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Abstract

We consider a variational approach to the problem of recovering missing parts in a
panchromatic digital image. Representing the image by a scalar function u, we propose
a model based on the relaxation of the energy
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which takes into account the perimeter of the level sets of u as well as the LP norm
of the mean curvature along their boundaries. We investigate the properties of this
variational model and the existence of minimizing functions in BV. We also address
related issues for integral varifolds with generalized mean curvature in LP.

Keywords: Image processing; image reconstruction; BV; mean curvature; varifolds;
relaxation.

1 Introduction

Many problems in digital image processing require the ability to recover missing parts of
an image or to remove spurious or undesired objects. One can mention for instance the
removal of scratches in old photographs and films, the recovery of pixels blocks corrupted
during a binary transmission (or analogously the removal of impulse noise) or the removal
of undesired publicity, text or subtitles from a photograph. One can also think to special
effects for movie postproduction, e.g. the removal of a microphone appearing in a scene.
A digital image is usually modeled as a function u from a bounded domain of RN (N =2
for usual snapshots, N = 3 for medical images or movies, N = 4 for moving medical images)
onto RM (M = 1 for a grey-level image, M = 3 for colour images). Since it is now well
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admitted that the essential features of any natural image are contained in its grey level
representation, we shall concentrate on the panchromatic case M = 1. To extend to the
colour case an operator designed for grey level images, it is generally enough to process
separately each channel in the colour representation, e.g. the red-green-blue representation
or, more appropriately, any representation with two channels for the chromaticity and one
channel for the luminosity (see [9] and the references herein).

After the work of L. Rudin and S. Osher [34], the usual representation of a panchromatic
image is a sum of two components u; € BV(IRN) and us € L*(IRY). The component u;
is supposed to describe the geometry of the image, i.e. its objects and their boundaries,
while uo contains all information about terture and additive noise. The assumption that
the geometry of the image can be described by a function of bounded variation sounds
quite natural, for it means that there can be discontinuities in the image but supported on
rectifiable curves. The necessity of another component that does not necessarily belongs
to BV can be corroborated by an experimental procedure that seems to indicate that,
given a digital image, the subjacent “real” image may be often too oscillating to belong to
BV (see [2] for the details and [11] for connected theoretic issues). The reader may refer
to [4, 20] for a detailed survey of the space BV.

Among the large literature that has been published in recent years on the recovery
of missing parts in a digital image, one can basically distinguish between two approaches
and each of them corresponds in some way to the processing of one component in the
decomposition above:

e the stochastic approach, which is based on the modeling of an image as a realization
of a random process. Usually, it is assumed that the image intensity derives from a
Markov Random Field and, therefore, satisfies properties of locality and stationarity,
i.e. each pixel is only related to a small set of neighboring pixels and different regions
of the image are perceived similar. This modeling is particularly adapted for texture
images (thus to the processing or the component uy in the previous decomposition)
and has motivated numerous works on texture analysis and synthesis [5, 14, 15, 25,
32, 33, 42, 44],

e the deterministic approach, whose main purpose is to recover the geometry of the
image. The model we shall discuss in this paper belongs to this category.

A pioneering work on the recovery of plane image geometry is due to D. Mumford,
M. Nitzberg and T. Shiota [31]. They did not directly address the problem of recovering
missing parts in an image but rather tried to identify occluding and occluded objects in
order to compute the image depth map. Their algorithm starts with the detection of the
boundaries of image objects. The next step is the identification of occluded and occluding
objects. To this aim, Nitzberg, Mumford and Shiota had the luminous idea to mimic
a natural ability of human vision to complete partially occluded objects, the so-called



amodal completion process described and studied by the Gestalt school of psychology and
particularly G. Kanizsa [23]. From a series of perceptual experiments, Kanizsa found out
that our vision system detects occlusion at a very low level, actually as soon as it detects
T-junctions, which are points where an object outline abruptly abuts against the outline
of another object and forms a junction in the shape of the letter “T”. In particular, our
perception of occlusion has nothing to do with a prior recognition of the objects. Being
the T-junction detected, our brain performs a continuation of objects boundaries between

T-junctions (see figure 1).
T—-junctions
‘A
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Figure 1: This example, due to G. Kanizsa [23], illustrates the amodal completion process.
Starting from the four objects on the left column, the addition of either four white rectangles
or a white cross produces T-junctions (middle column), that conduce our brain to perceive
occlusions that, in reality, do not exist. This illustrates perfectly the link between the
presence of T-junctions and the perception of occlusions. Then, our visual system recovers
the virtually occluded objects (four black disks in one case and a black square in the other)
by connecting T-junctions with completion curves, following a good continuation principle.
We have represented those curves with dash lines on the right column.

As pointed out by Kanizsa, this continuation process relies on many different laws [23]
and there is actually no obvious may to model it, even in relatively simple situations [18].
Again, it seems that no process of recognition be involved (see figure 2). The idea of
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Figure 2: No recognition process seems to be involved in amodal completion. In this figure
(from G. Kanisza [23]), our brain creates an hybrid animal that obviously contradicts reality.

Mumford, Nitzberg and Shiota was to adapt the theory of Kanizsa to their framework.
Given the objects boundaries, it is easy to detect T-junctions. Hereafter, the main problem
is the completion of objects boundaries between T-junctions. As we said, there is no simple
model for amodal completion. However, it can be proved that completion curves are in
general as short as possible while respecting a principle of good continuation with respect
to the edges being completed. Thus, the model proposed by Mumford et al is the following:
given two T-junctions p1, po and the tangents tq1, to of the respective terminating edges,
the continuation curve is the Euler elastica I', that is the curve minimizing the energy

/(a + B K?)dH,
r

subject to the boundary conditions of beginning at (p1,t) and ending at (pa,t2). Here, H*
denotes the one-dimensional Hausdorff measure, x the curvature on I' and «, § are positive
reals. Of course, this model is far from being fully satisfactory and, in particular, does not
allow to create corners. However, it sounds reasonable in a first approximation, particularly
when the angle between ¢ and t5 is small, and offers a good compromise between shortness
and good continuation.

The energy above has in fact a long history. It has been initially studied by Euler [16]
in 1744, who investigated the bending of a thin rod - [ k?dH" is the total bending energy
- by forces and couples applied at its ends. Then, it was first applied to visual completion
by Ullman [39] and Horn [21] and has more recently motivated numerous works (see [24,
37, 40, 41, 43] and the very interesting justification of the model in [30]).

In their paper, Mumford, Nitzberg and Shiota recover partially occluded objects in the
following way: among all possible T-junctions pairings, the algorithm first disqualifies those



for which intensities are too different, based on the subjacent reasonable assumption that
intensity cannot vary too much along an edge. Then, the algorithm finds the pairings of
minimal energy, from which the complete objects can be easily deduced.

Though it was not initially designed for, it is not difficult to adapt this approach to
the problem of recovering missing parts of an image. If A denotes a hole that we want to
fill, we can consider JA as an edge, compute all T-junctions on A and try to find optimal
pairings between them. The result would be a family of overlapping objects given by their
boundaries. The grey level at each point of an object O is known only outside A but one
can easily imagine a way to define it also on O N A, e.g. simply putting the average value
computed over O \ A, and such strategy applied to each object would finally give an image
where A has been filled.

It is easily seen that such strategy has however a major drawback: its dependence
on a prior edge detection process. It is well known indeed that edges are not reliable
features in the sense that they cannot be defined in a reliable way. Actually, each edge
detector provides a particular definition of edges and, consequently, the image resulting
from the strategy above depends as much on the image itself as on the edge detector ! In
addition, edges furnish a very poor representation of the original image, actually a coarse
approximation to the component u; that we defined previously. The image reconstructed
with a strategy a la Mumford et al is therefore rather incomplete since all the information
outside the missing zone A is not taken into consideration.

To remedy these drawbacks, it was proposed in [26] (see also [28]) to adapt Mumford
et al strategy to the level lines framework (see figure 3). Level lines have many advantages
in our setting:

e they provide a complete representation of any Borel function u: given the upper level
sets Xou = {x, u(x) > A}, the image can be easily reconstructed with the formula

u(z) = sup{\, z € Xu} (1)
which holds almost everywhere;

e they are perfectly adapted to the description of image geometry. In particular, the
family of level sets is globally invariant with respect to any increasing contrast change,
exactly like image objects (the shape of a bird remains the shape of a bird after a
contrast change). In contrast, edges are fully contrast-dependent features.

e they are well suited with the BV setting for mainly three reasons:

— almost every level set of a function of bounded variation has finite perimeter
(see the next section). In addition to all properties that it implies, the notion
of finite perimeter is compatible with a weak notion of connectedness [3] which
can be particularly useful for the description of image shapes;



— by the Cavalieri formula, the L' norm of a measurable function on IRY depends
on the N-dimensional measure of its level sets;

— by the coarea formula, the total variation of a BV function on RN depends on
the (N — 1)-dimensional Hausdorff measure of its level lines.

\J_—
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Figure 3: The algorithm in [26] first detects T-junctions as the intersection points between
the occlusion’s boundary and the outer level lines (left). Then it computes optimal pairings
between compatible T-junctions and draws the corresponding completion curves (middle).
Finally, the occlusion is removed by simply filling with the appropriate grey levels (right).

In [26], the authors call disocclusion their method for recovering missing parts of a grey
level two-dimensional image, since missing parts can obviously be considered as occlusions
“hiding” some information one wants to recover. It is assumed that w is a BV function
on the plane known everywhere except on a bounded simply connected open set A with
smooth boundary. T-junctions are defined as those points where A intersects the level
lines of u. The algorithm presented in [26] tries to find optimal pairings between compatible
T-junctions, i.e. associated to the same level set, such that the orientation of Du is the
same at both points and the optimal associated curve do not cross another completion
curve. Both conditions ensure that the new sets obtained by the addition of the completion
curves still are level sets. Given two compatible T-junctions j; and jy on 0A and 64,
02 the corresponding orientations of Du (computed for instance as an average over some
neighborhood), the optimal completion curve proposed in [26] is a curve I that lives in A
and minimizes the criterion

/F(OA + 0 |I€|p)d7'f1 + (01,711) + (92,712).

Here, «, 3 are positive reals, p > 1 is a real parameter introduced to generalize the elastica
energy and the last two terms denote the angles between 61, 65 and the normals to I' at j;
and jo respectively. These terms guarantee that, at least in a first approximation, the good



continuation principle is satisfied. The global energy to minimize is finally of the form

/_+°0 Z (/F(a + Blk[PYAHE + (61,m1) + (027712)) d, 2)

o0 T'eF)

with F) denoting the family of completion curves associated to the level set {u > A}. It
must be emphasized that F) is generically finite for almost every A, which explains the
finite sum [27].

Given an initial BV function outside A, the existence of an optimal solution with respect
to criterion (2) has been proven in [27] for any p > 1, with the additional assumption in
the case p > 1 that the restriction of u to dA takes finitely many values. In contrast with
most variational problems, it is not proven directly the existence of an optimal function
interpolating the image in A but rather the existence of an optimal family of interpolating
level lines from which a function can be recovered.

Recall now that the angle terms were introduced to guarantee the good continuation
principle. Another way, more restrictive, to guarantee this principle is to replace the angle
constraint with a higher order constraint. This can be done in a very logical way by
computing the criterion [(a + 3 ||P)dH! not only on the completion curve but also on a
small piece of the associated level lines outside A. If A denotes a set slightly bigger than
A, our criterion (2) becomes

|75 [ sl 3)

o0 T'eF)

where, now, the elements of I’y are union of a completion curve and the restrictions to fl\A
of the associated level lines. Of course, this criterion makes sense under the assumption
that the level lines of the initial BV function are essentially W2® in fl\A. In a forthcoming
paper [29], the existence of an optimal solution with respect to this new criterion is proved
for any p > 1 without the assumption of finiteness required in [27]. Again, the minimization
is performed over a family of curves rather than on a function. Roughly speaking, the
existence of optimal curves is proven for a dense family of A using martingale arguments,
then a density argument and a series of diagonal extractions gives an optimal family of
completion curves, from which a solution can be deduced.

Our initial motivation in this paper was precisely to study the disocclusion problem
from the viewpoint of the direct method of the calculus of variations. To this aim, we first
need to rewrite the criterion (3) according to a function rather than a family of curves.
Assuming for a moment that the curves I' in (3) are the level lines of a smooth function wu,
it is easily seen that the criterion becomes

/+°o </ (a+p |/£|p)dHl) dx.
—00 {u>AINA
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This criterion can be easily generalized to higher dimensions; if u now denotes a function
on RN (N > 2), the curvature £ can be replaced with the mean curvature vector H of the
hypersurface 9{u > A} N A and the criterion becomes

/ +°O ( / (a+p |Hrp>dHN-1> dx, (4)
—00 O{u>AINA

with HN~1 the (N —1)-dimensional Hausdorff measure. Analogously to the two-dimensional
case, the minimization of this criterion is equivalent to seeking optimal interpolation hyper-
surfaces with respect to the energy [(a+ 3|H[P)dHN"1. Then, it is very easy to formulate
the problem according to the function u rather than its level sets by applying equality (7)
below, observing that Vu/|Vul is orthogonal to the hypersurface d{u > A} at every point
where |Vu| > 0, and using the change of variables formula. One finally gets the new
criterion:

Flu) = / V(o + 3| div L P)da (5)
i [Vl
with the convention that the integrand is 0 wherever |Vu| = 0.

Of course, this criterion makes sense only for a certain class of smooth functions and
requires to be relaxed in order to deal with more general functions. As usual in the direct
method of the calculus of variations, F' is first extended to the whole space L'(IRN) then
the relaxed functional associated with F'is defined as:

F(u) = inf{li}{n inf F(up), up, — u € L'}
— 00
As we will see in this paper, this relaxed criterion is well adapted to the study of our
minimization problem.
Another approach by relaxation, taken by C. Ballester, M. Bertalmio, V. Caselles, G.
Sapiro and J. Verdera [6], is based on the functional

G(u,v) = f |divv|P(a+ BV (k *u)|)dz + A /~(\Vu] —Vu-v)dz
A A
where v is a vector field such that |v| < 1 and k is a smoothing kernel introduced for
technical reasons. The advantage of this formulation is the cancellation of the difficulty
due to the term div % in F. Intuitively, the vector field v plays the role of Vu/|Vu| but
may remain well defined even when |Vu| vanishes. The existence of a minimizing couple

(u,v) is proved in [6] but it remains unclear whether this approach and ours are equivalent.

We did not mention until now any numerical implementation of the disocclusion model.
A practical algorithm for the global minimization of criterion (2) in the case N =2, p =1,



Figure 4: Left : original image where occlusions are in white. Right : disocclusion performed
by the algorithm proposed in [26].

based on dynamic programming for finding an optimal set of completion curves, has been
proposed in [26]. Its performances are illustrated on figure 4.

In [10], T. Chan and J. Shen derive the Euler-Lagrange equation associated with crite-
rion (5), in the case N =2, p > 1. It is a fourth-order equation that raises many problems
of unstability and computational time. In addition, the solutions are only local.

Finally, the algorithm proposed in [6] computes local solutions to the minimum problem
associated with the functional GG defined above. These solutions are obtained through
evolutionary equations of order three, thus much handier from a numerical viewpoint than
the fourth-order equation in [10]. This approach gives actually very convincing results.

The Euler-Lagrange equation proposed in [10] is obtained through a formal derivation
of criterion (5) but is in fact ill-posed. The usual method in such situation consists in
approximating F by a I'-converging family of more regular functionals F, i.e. a family
satisfying:

F(u) <lim ié’lf F.(u¢) for every ue — u (T-lim inf property)
Ju, — wsuch that F(u) > limsup,_, F.(u) (T-limsup property)

A crucial fact on I'-convergence is that limits of sequences of minimizers of the F.’s are
minimizers of F'. Thus, the solutions to the well posed Euler-Lagrange equations derived
from the functionals F. can be considered as good approximations of local minimizers of F,
which is particularly interesting from the numerical point of view. Before we introduce the
appropriate regular functionals for our problem, let us recall that, in a different context, it



has been proven in [17] that an approximation of the solution to

wy = |V div(

|Vu|) in (0,00) x RN, %(0,-) = ug

is given by the solutions u¢ of

Vu
2 4+ |Vul2div [ — 6
‘ [Vul* div ( €2+ \VuP) (©)

if the initial function ug is Ch! and constant at infinity (see [17] for details). To understand
better this result, it suffices to remark that if v : (0,00) x RN*!1 — IR is defined by
v(t,x,z) = u(t,x) + ez then (6) rewrites

vy = |Vv|div(&

which coincides with the initial equation.
In the same spirit, let us consider the family of functionals

Vu
/ \/ |VU|2 +€2 a+ﬁ|dV \/Wﬁﬂp)dﬂf

which take finite values for any u € C?(IRN). Considering v, : RN*! — R defined by
ve(x, z) = u(x) + €z, it is easily seen that

R = [ \weuawrdw(‘gve‘)m

_ //%|Vv6|a+ﬂ|d1v(|§ I)dadz

which is exactly the (N + 1)-dimensional version of F. This observation combined with
Theorem 6 in Section 4 shows that the I'-liminf property is satisfied by F and the family
(Fo)es0- We were unfortunately unable to prove more than that and can only state the
following

Conjecture For ¢ > 0, let F, : L}(RN) — [0,00] defined by

Vu
2. 2 ;
/A\/Wu] +e€ <a+6‘dlv | u|2+€2‘

400 otherwise

p) dr if u € C2(RN),

10



Then, for N < p < oo and for every (ep)pew — 0,

This paper is organized as follows. Section 2 introduces some notations and basic facts
about tools from geometric measure theory that we shall need. In Section 3, we prove a
locality result for the mean curvature vector H of integral (N — 1)-varifolds when H € LP,
p > N—1,p > 2 (Theorem 2). A direct consequence of this result is the lower semicontinuity
(Theorem 4) of the functional

| QP pe N LN 2
OF

with respect to convergence in L' in the class of sets E C RN with E € C2. This result
extends to higher dimensions a previous result due to G. Bellettini, G. Dal Maso and M.
Paolini [7] for N =2, p > 1.

Section 4 is devoted to the study of the disocclusion problem in dimension N. We
prove the existence of an optimal solution (Theorem 5), the coincidence between F' and the
associated relaxed functional F for smooth functions (Theorem 6) and give some results on
the regularity of the optimal solution in the particular case N = 2 (Corollary 1). For the
sake of simplicity and with absolutely no loss of generality, we shall assume in what follows
that o = 8 =1.

2 Notations and main facts about varifolds

We collect below, for the reader’s convenience, the main facts about varifolds (see for
instance [4, 19, 38]).

We let £(IR*¥) denote the space of linear maps from IR™* onto itself, equipped with
the usual scalar product Ae B = trace(A* B). G(n+k,n) denotes the space of n-dimensional
unoriented subspaces of IR™* and we shall often identify in the sequel a n-subspace S €
G(n + k,n) with the associated orthogonal projection pg € L(IR*¥) given by the matrix
pZSJ = e; - ps(ej) with respect to the standard orthonormal basis ey,..., e,y for Rk,
G(n + k,n) is equipped with the metric

n+k 2
i
Ilps —prll = | D> 0 —p7)
ij=1

induced by the scalar product e on L£(IR®¥). The tensor product v ® w of two vectors
v,w € R™K is in £(IR*) and satisfies for any S € G(n + k,n)

vweS =Swv)ew=uveS(w)=S5(v)eS(w).

11



For a subset A C IR™¥ we define the Grassmannian
Gn(A)=AxGn+k,n)

equipped with the product metric. By an n-varifold on an open subset U of IR" ¥ we mean
any Radon measure V on G, (U). It is associated with a Radon measure p, on U (called
the weight of V') defined by

py (A) = V(r~1(A)), A C U Borel,

where 7 is the projection (z,S) — z of G,,(U) onto U.

Given M, a countably H"-rectifiable subset of IR***, and 6, a positive and locally
H"-integrable function on M, we define the associated n-rectifiable varifold V' = v(M,0)
by

V(A) = py (n(TM N A)), A c G,(U) Borel,

where py = H"L 0 is the weight of V, TM = {(z, T, M) : x € M*} and M* stands for the
set of all x € M such that M has an approximate tangent space T, M with respect to 6 at
z, i.e.

lim A‘”/ FOTHz = 2)8(2)dH" () = 0(=) f)dH (y),  Vf e CUARMY).
ALO M Te M
We say that V' = v(M,0) is an integral varifold if the function 6 is integer valued. Remark

that H"(M \ M*) = 0 and that the approximate tangent spaces of M with respect to two
different positive H"-integrable functions 6, 6 coincide H"-a.e. in M.

The first variation of the n-varifold V, denoted by 0V, is the linear functional on
CL(U,IR*K) defined by

SV (X) = / divg XdV (z, S),
n(U)

where, for any S € G(n + k,n),

n—+k . n
divg X := E:VZ'SXZ = Z < 7iy D7, X >,
i=1 i=1

where 71,...,T, is an orthonormal basis for S and V¥ = ¢;.V? with VI f(z) = S(V f(z)),
fecyu).

A varifold V is said to have locally bounded first variation in U if for each W CcC U
there is a constant ¢ < oo such that |6V (x)| < csupy | X| for any X € CL(U,IR*™¥) with
spt | X| € W. By the Riesz representation theorem, it follows that there exist a Radon

12



measure ||[6V || on U - the total variation measure of 6V - and a |0V |-measurable function
v with |[v| =1 ||0V|-a.e. in U satisfying

SV(X) = —/ v-Xd||oV] VX e CLU, R k).
U

A varifold V is said to have mean curvature in L? if ||0V]| is absolutely continuous with
respect to uy and its density belongs to LP. The density will be denoted by Hy, and it will
be called the generalized mean curvature of V.

In the case when M is a smooth n-dimensional submanifold of IR" ™%, with M\MNU =,
the divergence theorem on manifolds implies that the generalized mean curvature of the
varifold v (M, 1) is exactly the classical mean curvature of A/. When k = 1 (i.e. codimension

1 manifolds) the mean curvature vector can be locally computed by
H = —div(v)v (7)

where v is a unit vector field orthogonal to M.

3 Locality of the mean curvature and applications

The main result of this section is stated in Theorem 2, whose proof is based on the quadratic
decay of the tilt-excess established by R. Schétzle in [36]. We recall his result below.

Theorem 1 (Quadratic tilt-excess decay [36, Thm. 5.1]) Let U = v(M,0) be an in-

tegral N — 1-varifold in an open set Q C RN with Hy € LY (uw), p>N—1,p>2. Then
for py-almost all x € spt uy, the tilt-excess

it (a.p) = 'Y [ M =T M i )
P X

decays quadratically, that is
tiltex,,(z, p) = O (p?).

Theorem 2 (Locality of the mean curvature) Let U = v(M,0y), V = v(N,0y) be

integral (N — 1)-varifolds in Q@ C RN. If Hy € L

I () and Hy € LY (uy) for some
p>N-—1,p>2 then

Hy(z) = Hy(z)
for HN='-almost all z € M N N.

13



PROOF Given nonzero integers 0y, 01, we call x € M N N a generic point of order
(6o, 01) if

(i) OV "Y (M N N,z) =1 and 0y = 0N (uy, z), 01 = 0N uy, x);
(ii) x is a Lebesgue point of Hy and Hy;

(iii) py, Hupy, sy and Hypy have the same approximate tangent plane at  (with mul-
tiplicities 6y, OgHy(x), 61 and 6;Hy, (z) respectively) which in turn coincide with the
approximate tangent plane T'=T,M =T, N.

(iv) Hy(z) and Hy (z) are orthogonal to 7.

The theory of rectifiable sets and of rectifiable measures (see for instance [4, 38]) ensures
that HN~!-almost all points in 2 € M NN have properties (i), (ii), (iii). The proof that also
condition (iv) holds HN"!-a.e. is much harder, see [8, Thm 5.8]. Therefore HN~!-almost
every point of M NN is generic of order (0, 6;) for some 6y, 6. We fix 0y, 6; and a generic
point z of the corresponding order.

Following the proof of Lemma 6.3 in [35], we choose x € Cg(B(0)) rotationally
symmetric with 0 < x <1 and xy = 1 on BY(0). Setting x.-(y) := x(r~1(y — x)), using (iii)

2

we have
lim rl_NéU(XT) = — lim TI_N/ xrHudpy = HOHU(:U)/ ydHN,
Ot r—0+ BN (z) T MNB{ (0)

and

lim N6V (x,) = — lim 17N

_ N-1
Jim, Jim, /B o) xrHvdpy = 01Hy (z) / XAHT .

T M'NBY (0)

Now we choose v(x) normal to T, M = T, N and we deduce by (iv) that Hy(x), Hy(z) €
span{v(z)}. Hence, in order to show that they actually coincide, it suffices to prove that

lim = N[0,6U (xr) — 000V (x,)]v(z) = 0. (8)

r—0t

Let now denote by A the collection of all generic points y of order (6g,6;). We assume,
in addition, that

(v) lim rt=NHNTYBY (2) \ A) = 0.

r—0t

It is a consequence of Theorem 2.9.11 in [19] that HN~!-almost every generic point of order
(6o, 01) has this property. Then, we notice for W = U or W =V that

/ XrHwdpy = — / T,W (Dx,)dpw (y),
BXN (z) BN (z)

14



thus

[ / \o 01 Hodpty — /
BN (z) BN

T

Xr QOHVNv] =

(x)
_ / T, M(Dx )01 dpis (y) — / T, N(Dx)fodpy () | -
BN (z) BN (z)

Then, by looking to the v(z) component, we get

[/ Xr01Hudpiy —/ XreoHv,uv] v(z) =
B (2) BN ()

- _ [/ (Dxr(y) @ v(x))TyM 01dpy (y) — /
BN (x)

(Dxr(y) @ v(2))TyN 90uv(y)(y)] :
BN (x)

Now we use the fact that v(x) is normal to T', that TyM = T, N, 0y (y) = 6y and Oy (y) = 61
on A to obtain

[/ Xr01Hydpy — / XTQOHV,UV] : 7/(33) =
BY (x) BN (x)

- [ /B . )(DXT(y) @ v(x))(TyM — T)01dpy (y)
- /B . )(Dmy) @ v(@))(TyN - T>90dﬂv<y>]
—— {0 [ DX @ )T - Ty
BN (z)\A

) / (Dxr(y) @ v(2))(TyN — T)dﬂv(y)] :
BN (z)\A
Denoting
Rew =™ [ (Do) @ @) (T, = T )
BN (z)\A
for W = U, V we obtain

lim 1= N([0,6U (x,) — 000V (x,)]v(z) = lim [01R, 17 — Oo Ry v/].

r—0t
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Then we estimate, for W = U, V,

Ryl < Cor N / T, W — Tl|djun () <
BN (z)\A

' 9)

< OB @\ ) (Y [T = TP )

where C'y is such that sup gy |Dx| < Cy. By conditions (iv), (v) and by Theorem 1 the
first factor is infinitesimal as 7 — 0" and the second factor is bounded, hence (8) holds and
the proof is achieved. O

Theorem 2 is a key point in the proof of the lower semicontinuity of the mean curvature’s
LP norm, stated in Theorem 4 below, which is a generalization to the higher dimensional
case of a previous result obtained in dimension two by G. Bellettini, G. Dal Maso and M.
Paolini in [7]. We recall their result below.

Theorem 3 ([7, Thm 7.1]) Let Q be an open subset of R?, let p > 1 and let E be an
open bounded subset of IR? such that OE NQ € C2. Then

/ (1+ |aP)dH" < liminf/ (1+ [ |) M

OENQ h—oo JoE,nQ

for any sequence (Ep)pew of bounded open sets such that OE, N Q € C? and E, — E in
LY(Q) as h — oo.

Theorem 4 (Lower semicontinuity of the mean curvature’s L? norm)
Let Q be an open subset of RN, N >3, andp > N — 1. Let {Ep}hen C RN be converging
in LY(Q) to E, with OE, N € C? and IENQ € C2. Then

h—o00

/ (1+ [HgP)drN—1 < liminf/ (1+ [Hg, |P)aH 1,
OENQ OER,NQ

where Hg, (resp. Hg, ) denotes the mean curvature vector on OE N Y (resp. OE, N§Y).

PROOF Due to the lower semicontinuity of the perimeter, it is clearly enough to prove
the part of the claim that involves curvature. We can assume that the right hand side of
the inequality to prove is finite, otherwise the result is trivial. In addition, possibly taking
a subsequence, there is no loss of generality if we assume that

sup/ (1+ |HEh|1”)dHN_l <C < 0.
heN JoE,No
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Let Vi, = v(0EL N, 1) be the unit-density rectifiable (IV — 1)-varifolds associated with the

sets B, N and let py, = HN"LLOE;, NQ be the corresponding weights. By the divergence
theorem, the first variation of the V3’s in € can be written as

SVi(X) = —/ X -Hg, dpy,, VX € CHQ,RY)
Q

hence the LP norms of 6V}, with respect to uy, are uniformly bounded.

By Allard’s compactness theorem (see [1] or Theorem 42.7 in [38]) we obtain, possibly
passing to a subsequence, that there exists a limit integral (N — 1)-varifold V' in € such
that V3, = V and V = v (M, 0y) with M a countably HNL_rectifiable set and 0y a positive

integer-valued and locally HN"!-integrable function on Q. As 6V}, = Hg, dpy, — 0V, a
well-known lower semicontinuity theorem (see for instance Example 2.36 in [4]) yields that
0V = Hypy with Hy € LP(uy ) and

h—o00

/ Oy |Hy [PdHN 1 < lim inf / |H, [PdHN (10)
M OELNQ

Notice that so far we used only the fact that p > 1.

Now we show that HN"!-almost all points in OF N Q belong to M and Hy coincides
with the classical mean curvature Hy for HN"!-almost every point of OE N Q whenever
p>N—1.

Let x € 0ENSQ. Since E has finite perimeter, for all » > 0 except possibly for a countable
set, v (OB (v)) = 0, hence puy (BN () = lim puy, (B (2)) = lim HNH(BY () N OB, N
Q) > HYN"Y BN (z) N OF N Q), using the lower semicontinuity of the perimeter. It follows
that x is a point where the lower (N — 1)-dimensional density of u is strictly positive. As
py = Oy HN"TL M, HN~l-almost any point with this property belongs to M.

Let U := v(OE N, 1) be the unit-density rectifiable (/N — 1)-varifold in € associated
with OF N Q). By the divergence theorem we have

Hy(z) = He(x)

for HN"!-almost all z € E N Q. Since JE N Q € C?, it is easily seen that Hy € LY (uy).
By Theorem 2 we obtain
Hi(z) = Ho(z) = Hy(2)

for HN"1-almost all € M NOE NQ and therefore for HN~"'-almost all x € OF N Q.
Plugging this into (10) and using 0y (z) > 1 for HN"!-almost every = € M, we finally
obtain

/ Hg[PdHN ! < / Hy [P0y dHN ! < lim inf / H, [PaHN!
AENQ OENQ OB,

h—o0

and the theorem ensues. O
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Remark 1 The varifold arguments we use require the technical assumption p > 2, which
prevents the result by Bellettini et al from being a particular case of Theorem 4 whenever
N=2and 1 <p<2.

Remark 2 Whenever HN"1(OFE N Q) = limy, ... HN"1(0E), N Q), the lower semicontinuity
is true for any p > 1. This is an easy consequence of (10) and of Reshetnyak continuity
Theorem (see for instance [4, Thm. 2.39]), which implies that V = v(0E N, 1).

4 Analysis of the disocclusion problem

Let Q be a bounded open set in IRY (N > 2) with Lipschitz boundary, representing the
image domain, let A CC ) be an open, connected set with Lipschitz boundary representing
the occlusion and let ug € BV(2\ A) be the original image. By Theorem 3.87 in [4], for
any A € IR, the function given by u[g 4 = uo and u[4 = A belongs to BV(£2). This ensures
that the occlusion can always be filled in.

Let O(Q2) denote the family of open subsets of 2. We consider the functional mapping
LY(Q) x O(£2) onto [0, 00] and defined for every (u, B) € L1(2) x O(Q) by

Fy(u, B) := /Blvu|(1 n

+00 otherwise

. Vu p ) 9
dlvm‘ )da: if u e C*(B)

9

with the convention that the integrand is 0 wherever |Vu| = 0.
The relaxed functional associated with F is defined for every (u, B) € L1(Q) x O(Q) by

ol 1
Fy(u, B) = inf{lim inf F, (up, B) : up L@, .

Since Fy(u,B) > [, |Vu|dz whenever u € C?(B) the lower semicontinuity of the total
variation yields

F,(u,B) > |Du|(B)  Y(u,B) € LY(Q) x O(). (11)

In the following we assume that there exist an open set Nfl C Q such that A o> A4 and a
function u € L' (Q) such that u = ug on Q\ A and F,(u, A) < oo. This could be considered
as a mild regularity and compatibility condition between the image and the occlusion.

Theorem 5 The problem
Min {F(u, A) : u =ug on Q\ A} (12)

has at least one solution u € BV ().
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PROOF Let (vp)new C LY(2) be a minimizing sequence. Without loss of generality
we may assume that sup,en Fp(vn, A) < co. Then (11) yields sup,ep |[Dvp|(A) < oo, and
therefore supp,ep |Dvp|(§2) < 0o because vy, = ug on Q '\ A. Since the values of vy, are fixed
on 2\ A, the generalized Poincaré inequality given in Theorem 5.11.1 of [45] gives that the
L'(€2) norms of vy, are uniformly bounded. Hence supycp [|vnllpy (o) < oo and there exists
a subsequence, still denoted by (vj)nen, converging in LY(Q) to a function u € BV(Q).
Obviously, u = ug on Q\ A. From the lower semicontinuity of F, we finally obtain that

Fy(u, A) < lién inf F,(vp,, A) = inf{Fp(v, A) : v =wug on Q\ A},

and the theorem ensues. ]

Now we can show that the relaxed functional coincides with F), on C? functions. The
proof is based on the geometric lower semicontinuity results of the previous section and on
the identity

F,(u,B) = / / (14 Hpsy|P)dHN 1 dt Yu e C*(B). (13)
R Jo{u>t}

The identity is a straightforward consequence of the coarea formula and of (7) with v =

Vu/|Vul.

Theorem 6 Let B C ) be an open set and assume that N > 2 and p > N — 1. The
functional F,(-, B) is lower semicontinuous on L*(Q)NC?(B) with respect to the L topology.
In particular

F,(u,B) = Fy(u,B)  Yu € C*B).

PROOF  Let (up)hew C L'(Q) N C?(B) be converging in L'(B) to u € C%(B) and
set L = li}{n inf F},(up, A), assuming with no loss of generality that L < oo, that the
—0Q0

liminf is a limit and that uj; converge a.e. to u. By the dominated convergence theorem,
Xf{up >t} — X{u>t} 1D L'(B) whenever {u = t} is Lebesgue negligible, hence for a.e. t € IR.
In addition, by Morse Theorem, for almost every t € IR, {up > t}, h € IN, and {u > t} have
smooth boundaries. Therefore, by applying either Theorem 3 or Theorem 4 we obtain that

/ (1 + |H{u2t}|p)dHN_1 S lim mf/ (1 + |H{uh2t}|p)dHN_1
o{u>t}NB H{up>t}NB

h—oo
for a.e. t € R. Integrating over IR and using Fatou’s lemma, (13) yields

Fy(u,B) < h}{n inf F},(up, B).
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In the two-dimensional case we can say something more about the structure of the
solutions. The following theorem is easily deduced from the proofs of Theorems 4.1 and
7.1 in [7]. In particular, it suffices to replace OE by 0*F in the last part of the proof of
Theorem 7.1, page 292.

Theorem 7 ([7]) Let @ C IR? be an open set and p > 1. Let E be a Borel set such that
there exists a sequence {Ep}new of bounded open sets of class C?(Q2) converging to E in
LY(Q) and satisfying

sup/ (1 + |&[P)dH < 0.

helN JOE,NQ
Then E has finite perimeter in Q and there exists a locally finite family T = {v;}icr of
reqular curves of class WP such that

1. *ENQC Ujer(n)s
2. T is without crossings, i.e. ‘hzl—(ttl)//lhjd—(tm whenever v;(t1) = 7v;(t2) € Q and tq, t2 €
[0,1].

Corollary 1 Let B C Q C IR? be an open set and u € LY(Q) such that F,(u, B) < oo,
with p > 1. Then, for almost every t € R, there exists a locally finite family Tt = {~}}ier,
of regular curves of class W*P such that 0*{u > t} N B C U;c;, (7)) and T is without
Crossings.

PROOF Let {up}lnew C C?(B) be converging to u in L1(Q) and a.e. and satisfying

L= hlim F,(up, B) = Fy(u, B) < co. Using Fatou’s Lemma and (13) we get
— 00

/ lim inf / (1+ [Hyon P)dHN ! <
R "= Jofu,>tnB

< liminf/ / (14 Hpuy >0 ") dHN"! = L < 0,
R Jo{up>t}NB

h—o00

thus lim inf / (14|H uy >y [P)dHN ! is finite for almost every ¢ € IR. The conclusion
H{up>t}NB

h—o00
follows by the application for almost every ¢t € IR of Theorem 7, possibly passing to a
subsequence (depending on t). O

An obvious consequence of this result is that the same regularity holds for the boundaries
9*{u >t} N A (for almost every t € IR) of any solution of the disocclusion problem in IR2.
In addition, since this regularity holds in A and not only within the occlusion A, it gives a
necessary condition for the existence of a solution, namely that the level lines of the initial
function ug must satisfy this regularity property, at least near the boundary of A. As a
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consequence, the only way - essentially - for these level lines to intersect on 0A is to form
a cusp point.

Remark This regularity result cannot be extended to higher dimensions, due to the fact
that controlling the mean curvature does not necessarily guarantee the regularity of a
hypersurface. By Allard’s regularity theorem (see [1] or Theorem 23.1 in [38]), a (N — 1)-
varifold with density 1 and generalized mean curvature in LP, p > N — 1, is supported on

a set that can be represented locally as the graph of a Cl’l_% function (J. Duggan [13]
showed that a W2P regularity actually holds). Unfortunately, such regularity does not
apply anymore in the multiple density case. An example is given in [8] of a varifold V' with
bounded mean curvature whose support contains a set A of strictly positive measure such
that if @ € A then spt V' does not correspond to the graph of even a multiple-valued function
in any neighborhood of a. Thus, controlling only the mean curvature is not enough.

On the other hand, it has been shown by J. Hutchinson [22] that if the second funda-
mental form of a varifold V is in LP, p > N — 1, then V is locally supported on the graph

of a multiple-valued Cl’l_% function.

In our disocclusion problem, we can neither ensure that the varifolds supported on the
sets O{uy, > t} converge to unit-density varifolds, nor that the second fundamental form is
uniformly bounded in LP, except in the particular case N = 2 where the mean curvature
coincides with the second fundamental form. This explains why our regularity result is
stated only for N = 2.
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