their optimality and also for a better understanding of the geometry of
H

n in general. The first property is the previously mentioned fact that the mean H-curvature of
the boundary of a Heisenberg bubble (following the quite natural definition proposed in [32]) is
constant, and this agrees with the Euclidean case, where balls verify precisely the same property.
The second one, which is indeed the most interesting and surprising, is the fact that the boundary
of any Heisenberg bubble is foliated by the (infinitely many) geodesics connecting the north pole
and the south pole of the bubble. As we learned after the first redaction of this work, this quite
unexpected property was observed also by Pansu (see the last few lines of [31]). It clearly has no
Euclidean counterpart (recall that Euclidean geodesics connecting two given points are reduced to
a single segment!) and can be checked very easily, once one knows the equations of geodesics in H

n

and the explicit solutions to the restricted isoperimetric problem.
Besides, in a recent work by Monti and Morbidelli [29], the solutions to the isoperimetric problem

are completely characterized in the so-called Grushin plane, that is, the Carnot-Carathéodory space
generated on R

2 by the vector fields X = ∂
∂x

and Y = |x| ∂
∂y

. It turns out that any isoperimetric set
in the Grushin plane coincides with the 2-dimensional slice obtained cutting a symmetric Heisenberg
bubble with any vertical plane containing the t-axis; moreover, the boundary of such isoperimetric
set is foliated by (two) geodesics, as happens for Heisenberg bubbles. Therefore, these results seem
to confirm the conjecture that Heisenberg bubbles are the unique isoperimetric sets in H

n.

Among the various techniques for proving that Euclidean balls are isoperimetric in R
n, one

could try to generalize first those involving a symmetrization procedure (Steiner symmetrization,
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Schwartz symmetrization) and the one based on the Brunn-Minkowski inequality (see [7, 9]). How-
ever, the question whether there exists in H

n a symmetrization procedure that preserves the Haar
measure and does not increase the H-perimeter is still widely open. On the other hand, the Brunn-
Minkowski-based technique could be described in quite general terms as follows (we thank Zoltan
Balogh for pointing out to us this observation). Let X be a space on which a binary operation ∗,
a volume measure | · |, a perimeter measure P (·) and a family of dilations δε, ε > 0, are defined, in
such a way that

C1 volume and perimeter measures are, respectively, Q and (Q − 1)-homogeneous with respect
to dilations, for some Q > 0;

C2 there exists a family of “regular” subsets of X which is dense (with respect to volume and
perimeter) in the family of | · |-measurable subsets of X with finite | · | measure;

C3 the perimeter of any regular set F ⊂ X is finite and coincides with its Minkowski content
MB(F ), defined as

MB(F ) = lim
ε→0+

|F ∗ δε(B)| − |F |
ε

, (1.2)

with B ⊂ X denoting a suitable regular set whose volume and perimeter are both finite and
positive, and such that P (B) ≤ Q|B| (thus, B plays the role of the unit ball in R

n);

C4 the Brunn-Minkowski-type inequality

|F ∗ G|
1

Q ≥ |F |
1

Q + c|G|
1

Q (1.3)

holds for any pair of regular sets F,G ⊂ X and for c ∈ (0, 1] given by

c =
P (E)

P (B)
,

where E is a suitable regular set satisfying |E| = |B| (and playing the role of the candidate
isoperimetric set).

It is then quite easy to prove the following

Proposition 1.1 If conditions C1–C4 are verified, then the set E is isoperimetric, i.e., it mini-
mizes the perimeter among all sets with same volume.

Proof. Take B as above and let F be a regular set with |F | = |B|. By using C1, C3 and C4 we
deduce, for a fixed ε > 0,

|F ∗ δε(B)| − |F |
ε

≥ |F |[(1 + cε)Q − 1]

ε
≥ cQ|F | ≥ P (E),

hence by taking the limit as ε → 0 we obtain P (F ) ≥ P (E). Finally, by means of C2 and by an
easy argument involving the dilations (needed to make sure that the approximation with regular
sets can be done also by keeping the volume fixed), one obtains that E minimizes the perimeter
among all measurable sets F ⊂ X with same volume. �
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We first remark that the previous result holds when X = R
n, ∗ equals the standard sum of

vectors, Q = n, | · | and P (·) are the Euclidean volume and perimeter measures, δε is the usual
multiplication by a positive scalar ε, and both E and B coincide with the Euclidean unit ball.

It is well-known that C1, C2 and C3 hold true in any Carnot group [13, 16, 28]. Concerning
C4, and in the particular case of the Heisenberg group H

n, we are able to prove the following
Brunn-Minkowski inequality (see Theorem 4.1):

|F · G| 1d ≥ |F | 1d + |G| 1d , for all measurable sets F,G ⊂ H
n (1.4)

where d = 2n + 1 is the topological dimension of H
n. Apart from some technical modifications, the

proof follows the line of the classical proof for the Euclidean case, as it can be found for instance
in [10, 17].

The question now arises whether a similar inequality could hold with a larger parameter d, and,
in particular, with d = Q = 2n + 2 the homogeneous dimension of H

n. Unfortunately, it has been

already observed by R. Monti [27] that the inequality |F · G|
1

Q ≥ |F |
1

Q + |G|
1

Q cannot be satisfied,
since otherwise it would imply that Carnot-Carathéodory balls are isoperimetric, which is known
to be false [26, 27].

We shall extend here this negative result, proving that actually for any c ∈ (0, 1], the Brunn-
Minkowski-type inequality

|F · G|
1

Q ≥ |F |
1

Q + c|G|
1

Q (1.5)

fails to be true in general (Proposition 4.10), thus showing that the strategy à la Brunn-Minkowski
mentioned above cannot be used to prove that Heisenberg bubbles are isoperimetric sets in H

n.
The proof of Proposition 4.10 relies on an interesting fact concerning the computation of the

intrinsic Minkowski content in H
n, defined as

MB(F ) = lim
ε→0+

|F · δε(B)| − |F |
ε

,

where B denotes the unit ball with respect to the Carnot-Carathéodory distance. By [28], one
knows that MB(F ) = PH(F ) when F is bounded and ∂F is C2 in the Euclidean sense. We
will show in Theorem 4.7 that, given any bounded set D ⊂ H

n such that π(D) = {z ∈ C
n :

(z, t) ∈ D for some t ∈ R} coincides with the 2n-dimensional unit disk {|z| < 1}, and defining the
generalized Minkowski content associated to D as

MD(F ) = lim
ε→0+

|F · δε(D)| − |F |
ε

,

one obtains MD(F ) = MB(F ) for all bounded, open sets F with boundary of class C 2. This
implies, for instance, that the Minkowski content (and hence the H-perimeter) of a regular set F
can be computed by ε-enlarging F with a flat horizontal disc of radius ε as well as with the δε-scaled
copy of a “tall” cylinder (see Corollary 4.8). This somehow clarifies the “horizontal” nature of both
H-perimeter and Minkowski content in H

n.

The paper is organized as follows. In Section 2 we collect the basic definitions and facts about
H

n, while in Section 3 we show the announced properties of Heisenberg bubbles (Theorem 3.3).
In the final Section 4 we prove the Brunn-Minkowski inequality (Theorem 4.1) and the result on
the equivalence between generalized Minkowski contents (Theorem 4.7), then discuss the relevant
consequences mentioned above, and in particular the failure of a direct application of the Brunn-
Minkowski theory to the isoperimetric problem in H

n.
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2 Notations and main facts about Hn

The Heisenberg group H
n can be identified with C

n × R ' R
2n+1 and we shall frequently denote

its elements by P = [z, t], where z ∈ C
n and t ∈ R. We will also sometimes identify z = x+ iy with

the 2n-tuple (x, y), where x, y ∈ R
n. Like for any Carnot group, the algebraic and metric structure

of H
n can be completely derived via exponential map from its tangent, stratified Lie algebra G

generated by the following family of horizontal vector fields: for i = 1, . . . , n, define

Xi(P ) = ∂xi
+ 2yi∂t

Yi(P ) = ∂yi
− 2xi∂t,

where P = [x + iy, t]. Note that the stratification is non-trivial, since G = H ⊕ V , where
H = span {X1, . . . , Xn, Y1, . . . , Yn} is the so-called horizontal subbundle and V = span {[Xi, Yi]} =
span {∂t} is the center of the algebra (as usual, [X,Y ] = XY −Y X denotes the commutator of the
two fields X and Y ). The resulting group operation on H

n is

P · P ′ = [z, t] · [z′, t′] = [z + z′, t + t′ + 2 Im(

n
∑

i=1

zi · z̄′i)]. (2.1)

Thanks to (2.1), one defines a family of left translations on H
n as the group automorphisms τP :

H
n → H

n which associate to any Q ∈ H
n the point τP (Q) = P ·Q. There is also a family of intrinsic

dilations on H
n, given by δλ([z, t]) = [λz, λ2t], with λ > 0.

To complete the Carnot structure, we define the Carnot-Carathéodory metric as follows. We say
that an absolutely continuous curve γ : [0, T ] → H

n is a sub-unit curve if there exist 2n measurable

functions h1, . . . , h2n : [0, T ] → R such that

2n
∑

j=1

h2
j (s) ≤ 1 and

γ̇(s) =

n
∑

i=1

hi(s)Xi(γ(s)) + hi+n(s)Yi(γ(s))

for a.e. s ∈ [0, T ]. By Chow’s Theorem, any two points P and Q in H
n can be joined by a sub-unit

curve. Then the Carnot-Carathéodory distance between P and Q is

dc(P,Q) = inf{T > 0 ; there exists a sub-unit curve γ : [0, T ] → H
n

such that γ(0) = P, γ(T ) = Q}.

It is worth noting that the distance dc is coherent with the group structure and the dilations:
indeed,

dc(τP (Q), τP (W )) = dc(Q,W ) and dc(δλ(P ), δλ(Q) = λdc(P,Q)

for all P,Q,W ∈ H
n and λ > 0. Given P and Q as above, there always exists a sub-unit curve joining

P and Q of length dc(P,Q) (i.e., a minimal geodesic). We recall here the equations for geodesics of
unit length starting from [0, 0], since all other geodesics can be recovered by left-translations and
dilations (see [20, 25, 26]). Let s ∈ [0, 1] be the time-length parameter and φ ∈ [−2π, 2π], and let
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Ai, Bi ∈ R such that
∑n

i=1 A2
i + B2

i = 1: then the set of equations


























xi(s) =
Ai(1 − cos(φs)) + Bi sin(φs)

φ
i = 1, . . . , n

yi(s) =
−Bi(1 − cos(φs)) + Ai sin(φs)

φ
i = 1, . . . , n

t(s) = 2
φs − sin(φs)

φ2

(2.2)

defines a geodesic γ(s) connecting [0, 0] with the point [x + iy, t], whose coordinates are


























xi = xi(1) =
Ai(1 − cos φ) + Bi sinφ

φ
i = 1, . . . , n

yi = yi(1) =
−Bi(1 − cos φ) + Ai sinφ

φ
i = 1, . . . , n

t = t(1) = 2
φ − sinφ

φ2

(2.3)

(of course, this gives a parameterization of the boundary of the Carnot-Carathéodory ball with unit
radius). Finally, the structure (Hn, ·, δλ, dc) provides an example of Carnot group, as mentioned in
the introduction.

It is not difficult to check that the (2n+1)-dimensional Lebesgue measure on H
n ' R

2n+1 is the
Haar measure of the group, invariant under left-translations and (2n+2)-homogeneous with respect
to dilations (this degree of homogeneity coincides with the so-called homogeneous dimension of H

n,
from now on denoted as Q). As a consequence, the topological dimension of H

n (d = 2n + 1) is
strictly less than its Hausdorff dimension (Q = 2n + 2).

We now define the sets with finite H-perimeter (for more details, the reader may refer to [14]).
If Ω is an open subset of H

n and F ⊂ H
n is measurable, we set

PH(F,Ω) = sup

(∫

Ω∩F

divH φ dL2n+1 ; φ ∈ C1
0 (Ω, R2n), ‖φ‖∞ ≤ 1

)

,

where

divH φ =
n
∑

i=1

Xiφi + Yiφi+n

for any φ = (φ1, . . . , φ2n) ∈ C1
0 (Ω, R2n). Here C1

0 (Ω, R2n) denotes the space of R
2n-valued functions

of class C1 (in the Euclidean sense) with compact support in Ω. Of course, F will be said to
have finite H-perimeter in Ω if and only if PH(F,Ω) < ∞. As for the notation, we will write
PH(F ) instead of PH(F, Hn). Among the various properties of the H-perimeter, we just recall the
invariance with respect to left-translations and the (Q − 1)-homogeneity with respect to dilations.
It is also worth recalling that the definition of H-perimeter is closely related to that of BVH space,
hence it can be useful to define the horizontal (distributional) gradient of a function f : H

n → R:

∇Hf = (X1f, . . . ,Xnf, Y1f, . . . , Ynf).

If F has Lipschitz boundary in Ω (in the Euclidean sense) we have the following integral represen-
tation of the H-perimeter, as a consequence of Green’s formulae:

PH(F,Ω) =

∫

w∈∂F∩Ω
|C(w) · νF (w)| ∂H2n(w), (2.4)
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where H2n is the Euclidean (2n)-dimensional Hausdorff measure, νF (w) is the Euclidean normal
vector to ∂F at w, and C(w) is the (2n × 2n + 1)-matrix whose rows are given by the components
of the vector fields Xi(w) and Yi(w), i.e.,

C(w) =





























1 0 · · · 0 0 0 · · · 0 2y1

0 1 · · · 0 0 0 · · · 0 2y2
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 2yn

0 0 · · · 0 1 0 · · · 0 −2x1

0 0 · · · 0 0 1 · · · 0 −2x2
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 −2xn





























, w = [x + iy, t]. (2.5)

Going back to the isoperimetric problem, we now recall the theorem proved in [22] about the
existence of isoperimetric sets in any Carnot group, here specialized to the context of H

n:

Theorem 2.1 (Leonardi-Rigot) For all v > 0, there exists a measurable set E ⊂ H
n which is

isoperimetric, that is, it verifies |E| = v and minimizes the H-perimeter among all measurable
F ⊂ H

n such that |F | = v. Moreover, E is open, bounded and connected, its boundary is Alhfors-
regular and verifies the condition B. In addition, it is a domain of isoperimetry, i.e., a relative
isoperimetric inequality holds on E.

This result is however not sufficient to completely identify isoperimetric sets, since the recovered
properties are too generic.

3 Heisenberg bubbles

The purpose of this section is to describe some interesting properties of Heisenberg bubbles. We
first show that they are isoperimetric sets within a particular class of sets of finite perimeter, that
we now define:

Definition 3.1 We call F the class of sets F of finite perimeter whose boundary ∂F can be written,
up to left-translations, as ∂+F ∪ ∂−F , with ∂+F and ∂−F being the graphs of, respectively, g(z)
and −g(z), where g(z) = f(|z|) is a smooth, nonnegative, radial function defined on some 2n-ball
Dr ⊂ C

n ' R
2n of radius r centered at 0, and such that g = 0 on ∂Dr.

As mentioned in the introduction, we shall also prove that, as happens for Euclidean balls in R
n,

Heisenberg bubbles have constant mean H-curvature, following a definition that has been proposed
by Pauls in [32] (see also [19]), and that we recall:

Definition 3.2 Let Ω be an open subset of R
2n and g : Ω → R a smooth function. Define the

function F (x, y, t) = g(x, y) − t, whose zero level-set is precisely the graph of g in R
2n+1 ' H

n.
Then, the quantity

Hcc(g) = −divH

∇HF

|∇HF |
is called the mean H-curvature of the graph of g.
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We now can state our main result about Heisenberg bubbles.

Theorem 3.3 There exists, up to dilations and left-translations, a unique solution E to the isoperi-
metric problem within the restricted class F , with the following properties:

1. the mean H-curvature of ∂E is constant;

2. ∂E coincides with the union of all infinite geodesics connecting the north pole N and the
south pole S of E (see Figure 2).

In the sequel, we shall call E a Heisenberg bubble.

N

S

Figure 2: From left to right: one of the geodesics connecting S and N , few geodesics and, finally,
the total geodesic envelope corresponding to the boundary of a Heisenberg bubble in H

1 ' R
3.

Figures on the top are views from above.

Proof. The first part of the statement, that is the existence of a solution to the isoperimetric
problem in F , is somehow a known fact (see for instance [27]), but we give the proof for the sake
of completeness. Using the integral representation (2.4), we can compute the isoperimetric ratio
of any F ∈ F from its associated function f(ρ), with ρ ∈ [0, r]. Indeed, we first compute the
H-perimeter of F by using (2.4) and the fact that ∂+F and ∂−F give the same contribution to the
whole perimeter (a consequence of the radial symmetry of f):

PH(F ) = 2

∫

Dr

|C · ν|
√

1 + |∇g|2 dx dy = 4nω2n

∫ r

0

√

4ρ2 + f ′(ρ)2ρ2n−1 dρ,

where ω2n denotes the volume of the unit ball in R
2n. Then, the volume of F in terms of f is

|F | = 4nω2n

∫ r

0
f(ρ)ρ2n−1 dρ.

At this point, by computing the Euler equation of the functional CI(f) = PH(F )/|F |
Q−1

Q one
obtains after some calculations

(

ρ2n−1f ′(ρ)
√

4ρ2 + f ′(ρ)2

)′

= −(Q − 1)PH(F )

Q|F | ρ2n−1,
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and hence, by a first integration,

f ′(ρ)
√

4ρ2 + f ′(ρ)2
= −λn

2
ρ, (3.1)

with λn = (Q−1)PH(F )
nQ|F | . The assumed smoothness of ∂F implies that f ′(0) = 0 and we obtain by

integration the following solution to (3.1):

f(ρ) = f(0) +
2

λ2
n



λnρ

√

1 −
(

λnρ

2

)2

+ 2arccos

(

λnρ

2

)

− π



 ,

whence we infer that ρ must be less than or equal to r = 2
λn

; moreover, if we ask that f(r) = 0

then we obtain f(0) = 2π
λ2

n
and the unique solution to (3.1) having this property can be written as

f(ρ) =
2

λ2
n



λnρ

√

1 −
(

λnρ

2

)2

+ 2arccos

(

λnρ

2

)



 . (3.2)

This function uniquely determines a solution to the isoperimetric problem in the class F .

Property 1 can be checked by direct computation, using (3.2) and the definition of the mean
H-curvature. Indeed, taking λn = 2 and ρ2 =

∑n
i=1 x2

i + y2
i as before, one obtains

Hcc(g) =

n
∑

i=1

∂xi









−f ′(ρ)

ρ
xi + 2yi

√

4ρ2 + f ′2(ρ)









+ ∂yi









−f ′(ρ)

ρ
yi − 2xi

√

4ρ2 + f ′2(ρ)









=

n
∑

i=1

2ρ2(1 − ρ2) + xi(∂yi
ρ)
√

1 − ρ2 − yi(∂xi
ρ)
√

1 − ρ2

ρ2(1 − ρ2)

=

n
∑

i=1

2ρ2(1 − ρ2)

ρ2(1 − ρ2)

= 2n.

In particular, one sees that Hcc(g) is given exactly by the multiplier nλn = (Q−1)PH(F )
Q|F | , as happens

in the Euclidean case.

Property 2 is verified, for example, by computing the equation of the surface given by the union
of all geodesics between [0, 0] and [0, 1

π
] (the latter point lying on the t-axis at distance dc = 1 from

the origin), since the general case can be recovered by scaling:























xi(s) =
1

2π
(Ai(1 − cos(2πs)) + Bi sin(2πs))

yi(s) =
1

2π
(−Bi(1 − cos(2πs)) + Ai sin(2πs))

t(s) =
1

π

(

s − sin(2πs)

2π

)

s ∈ [0, 1],
∑

i

A2
i + B2

i = 1. (3.3)

10



Then, by left-translating the union of geodesics by the element [0,− 1
2π

] (in this case, the left-

translation coincides with the Euclidean one) and by expressing t as a function of ρ =
√

∑

i x
2
i + y2

i ,
one gets

t(ρ) =
ρ

π

√

1 − π2ρ2 +
1

2π2
arccos(2π2ρ2 − 1),

which, thanks to the identity

arccos(2π2ρ2 − 1) = 2 arccos(πρ),

becomes

t(ρ) =
ρ

π

√

1 − π2ρ2 +
1

π2
arccos(πρ). (3.4)

It is now easy to check that (3.4) corresponds to (3.2) when λn = 2π. �

Remark 3.4 The boundary of any Heisenberg bubble E is, up to left translations, the union
of ∂+E and ∂−E (see Definition 3.1). By scaling, any point of ∂+E is of the general form
(ax, ay, a2f(

√

x2 + y2) where
∑

i x2
i + y2

i ≤ 1 and f is the function defined on [0, 1] by

f(ρ) = ρ
√

1 − ρ2 + arccos(ρ) (3.5)

The parameter a will be called the horizontal radius of E.

4 Brunn-Minkowski inequality and Minkowski content

The first result of this section establishes in H
n the analogous of the well-known Brunn-Minkowski

inequality in R
2n+1 (see for instance [10, 17]). Here, of course, the Euclidean sum is replaced by the

non-commutative group operation. By suitably adapting the classical proof, we are able to prove
the following

Theorem 4.1 (Brunn-Minkowski inequality) Let F, G be two nonempty measurable subsets
of H

n. Then

|F · G| 1d ≥ |F | 1d + |G| 1d , (4.1)

where d = 2n + 1 is the topological dimension of H
n.

Proof. Inequality (4.1) will be proved in three steps.

Step 1. We suppose that F and G are d-rectangles, i.e., that we may write F = Q × I and
G = Q′ × I ′, with Q = Q1 × · · · × Q2n and Q′ = Q′

1 × · · · × Q′
2n, where Qi, Q

′
i, I, I ′ are bounded,

measurable subsets of R with positive L1 measure. Of course, we can think Q, Q′ as subsets of C
n.

Therefore, we have

F · G = {(z + z′, t + t′ + 2 Im(zz′)) : z ∈ Q, z′ ∈ Q′, t ∈ I, t′ ∈ I ′}

11



hence, setting w = z + z′, we obtain the equivalent representation

F · G = {(w, t + t′ + 2 Im(zw)) : w ∈ Q + Q′, z ∈ Q ∩ (w − Q′), t ∈ I, t′ ∈ I ′}. (4.2)

Define h : Q + Q′ → [0,+∞) as h(w) = L1({t : (w, t) ∈ F · G}). By (4.2) one sees immediately
that

h(w) = L1





⋃

z∈Q∩(w−Q′)

2 Im(zw) + I + I ′



 ≥ L1(I + I ′) ≥ L1(I) + L1(I ′). (4.3)

Now, set qi = L1(Qi), q′i = L1(Q′
i), τ = L1(I) and τ ′ = L1(I ′). Define, for i = 1, . . . , 2n, the

positive numbers

ui =
qi

qi + q′i
, vi =

q′i
qi + q′i

and

ud = u2n+1 =
τ

τ + τ ′ , vd = v2n+1 =
τ ′

τ + τ ′ .

By the well-known geometric/arithmetic mean inequality, we infer

d
∏

i=1

u
1

d

i +

d
∏

i=1

v
1

d

i ≤
d
∑

i=1

ui + vi

d
= 1,

then, thanks also to (4.3) and to Fubini’s theorem, it follows that

|F | 1d + |G| 1d =

(

τ
2n
∏

i=1

qi

)
1

d

+

(

τ ′
2n
∏

i=1

q′i

)
1

d

≤
(

(τ + τ ′)
2n
∏

i=1

(qi + q′i)

)
1

d

≤
(∫

Q+Q′

h(w) dw

)
1

d

= |F · G| 1d

Step 2. Suppose now that F = F1∪· · ·∪Fm and G = G1∪· · ·∪Gk, where Fs = Qs×Is, Gr = P r×Jr

are d-rectangles with the property that Qs ∩ Qi = P r ∩ P j = ∅ for s 6= i and r 6= j. Moreover, we
suppose that Qs and P r are open cells of some orthogonal lattice in R

d−1 We proceed by induction
on m + k, as follows. If m = k = 1, then F and G are d-rectangles, and therefore (4.1) holds by
the previous step. Suppose now that (4.1) is verified whenever m + k ≤ s for some s ≥ 2, then
we prove that it must be verified also if m + k = s + 1. Indeed, we face in general the following
alternative:

(1) both F and G are d-rectangles;

(2) F or G is not a d-rectangle.

If (1) holds, then we conclude as in the previous step. Otherwise, if (2) holds then, without loss
of generality, we suppose that F is not a d-rectangle. This implies the existence of a vertical
hyperplane of equation xi = a (i ∈ {1, . . . , 2n}), such that both sets F + = F ∩ {xi > a} and
F− = F ∩ {xi < a} contain at least a d-rectangle of the decomposition of F , and thus are unions

12



of a number of d-rectangles strictly less than m. Now, choose b ∈ R in such a way that, defining
G+ = G ∩ {xi > b} and G− = G ∩ {xi < b}, one obtains

|G±|
|G| =

|F±|
|F | .

It is easy to see that F + · G+ and F− · G− are necessarily disjoint (indeed, they are separated by
the vertical hyperplane xi = a + b), as well as the fact that

F · G ⊇ (F + · G+) ∪ (F− · G−),

therefore by the inductive hypothesis we conclude

|F · G| ≥ |F + · G+| + |F− · G−|
≥ (|F+| 1d + |G+| 1d )d + (|F−| 1d + |G−| 1d )d

= (|G+| + |G−|)
(

1 +

( |F |
|G|

)
1

d

)d

= (|F | 1d + |G| 1d )d,

that is, (4.1) is proved for such F and G.

Step 3. The general case follows by approximation: one fixes ε > 0 and takes F,G measurable
with finite Lebesgue measure and such that F ·G has also finite measure (otherwise the conclusion
is trivial), then chooses O open set containing F · G and such that |O \ F · G| < ε, by Borel regu-
larity. Since the · operation is continuous, we can find two open sets F ′ ⊃ F and G′ ⊃ G such that
|F ′ \ F | < ε, |G′ \ G| < ε, and F ′ · G′ ⊂ O. Then, we approximate the two open sets F ′, G′ from
inside, by means of sets RF ⊂ F ′ and RG ⊂ G′ that are finite unions of d-rectangles constructed
on a dyadic subdivision of the horizontal coordinate space (so that Step 2 is still applicable), and
in order to have |F ′ \ RF | < ε and |G′ \ RG| < ε. The conclusion follows by applying Step 2 to the
pair RF , RG and by letting ε → 0. �

Remark 4.2 The right side of (4.1) is obviously symmetric in F and G, thus we could write more
precisely that

min{|F · G|, |G · F |} 1

d ≥ |F | 1d + |G| 1d .

It is also worth observing that, in general, |F ·G| can be different from |G · F |, as explained in the
following example. Fix a parameter ε ≥ 0 and take

Fε = C1
F (ε) ∪ C2

F (ε), Gε = C1
G(ε) ∪ C2

G(ε),

where

C1
F (ε) = {(z, t) ∈ H

1 : |z − i| ≤ ε, t ∈ (−1

2
,
1

2
)},

C2
F (ε) = {(z, t) ∈ H

1 : |z − i

2
| ≤ ε, t ∈ (0, 1)},

C1
G(ε) = {(z, t) ∈ H

1 : |z − 1| ≤ ε, t ∈ (−1

2
,
1

2
)},

C2
G(ε) = {(z, t) ∈ H

1 : |z − (1 +
i

2
)| ≤ ε, t ∈ (0, 1)}.
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Hence, Fε and Gε are defined as unions of pairs of vertical cylinders with circular section of radius ε.
For ε small enough, these cylinders are disjoint and, moreover, the sets C 1

F (ε) · C2
G(ε) and C2

F (ε) ·
C1

G(ε), as well as C1
G(ε) ·C2

F (ε) and C2
G(ε) ·C1

F (ε), are pairwise disjoint. On the other hand, it can be
checked that C1

F (ε) ·C1
G(ε) and C2

F (ε) ·C2
G(ε) overlap significantly, in contrast with C1

G(ε) ·C1
F (ε) and

C2
G(ε)·C2

F (ε), due to the non commutativity of the group operation. It follows that |Fε ·Gε| < |Gε ·Fε|
(one may first do the much simpler computation for the “limit” case ε = 0, and then extend to
ε > 0 small).

Remark 4.3 The fact that inequality (4.1) holds with exponent d = 2n + 1 does not prevent the
same inequality to hold with a larger exponent (at least in principle). It is actually easy to verify
that, as soon as (4.1) holds for a certain exponent d, then it holds for any exponent d ′ ∈ (0, d).
Indeed, suppose |F | ≥ |G| > 0 without loss of generality, and rewrite (4.1) as

|F · G| ≥ |F |
(

1 +

( |G|
|F |

)
1

d

)d

,

then observe that, for all x ∈ (0, 1], the function m(t) =
(

1 + x
1

t

)t

is non-decreasing in t > 0,

hence one obtains

|F · G| ≥ |F |
(

1 +

( |G|
|F |

)
1

d′

)d′

for all d′ ∈ (0, d), as wanted.

We already mentioned in the introduction that another way of computing the H-perimeter, at
least for a suitable subclass of measurable sets, is provided by the Minkowski content, defined as
the following limit (if it exists):

MB(F ) = lim
ε→0+

|F · Bε| − |F |
ε

. (4.4)

Indeed, as a particular case of a more general result of [28], we have the following

Theorem 4.4 (Monti-Serra Cassano) Let F ⊂ H
n be a bounded, open set of class C2. Then

the limit in (4.4) exists finite, and one has

MB(F ) = PH(F ).

We now consider the following generalization of (4.4):

Definition 4.5 Given D ⊂ H
n, the generalized Minkowski content associated to D is defined as

MD(F ) = lim
ε→0+

|F · δε(D)| − |F |
ε

,

whenever the limit exists.

Before going further, let us define the horizontal projection.
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Definition 4.6 Given (z, t) ∈ H
n, we define π((z, t)) = (z, 0). For any set A ⊂ H

n, we write
π(A) = {π(x) : x ∈ A}.

As we will see in the sequel, the H-perimeter of a bounded, open set F with ∂F of class C 2

must coincide not only with MB(F ) (the Minkowski content associated to the Carnot-Carathéodory
distance), as stated by Theorem 4.4, but also with MD(F ), for all bounded sets D such that their
horizontal projection π(D) coincides with the unit disk in R

2n or, in other words, π(D) = π(B)
(here, B denotes the Carnot-Carathéodory ball of radius 1). This is a direct consequence of Theorem
4.7 below and can be understood by simply observing that the ε-neighbourhood of F is built by
“adding” the set δε(D) to F (in the sense of group multiplication), and that the scaling factor of
the anisotropic dilation produces an horizontal scaling of factor ε and a vertical scaling of factor
ε2, which says somehow that the “vertical” shape of D is “less important” than its “horizontal”
shape, when ε is small.

Theorem 4.7 Let D1, D2 be two bounded subsets of H
n for which π(D1) = π(D2). Then MD1

(F ) =
MD2

(F ) for all open, bounded sets F of class C2.

Proof. Suppose first that, for some h > 0,

Di ⊂ Ch = {(z, t) : z ∈ π(D1), |t| < h}, i = 1, 2. (4.5)

Now, it is sufficient to prove that, given F as above, there exists a constant C > 0, depending only
on F and h, such that

|(F · δε(D1)) \ (F · δε(D2))| ≤ Cε2 (4.6)

for ε small enough. Indeed, by exchanging the role of D1 and D2 in (4.6), one gets
∣

∣

∣
|F · δε(D1)| − |F · δε(D2)|

∣

∣

∣
≤ Cε2

which in turn gives the conclusion. We shall prove a local version of (4.6): more precisely, for a
fixed δ > 0 we consider the Euclidean, open ball Bδ centered at 0 with radius δ, then we take the
open covering {τpj

(Bδ)}k
j=1 of ∂F , obtained by suitably choosing points p1, . . . , pk in ∂F . Thanks

to the regularity and boundedness of ∂F , we shall prove that for all η > 0 there exist δ > 0 and
points p1, . . . , pk ∈ ∂F (k depends on δ) such that, setting Ej = τ−pj

(F ), the surface

Sj = ∂Ej ∩ B4δ

is “almost flat”, that is, there exists a unit vector vj ∈ R
2n+1, such that, denoting by nj(q) the

Euclidean outer normal to ∂Ej at q, one has

〈nj(q), vj〉 > 1 − η, (4.7)

for all q ∈ Sj . Then, we only need to prove the local estimate

|(Ej · δε(D1)) \ (Ej · δε(D2)) ∩ Bδ| ≤ Cε2, (4.8)

for all j = 1, . . . , k, which implies (4.6) by the following argument: {τpj
(Bδ)}k

j=1 ∪ {F} covers
F · δε(Di), provided ε is small enough, hence thanks to the invariance of the Lebesgue measure
under left translations one obtains

|(F · δε(D1)) \ (F · δε(D2))| ≤
k
∑

j=1

|(Ej · δε(D1)) \ (Ej · δε(D2)) ∩ Bδ| ≤ kCε2,
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and since k depends only on η (that will be later fixed), (4.6) follows.
The proof is now split into two parts.
Part I. Suppose that |vj

2n+1| > 2
√

2η (η > 0 to be later chosen), then by (4.7) we get

|nj
2n+1(q)| >

√
2η. This means that Sj defined above coincides with a portion of the graph of

a Lipschitz function f : B ′
4δ ⊂ R

2n → R of class C2 and Lipschitz constant ≤ 1√
2η

(here, B′
r is the

ball of radius r in R
2n, centered at 0). We can also suppose without loss of generality that

Ej ∩ B4δ = sgr(f) ∩ B4δ,

where sgr(f) denotes the subgraph of f .
We fix i ∈ {1, 2}, j ∈ {1, . . . , k}, and set E = Ej, D = Di for more simplicity, then claim that

E · δε(D) ∩ Bδ still coincides with the subgraph of some function, for ε small enough. Indeed, fix
q = (z, t) ∈ (E · δε(D)) ∩ Bδ, then choose e ∈ E such that q ∈ e · δε(D). Thanks to (4.5), we can
choose ε so small that e belongs to E ∩ B2δ (indeed, if q = e · δε(d) for some d ∈ D ⊂ Ch, then
clearly e = q · δε(−d)), hence if q′ = (z′, t′) ∈ Bδ is such that z′ = z and t′ < t, then q′ ∈ e′ · δε(D),
where e′ = τ(0,t′−t)(e). Now, by t− t′ < 2δ and the fact that E is a subgraph in B4δ , it follows that
e′ belongs to E ∩ B4δ, hence q′ ∈ E · δε(D), and this proves our claim.

We define
∆ε = (E · δε(D1) \ E · δε(D2)) ∩ Bδ

and take q1 = (z1, t1) ∈ ∆ε, then find e ∈ E such that q1 ∈ e · δε(D1)∩Bδ. Therefore, by (4.5) and
π(D1) = π(D2), there exists q2 ∈ e · δε(D2) such that q2 = (z2, t2) with z2 = z1 and |t2 − t1| ≤ 2hε2.
This shows that the 1-dimensional section of ∆ε defined for all z ∈ C

n by

∆ε(z) = {t ∈ R : (z, t) ∈ ∆ε}

is necessarily an interval of length at most 2hε2, owing to the fact that ∆ε is a difference of
subgraphs. Thus, by Fubini’s theorem, we get

|∆ε| ≤ |B′
δ| · 2hε2 = Cε2,

as wanted.
Part II. Suppose now that |vj

2n+1| ≤ 2
√

2η, then reasoning as in Part I we obtain that

|nj
2n+1(q)| ≤ 3

√
2η, thus we can see Sj as part of the graph of a Lipschitz function f : B ′′

4δ ⊂ Π → R

of class C2 and Lipschitz constant Lη → 0 as η → 0 (here, B ′′
r is the ball of radius r on the “vertical”

hyperplane Π passing through 0 and orthogonal to π(vj)).
As before, we can prove that (E · δε(Di)) ∩ Bδ is a subgraph and, without losing generality,

we suppose that the vertical hyperplane Π coincides with x1 = 0. Fix q ∈ E · δε(D) ∩ Bδ, with
q = (x1, x2, . . . , x2n+1), and take q′ ∈ Bδ such that q′ = (x′

1, x
′
2, . . . , x

′
2n+1), x′

i = xi for all i > 1
and x′

1 < x1. Clearly, there exists e ∈ E ∩ B2δ such that q ∈ e · δε(D), provided ε is small enough.
The element v = (xv

1, . . . , x
v
2n+1) ∈ H

n such that τv(q) = v · q = q′ is defined by

xv
1 = x′

1 − x1,

xv
i = 0 ∀ i = 2, . . . , 2n,

xv
2n+1 = 2x2 xv

1.
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Now, write e = (y1, . . . , y2n+1) and define e′ = (y′1, . . . , y
′
2n+1) = τv(e), then observe that

y′1 − y1 = x′
1 − x1,

y′i − yi = 0 ∀ i = 2, . . . , 2n,

y′2n+1 − y2n+1 = 2(x2 − y2)(y
′
1 − y1),

|x2 − y2| < 3δ,

hence
|y′2n+1 − y2n+1| ≤ 6δ|y′1 − y1|.

If we take δ < 1
2 , then e′ ∈ B4δ, and if we choose η so small that Lη < 1/4, we obtain e′ ∈ E, too.

This proves that q′ ∈ E · δε(D), that is, E · δε(D) is a subgraph in Bδ, as claimed.
Let ∆ε be defined as in Part I, and let q1 ∈ ∆ε. For ε small enough, we find e1 ∈ E ∩ B2δ such

that q1 ∈ e1 · δε(D1), then there exists at least one point q0 ∈ e1 · δε(D2) such that π(q0) = π(q1);
moreover, if we denote by t1 and t0 the (2n + 1)-th coordinate of, respectively, q1 and q0, we
necessarily have that |t1 − t0| ≤ 2hε2. Reasoning as before, we can find v ∈ H

n such that the cor-
responding translation τv maps q0 onto a certain point q2 with the property that the coordinates
of q2 and q1 are the same except the first ones, denoted by x2

1 and x1
1 respectively, and satisfying

x1
1−x2

1 = |t1− t0|. Again, it is not difficult to see that e2 = τv(e1) ∈ E, provided ε and η are chosen
small enough. Thus, we conclude as in Part I that |∆ε| ≤ Cε2, and the proof is now completed. �

Corollary 4.8 Let B denote the Carnot-Carathéodory ball of radius 1 and let D be a bounded set
such that π(D) = π(B). Then MD(F ) = PH(F ) for all bounded, open set F of class C2.

Proof. It is an immediate consequence of Theorem 4.7 and Theorem 4.4. �

Remark 4.9 Another relevant consequence of Theorem 4.7 is that MC0
(F ) = MB(F ), where

C0 = {(z, 0) : |z| < 1} is the flat 2n-dimensional unit disk centered at 0. This provides a simpler
way of computing the Minkowski content (it is, of course, much easier to compute ε-enlargements
by left-translating a flat disk of radius ε instead of a Carnot-Carathéodory ball).

As announced in the introduction, we are now in position to prove that for any c ∈ (0, 1] the
inequality

|F · G|
1

Q ≥ |F |
1

Q + c|G|
1

Q , F,G ⊂ H
n measurable, (4.9)

is false in general.

Proposition 4.10 The Brunn-Minkowski-type inequality (4.9) cannot hold for any pair (F,G) of
measurable subsets of H

n.
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Proof. Take Ch = {(z, t) : |z| < 1, |t| < h} and let F be an open, bounded set of class C 2.
Then, PH(F ) is finite and by Corollary 4.8 we have MCh

(F ) = PH(F ) for all h > 0. Therefore, if
(4.9) were satisfied with G = Ch, we would get

|F |

(

1 + c
(

|Ch|
|F |

) 1

Q
ε

)Q

− 1

ε
≤ |F · δε(Ch)| − |F |

ε
,

hence by taking the limit as ε → 0 we would obtain

|F |cQ
( |Ch|

|F |

)
1

Q

≤ PH(F ) ∀h > 0,

which is clearly false in general, because |Ch| → +∞ as h → +∞. �
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