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Locality of the mean curvature of rectifiable varifolds
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Abstract. The aim of this paper is to investigate whether, given two rectifiahlarifolds inR™ with locally bounded first
variations and integer-valued multiplicities, their mean curvatuo@soide7*-almost everywhere on the intersection of
the supports of their weight measures. This so-cdtiedlity property which is well-known for classical’? surfaces, is
far from being obvious in the context of varifolds. We prove that the locality prggestds true for integral 1-varifolds,
while for k-varifolds, k. > 1, we are able to prove that it is verified under some additional assumptionkiiccaion of
the supports and locally constant multiplicities on their intersection). Wéedikcuss a couple of applications in elasticity
and computer vision.
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Introduction

Let M be ak-dimensional rectifiable subset®f', 8 a positive function which is locally summable with respect
to H* L M, andT, M the tangent space &*-almost every: € M. The Radon measuié = 0H*_ M ®dr, v
on the product space

Gr(R™) = R" x {k-dim. subspaces d&" }

is an example of a rectifiablevarifold.

Varifolds can be loosely described as generalized surfandswed with multiplicity § in the example
above) and were initially considered by F. Almgren [2] andAlfard [1] for studying critical points of the
area functional.

Unlike currents, they do not carry information on the pasitor negative orientation of tangent planes, hence
cancellation phenomena typically occurring with curretidsnot arise in this context. A weak (variational)
concept of mean curvature naturally stems from the defmitibthefirst variation oV of a varifold V', which
represents, as in the smooth case, the initial rate of chahtiee area with respect to smooth perturbations.
This explains why it is often natural, as well as useful, tpresent minimizers of area-type functionals as
varifolds.

One of the main difficulties when dealing with varifolds istlack of a boundary operator like the dis-
tributional one acting on currents. In several situatiomse can circumvent this problem by considering
varifolds that are associated to currents, or that are diffiit the sense of varifolds) of sequences of currents
(see[11, 17, 18)).

This paper focuses on varifolds with locally bounded firstiatgon. In this setting, the mean curvature
vector Hy of a varifold V' is defined as the Radon-Nikodym derivative of the first vaiab V" (which can be
seen as a vector-valued Radon measure) with respect to thketweeasuré|V|| (see Section 1 for the precise
definitions). In the smooth case, i.e. whérrepresents a smoothsurfaceS andd is constantHy coincides
with the classical mean curvature vector definedson

However, it is not clear at all whether this generalized meawature satisfies the same basic properties of
the classical one. In particular, it is well-known that ifdwmooth k-dimensional surfaces have an intersec-
tion with positive* measure, then their mean curvatures coiné¢idealmost everywhere on that intersection.
Thus it is reasonable to expect that the same property hotdwd integralk-varifolds having a non-negligible
intersection. The importance of assuming that the varifale integral (i.e., with integer-valued multiplicities)
is clear, as one can build easy examples of varifolds withathip varying multiplicities, such that the corre-
sponding mean curvatures are not even orthogonal to themtmpianes (see also the orthogonality result for
the mean curvature of integral varifolds obtained by K. Beaf9]).



Thislocality propertyof the generalized mean curvature is, however, far fromdpebvious, since varifolds,
even the rectifiable ones, need not be regular at all. A fanexample due to K. Brakke [9] consists of a
varifold with integer-valued multiplicity and bounded nmegurvature, that cannot even locally be represented
as a union of graphs.

Previous contributions to the locality problem are the pgjpé] and [18]. In [4], the locality is proved for
integral(n — 1)-varifolds inR™ with mean curvature i, wherep > n — 1 andp > 2. The result is strongly
based on a quadratic tilt-excess decay lemma due to R. $efatz. Taking two varifolds that locally coincide
and whose mean curvatures satisfy the integrability camdabove, the locality property is proved in [4] via
the following steps:

(i) calculate the difference between the two mean curvatureerms of the local behavior of the tangent
spaces;

(i) remove all points where both varifolds have same tahgeace;
(iii) finally, show that the rest goes to zero in density, tkato the decay lemma [17].

The limitation to the case of varifolds of codimension 1, whanean curvature is ib? withp > n — 1,

p > 2, is notinherent to the locality problem itself, but ratkethe techniques used in R. Schatzle’s paper [17]
for proving the decay lemma.

A major improvement has been obtained by R. Schatzle hinisglf8]. Indeed, he shows that, in any
dimension and codimension, and assuming onlyﬂﬁg summability of the mean curvature, the quadratic
decays of both tilt-excess and height-excess are equivalémeC?-rectifiability of the varifold. Consequently,
the locality property is shown to hold f@i?-rectifiablek-varifolds inR™ with mean curvature ifi.?, as stated
in Corollary 4.2 in [18]:let V4, V> be integralk-varifolds inU C R™ open, withHy, € L2 _(||Vi||) fori = 1,2.

If the intersection of the supports of the varifold<i&-rectifiable, thenty, = Hy, for H*-almost every point
of the intersection.

A careful inspection of the proof of the locality property[#] and [18] shows the necessity of controlling
only those parts of the varifolds that do not contribute te teight density, but possibly to the curvature.
However, the tilt-excess decay provides a local controhefiariation of tangent planes on the whole varifold,
which seems to be slightly more than what is actually neededhi locality to hold. This observation has
led us to tackle this problem by means of different technsgue order to weaken the requirement on the
integrability of the mean curvature downlg . Our main results in this direction are:

(i) in the case of two integral 1-varifolds (in any codimensi with locally bounded first variations, we
prove that the two generalized curvature vectors coingidealmost everywhere on the intersection of
the supports (Theorem 2.1);

(i) in the general case of rectifiablevarifolds, £ > 1, we prove that i, = v(Mz,01), Vo = v(Ma, 602)
are two rectifiable:-varifolds with locally bounded first variations, and if tieeexists an open sef such
thatMi; N A C M, and bothdq, 6, are constant od/; N A, then the two generalized mean curvatures
coincide*-almost everywhere of/; N A (Theorem 3.4).

The strategy of proof consists of writing the total variatio a ball B in terms of a(k — 1)-dimensional
integral over the sphei@B and showing that this integral can be well controlled, asiéar a suitable sequence
of nested spheres whose radii decrease toward zero.

The 1-dimensional result is somehow optimal, as the onluired hypothesis is the local boundedness of
the first variation. Under this minimal assumption, we camvprthat there exists a sequence of nested spheres
that meet only the intersection of the two varifolds, i.esesgially the part that counts for the weight density.
In other words, the parts of the varifolds that do not conitébto the weight density do not either intersect
these spheres. This is a key argument to prove that the cuevist essentially not altered by the presence of
these “bad” parts.

In the generak-dimensional case it is no more possible to prove the existefnested spheres that do not
intersect at all the bad parts. But we are able to prove, uheéezxtra assumptions cited above, that the integral
over the(k — 1)-dimensional sections of the bad parts with a suitable sezpief spheres is so small, that it
does not contribute to the mean curvature, and thus theitpbalds true in this case.
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The plan of the paper is as follows: in Section 1 we recalldastations and main facts about varifolds.
Section 2 is devoted to the proof of the locality propertyifaegral 1-varifolds irfR™ with locally bounded first
variation (Theorem 2.1), whose immediate consequencesifatit that for any such varifold, the generalized
curvatures(z) coincides with the classical curvature of afi§ curve that intersects the support of the varifold,
for H1-almost allz in the intersection (Corollary 2.2). We also provide an epnof a 1-varifold inR? whose
generalized curvature belongs id \ Up=1LP. In Section 3 we first derive two useful, local forms of the
isoperimetric inequality for varifolds due to W.K. Allard]. Then, we prove that for almost every> 0,
the integral of the mean curvature vectorfh coincides with the integral of aonormalvector field along
the spher& B,., up to an error due to the singular part of the first variatibhese preliminary results are then
combined to show that amproved decagf the (n — 1)-weight of the “bad” parts contained &3, holds true,
at least for a suitable sequence of rgdijj), converging to 0. This decay argument is the core of the prbof o
our locality result fork-varifolds inR™ (Theorem 3.4).

Finally, we discuss in Section 4 some applications of thallbcproperty for varifolds, in particular to lower
semicontinuity results for the Euler’s elastica energy fordVillmore-type functionals that appear in elasticy
and in computer vision.

Note to the reader: the preprint version of this paper comsaén appendix where we have collected, for the
reader’s convenience, the statements and proofs due toANd£d [1] of both the fundamental monotonicity
identity and the isoperimetric inequality for varifoldsttviocally bounded first variation.

1 Notations and basic definitions

Let R” be equipped with its usual scalar prodycf. Let G, ; be the Grassmannian of all unoriented
subspaces dk". We shall often identify in the sequel an unorientegubspace € G,, ;, with the orthogonal
projection ontaS, which is represented by the mat§%' = (e;, S(e;)), {e1, ..., e, } being the canonical basis
of R". G,, 1, is equipped with the metric

i.g=1

1S =T = (Z (87— T”)z)

For an open subsét C R™ we defineG,(U) = U x G, i, equipped with the product metric.
By ak-varifold onU we mean any Radon measifeon G, (U). Given a varifoldV onU, a Radon measure
||IV]] onU (called theweightof V) is defined by

IVII(A) = V(r1(A)), A c U Borel,

wherer is the canonical projectiofx, S) — z of G (U) ontoU. We denote b@*(||V ||, z) thek-dimensional
density of the measug/|| atz, i.e.

r—0 WET
wy, being the standaréi-volume of the unit ball inR*. Recall thato*(||V||, =) is well defined||V |-almost
everywhere [19, 10].
Given M, a countably(#*, k)-rectifiable subset oR™ [10, 3.2.14] (from now on, we shall simply say
k-rectifiable), and givend, a positive and locally{*-integrable function o/, we define thek-rectifiable
varifold V = v(M, 6) by

V(A) = / 0aHt, A cC Gn(U) Borel
m(TMNA)

whereT'M = {(z,T,M) : x € M*} andM* stands for the set of all € M such that\/ has an approximate
tangent spacé, M with respect td atz, i.e. for all f € CO(R"),

. —k -1 k _ k
tra /Mfu (=G (:) = 0w) [ ) (n).
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Remark that{* (M \ M*) = 0 and the approximate tangent spaces/owith respect to two different positive
HE-integrable functiond, 6 coincide?*-a.e. onM (see [19], 11.5).
Finally, it is straightforward from the definition above tha

|V = 6H*L M.

Wheneve# is integer valuedy = v(M, #) is called anntegral varifold.

Before giving the definition of the mean curvature of a vddfave recall that for a smooth-manifold M C
R™ with smooth boundary, the following equality holds for akiyc CL(R™, R"):

/ divMXdH’f:—/ <HM,X>de—/ (n, X)dH" 1, (1.1)
M M oM

whereH ) is the mean curvature vector 64, andn is the innerconormalof M, i.e. the unit normal té M
which is tangent td/ and points intal/ at each point 0®)/. The formula involves the tangential divergence
of X atx € M which is defined by

k
divy X (z Z VM X,(x Z(ez, VY Xi(x Z ) T4, T5)s
i=1 Jj=1

where{ry, ..., 7.} is an orthonormal basis fdF, M, with VM f(z) = T, M (V f(x)) being the projection of
Vf(x)ontoT, M.
Thefirst variation 5V of a k-varifold V on U is the linear functional o2 (U, R") defined by

WV (X):= / divg X dV (x, S), (1.2)
Gr(U)
where, for anyS € G, ., we have seVoX,; = S(VX;)and

diveX = (e;, VOX;).
i=1

In the case of &-rectifiable varifoldV/, §V (X)) is actually the initial rate of change of the total weid|| (U)
under the smooth flow generated by the vector figldMore precisely, lefX € C1(U,R") and®(y,¢) € R"
be defined as the flow generated Kyi.e. the unique solution to the Cauchy problem at eaehlU

%@(y, €)= X(®(y,€),  ®(y,0) =y

Then, one can consider tpeish-forwarded varifold. = ®(-,€) 4V, for which one obtains

Vel (U) /JM(I) y,€)dl[V|(y) = /U1+ediVMX(y)+0(6)\d||VH(y)7

M _ M i i i
whereJ," ®(y, ) = | det(V,  ®(y, €))| is the tangential Jacobian &f-, ¢) aty, and therefore

V(X) = [ divuX)dIVI) = V)

(see [19, 89 and §16] for more details).

A varifold V' is said to have a locally bounded first variatiorlinf for eachWW CC U there is a constarmt <
oo such thatsV (X)| < esupy | X | for any X € CL(U,R"™) with spt(X) C W. By the Riesz Representation
Theorem, there exist a Radon meaglif¥ || onU - the total variation measure 6 - and a||§V||-measurable
functionv : U — R” with |v| = 1 ||§V||-a.e. inU satisfying

SV(X) = —/U<V,X>d||6V|| VX € CY(U,R).

4



According to the Radon-Nikodym Theorem, the limit

. SVII(B-(x
DyylloV](z) = ’1“%H||V||”((Br((x))))

exists for||V||-a.e.z € R™. Themean curvaturef V is defined for|V||-almost every: € U as the vector

Hy(z) = DyylloV][(z) v(z) = [Hy (z)|v ().
It follows that, for everyX ¢ C1(U,R"),
() == [ (v ) = [ wxaevi. (13)

where[[0V||s == ||V [|L By, with By := {x € U : Dy [|0V]|(x) = +oo}.

A varifold V' is said to have mean curvatureliff if Hy € LP(||V]|) and||6V]| is absolutely continuous
with respect td|V||. In other words,
Hy e LP([[V]))

Hy e 1P &
v { SV(X) =— / (Hy,X)d|V||  foreveryX e CL(U,R")
U

When M is a smoothk-dimensional submanifold &k, with (M \ M) N U = §), the divergence theorem
on manifolds implies that the mean curvature of the varifold/, 6y) for any positive constart is exactly
the classical mean curvature df, which can be calculated as

H(z)=— Z divar vj(x) v(x), (1.4)
J

where{v;(z)}, is an orthonormal frame for the orthogonal sp&€g))~.

We recall thecoarea formulasee [19, 10]) for rectifiable sets R and mappings fronR™ to R™, m < n.
Let M be ak-rectifiable set inR™ with & > m, § : M — [0,4oc] a Borel function, andf : U — R™ a
Lipschitz mapping defined on an open etz R™. Then,

/ Jur f () 0(x)dHE () = / / 6(y) dHF ™ (y) dH™ (1), (1.5)
zeMNU m Jyef-1t)NM

where.J,; f(z) denotes the tangential coarea factoifaft = € M, defined forH*-almost everyr € M by

T f(@) = /det (VM f(2) - VM f(2)1),
We also recall Allard’s isoperimetric inequality for vaoltls (see [1])

Theorem 1.1(Isoperimetric inequality for varifolds)lhere exists a constaidt > 0 such that, for every:-
varifold V' with locally bounded first variation and for every smoothdtion ¢ > 0 with compact support in

R™,
%
/ sodnvnsc(/ deIVH) (/ pdlov) + | |v%|dv>, (L6)
E Rn R R <Gy, i

©

whereE, = {z : ¢(z)0k(|V||,z) > 1}.



2 Integral 1-varifolds with locally bounded first variation

2.1 Locality property of the generalized curvature

We consider integral 1-varifolds of typg = v(M,0) in U C R", whereM C U is a 1-rectifiable set
andf > 1 is an integer-valued Borel function aW. Thus,||V| = 6 H'. M is a Radon measure di
and we assume in addition th&t has a locally bounded first variation, that is, for any smoaghtorfield
X € CHR™R")

5V (X) = / diva X V] = - / (5, X) dl| V]| + 6Va(X),
M M

wheredV; denotes the singular part of the first variation with resgedhe weight measurgV’||. We now
prove the following

Theorem 2.1.LetVy = v(My,61), Vo = v(My, 62) be two integrall-varifolds with locally bounded first
variation. Then, denoting by, , their respective curvatures, one hag(x) = x(z) for H'-almost every
€S =M N M.
Proof. Letx € S satisfy the following properties:

(i) xis a point of density 1 fod/1, M, and.S;

(i) xis a Lebesgue point fdt; andx;0; (i = 1,2);

o [OVE(Be(@) _
(iii) lgm =0forV =V, V>,

In particular, this means

HY(M; \ S) N By ()

iy PR ZEEE o @
1
lim o / 16:(y) — 0:(a)| dHMy) = O 2.2)
r—02r JyeMinB, (2)
. 1
lim / ki(0)0:(y) — i ()03 ()] dHA(y) = O 2.3)
r—02r JyeMinB, (2)

for i = 1,2 and with B,(x) denoting the ball of radius and centerz. Recall thatH!-a.e. 2 € S has

such properties. Without loss of generality, we may assumeat = 0 and we shall denote in the sequel
B, = B,(0). In view of Property 3 above, we may also neglect the singudat, i.e. assume that the varifolds
have curvatures if

loc*
Let us write the coarea formula (1.5) wifiz) = |z|, M = M; \ S andd = 0;, also observing that

T f(@) = [V fla)| = 2] <

||

wherex; denotes the projection af onto the tangent lin&,, A/. We obtain the inequality

s\ s nE) = [ b, H0d =12 (2.4)
0 J(M\S)NoB,

By combining (2.1) and (2.2), one can show that

WIIASIOB) L[ ype o a0 i1z @9
2r 2r J(m)\$)nB.

hence if we define
gi(t) = / 0; dH°, i=1,2,
(M;\S)NOB:
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we find by (2.4) and (2.5) that 0 is a point of density 1 for theBe= {t > 0: ¢;(¢t) = 0}, that s,
g 10 [0.7)]

r—0 r

Therefore, by the fact that the meastt®is integer-valued we can find a decreasing sequéndg converging
to 0 and such that;, is a Lebesgue point for bo#y andg,, with g1(r;) = ga2(ri) = 0, thus

1 [
lim — gi(t)dt=0 Vi=12 (2.6)

e=0€ Jr e
By arguing exactly in the same way, we can also assume that

1 [
lim = h(t)dt =0, 2.7)

e—0 € rE—€

where
h(t) = / 101(0)62(y) — 02(0)81()| AHO(y).
yGSﬂaBt

Indeed, one can observe as before that the set
Q={t>0: h(t) =0}

has density 1 at = 0, as it follows from the integrality of the multiplicity fuastions combined with coarea
formula and

1
lim / 01(0)82 — 02(0)61| dH* = 0,
SNB;

this last equality being a consequence of (2.2). Therefgrean be chosen in such a way that (2.7) holds, too.
Now, for a given¢ € R™ and 0< ¢ < ry,, we define the vector field, (z) = ., (|z|) & wheren, . is aC?t
function defined o1j0, +o0), with support contained if0, ») and such that

2

Mre() =1 ifO<t<r—e ||777/~,e||oo < o

By applying the coarea formula (1.5) and recalling tRaf:|z| = z,, /||, we get

2 [Tk
/ M VM| | 0; dHE < / / 0; dHP dt
M;\S ' € Jrp—e JOBN(M;\S)
2 [Tk
= / gi(t) dt.
€ TL—€
Combining this last inequality with (2.6) and
. x i
divas, Xpo(z) =, (@) (6 T70)
implies
lim divag, Xp.c d||Vi]| = 0, Vi=12, Vk. (2.8)

=0 (M;\S)NB,,

At this point, we only need to show that the scalar prodhct (k1(0) — k2(0), &) cannot be positive, thus it
has to be zero by the arbitrary choicesoffirst, thanks to (2.3) we get

_ v (6200
A= 5060 ( 2 /MWB% (€, ka) d||VA|

_ 61(0)
e s, <§,nz>d|vz||> ,




and, owing to the Dominated Convergence Theorem,

1 .. 92(0)/
A= _—————limlim X, k1) d||V5
01(0)0,(0) & Ho< o MmBrk< ke 1) d||VA

_6:(0) | emaimal ).
2r JanB,,

Therefore, by the definition of the generalized curvaturdmemediately infer that

A= 1 lim lim <— 62(0) / divag Xi e d||Va|
2y Jamyns,,

2.9
01(0) #9)

+ 5 / diV]y[sz,e d”@”) '
T'k MpNBy,

Noticing thatdivsG(z) = divy, G(z) = diva,G(x) for Hi-almost allz € S, and thanks to (2.8), one can
rewrite (2.9) as

1 1
A=—— limlim [ =— divg Xg. (01(0)02 — 62(0)01 ) dH* | . 2.10
01(0)02(0) 1]?1612%<2rk /SmBrr»k ek ( ()2 ~62(0) l) H) (2-10)

Computing the tangential divergence®f, . and, then, using the coarea formula (1.5) in (2.10), gives

Ac— i it [ hmat—o
———— 11 — 11m — = U.
- 91(0)92(0) k 1rEpe—0c¢€ -

We conclude that\ = 0, hences1(0) = k2(0), as wanted. m]
A straightforward consequence of Theorem 2.1 is the folhawi

Corollary 2.2. LetV = v(M, 6) be an integrall-varifold in U C R"™, with locally bounded first variation.
Then the vector(z) coincides with the classical curvature of ad¥ curve, for H-almost allz € v N
spt [V]].

2.2 Al-varifold with curvature in L'\ LP forall p > 1

Here we construct an integral 1-varifold B with curvature inL! \ L? for anyp > 1. This varifold is
obtained as the limit of a sequence of graphs of smooth fomstits support i€*?-rectifiable (i.e., covered up
to a negligible set by a countable union@f curves, see [5, 18]) and, due to our Theorem 2.1, its curgatur
coincidesH!-almost everywhere with the classical one, as stated inl2oy®.2 above.

Let¢ € C2([0,1]) with ¢ # 0 and

Given\ > 0and 0< a < b < 1, define

Capa(t) = {/\( (ﬁ) if t € [a,0],

0 otherwise.

Let (an,bn),~, be a sequence of nonempty, open and mutually disjoint servads of[0, 1], such thab,, —
a, < 2" and

0< > (by—an) <1

n>2



In particular, the se€ = [0,1] \ U,,(an,bs) is closed and has positivé* measure. We denote ki), a
sequence of positive real numbers, that will be chosen, latel we set

Cn(t) = <an7bn7)\n (t)
fort € [0,1] andn > 2. Then, we compute the integral of theh power of the curvature of the graph ¢f

over the graph itself, that is,
N <40l
K = / — g dt.

[ERAGH I

o = c’(t“”>,

Since

by — ap b, —ap
A t—a
Nt — n 7 n
) = G (bn_an),

and choosing X )\, < b, — a,, We infer that the Lipschitz constant ¢f is bounded by that of, for all
n > 2. Therefore, there exists a uniform constant 1 such that

bn
< [ TGP < ek,
Qan
and therefore

Ah

-1
¢ KP<K—-—— o —
n (bn o an)Zp—l

<cKP,

where L
K = / 1" ()P dt > 0.
0
At this point, we look for)\,, satisfying
(i) > K% < +ocifandonlyifp = 1.

n>2
A possible choice foh,, is given by
\ o b, — an,
n nz .
Indeed, up to multiplicative constants one gets
1
K} =" = 2.11
and o-1)
2P
P _
Zn: KP > Zn: gy = T00 (2.12)

forall p > 1. Now, define for € R

n(t) = Z Cn ().

Thanks to (2.11) and (2.12), the 1-varifold = v(G,1) associated to the grapHi of n has curvature in
LY\ LP forall p > 1. Indeed, settingy = nyzz ¢, and lettingG y be the graph of)y, one can verify that
the 1-rectifiable varifold$’y = v(Gxw, 1) weakly converge td” asN — oo, and the same happens for the
respective first variations:
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thus for any open set C (0, 1) x R one has

15VI(4) < lim |6V (4)

— Im / kn Ly dIV]
N Ja

/ ikl dlV],
A

wherel,, is the characteristic function @ y and for(x,y) € G we definex(z,y) = xkn(z,y) for N large
enough ang > 0 (the definition is well-posed, since the interv@ls, b,,) are pairwise disjoint) and(x, y) =
0 whenever; = 0. This shows thal” has curvature if.!. It is also evident from (2.12) that the curvature of
V cannot belong td.” for p > 1. Lastly, theC?-rectifiability comes fron#{*(spt V' \ Uy, Gn) = 0.

An example of the construction of such varifdidis illustrated in Figure 1. -

bo 1

b

b

a5 a3 by asbs ay by arbr  as b4 agbs

Figure 1.As a particular example, we take the sequefagg b,,) of all middle intervals irf0, 1] of size 2-?~2? whenever
2 < n <20t p =0,1,2, .... The union of these intervals is the complement of a Cantor-typ€ seith positive
measure{*(C) = % We have represented from top to bottom the functi@}misz2 Cn andzfl:2 Cn.-

3 Rectifiable k-varifolds with locally bounded first variation

3.1 Relative isoperimetric inequalities fork-varifolds

The isoperimetric inequality for varifolds due to W.K. Alth[1] is recalled in Theorem 1.1. We derive from it
the followingdifferential inequalitiesthat will be useful for studying the locality of rectifiabtevarifolds.

Proposition 3.1(Relative isoperimetric inequalitied)et V' be ak-varifold in R™, and letA C R™ be an open,
bounded set with Lipschitz boundary. Then,

k-1

IVI[(A) = < C(0VII(A) = D[[VI[(A\ Ae)le=o) , (3.1)

whereA. is the set of points oft whose distance froR™ \ A is less thare, and D, ||V||(A\ A¢)|.=o0 denotes
the lower right derivative of the non-increasing function- ||[V]|(A4 \ A¢) ate = 0.

Moreover, if we defing(r) = ||V ||(B;), theng is a non-decreasing (thus almost everywhere differergjabl
function, and it holds

g(r) = < C(|I6VI(B,) + ¢'(r))  foralmostallr > 0. (3.2)
Proof. Lete > 0 and lety, : A — R be defined as
@c(x) = min(e td(z,R"\ A),1).

10



Clearly, ¢, is a Lipschitz function with compact support ®*. Approximatinge,. by a sequence of non-
negative,C! functions with compact support iR™, it follows from Allard’s isoperimetric inequality (1.6)

that )
%
/ soedwnsc(/ soedIVH) (/ pedlovl + | |v%e|dv>, (3.3)
Eo. R7 R" R xG(n,k)

whereE, = {z: ¢(2)0%(||V],x) > 1}. Moreover, we have
1
€
and therefore (3.3) can be rewritten as

= 1
/ E [ v gc( / dnvn) ( Jaiovi+1 [ | dnvn) (3.4)

we

V()| <= ond.:={zeA: dx,R"\ A) <},

Now, since
im [ V)= / av|
A\A. A

e—0

and

)

i/ dv) = IA) __ IVICAN A9 = [IVII(A)

€ €

the Dominated Convergence Theorem allows us to take theitin8.4) asc — 0, yielding

k-1

IVI(A) = < C(I0VII(A) = D4[[VII(A\ Ac)le=o)-

Take nowA = B, and remark thatd \ A = B,_.. Denotingg(r) = ||V||(B,), we deduce from the
monotonicity ofg that it is almost everywhere differentiable. In particufar almost every- > 0, and using

the fact thay(r — ¢) — g(r) = —||V||(A.) for almost every > 0 (and for every > 0), we get
oy o 90— —g(r) . (IVI[(Ae)
L (3:9)
Then, (3.2) immediately follows from (3.5) and (3.1). O

3.2 Alocality result for rectifiable k-varifolds

First, we derive a useful formula for computing the mean atuxe of a rectifiablé:-varifold. This formula
will be crucial in the proof of our second locality result @rem 3.4). More precisely, given a rectifiable
k-varifold V' = v (M, #) with locally bounded first variation, we show in the next pssjtion that the integral
of the mean curvature on a bah,. essentially coincides with the integral on the sph#i of the conormal

n to M, up to an error term due to the singular part of the first vaoiat Therefore, we obtain an equivalent
expression for the curvature at a Lebesgue point M. Recall thate; denotes the orthogonal projection of
z ontoT, M.

Proposition 3.2.Letzg € R™ andV = v(M, 6) be a rectifiablé:-varifold with locally bounded first variation.
Then, settingr = # H*~1L_ M, we get for almost eveny > 0

[mawis [ gde) < 5VI.(BrGeo)) (36)
Br(z0) aBr(ﬂ?O)
— AL if 0
wheren(z) = loal leal # is the inner conormal td/ N B, (xg) atz € M N 9B, (zp). Conse-
0 elsewhere

quently, ifzg € M is a Lebesgue point fafl, then
1

H(x :—lim/ do. 3.7
( 0) r—0t ||[V[(By(x0)) 8Br(aco)77 o7

11



Proof. For simplicity, we assume tha = 0. Let us consider a Lipschitz cutoff functigh : [0, +o0) — R
such thatg(t) = 1fort € [0, — €], Bc(t) = 1 — =2 for ¢t € (r — ¢, 7] and5c(t) = O elsewhere. Then,
choose a unit vectow € R™ and define the vector field, = (.(|x|) w. The definition of the generalized
mean curvature yields

/ divy X d|| V]| = —/ Be(H,w) d||[V|| + 6Vi(Xe),
By

T

and, thanks to our assumptions, we also have

. 1 T, W
/ diva Xod| V| :—/ zar, w) g1y
By T T—€

€ ||

By the Dominated Convergence Theorem,

lim/ (H,w)ﬁed|V||—/ (H,w)d|V]|,  ¥r>0.
e—0 B, B,
Therefore, the derivative

d (xpr, w)

— d

P IVl

exists for almost al > 0 as the limit of the difference quotient

1 T, W
Y et
€ JB,\B,_. |z]

and, in view of (1.3), one has

d (zpr, w)

— dV—/ H,de+/ v,w) d|[dVs]|.
o, e avi= [ awavis [ ow v

Observe now that, denotiny := {z : |z/| = 0}, the coarea formula (1.5) gives

(war, w) (rar, w) |zp]
/ avi = [ v
B Br\N

] [ear| |

/r/ (2, ) o
o JoBan |zMm]

We deduce that, for every Lebesgue point of the integralietfan

(pr, w) do

t— ,
B \N |zl

one gets

I R
dr Jp, |z| oBAN  |TM|

By the definition of the conormaj, we conclude that, for every vectar € R",

/ (vl [ o

or, equivalently,
'/ Hd|V|+/ ndo
B, dB,

This proves (3.6) and, since

< |w| [|6Vs||(By), fora.e.r >0

< |6Vs||(By), fora.e.r > 0.

16VlI(Br)

—0 asr — 0,
IVII(Br)

also (3.7) follows.

12



Remark 3.3.In casedV has no singular part with respect|t¥’||, (3.6) becomes

/ Hd|V| = —/ ndo, for almost every: > 0.
(z0) 0Br(wo)

Below we prove a locality property fok-varifolds in R™, k& > 2, requiring some extra hypotheses on the
varifolds under consideration. The proof is quite diffeérémmm that of Theorem 2.1, mainly because the
Hausdorff measuré(*—1 is no more a discrete (counting) measure. Our result givessiiye answer to the
locality problem in any dimensioh > 2 and any codimension, assuming that the support of one divie
varifolds is locally contained into the other, and also tthegt two multiplicities are locally constant on the
intersection of the supports.

Theorem 3.4.LetV; = v(M,,0;), i = 1,2 be two rectifiablek-varifolds inU < R™ with locally bounded
first variations, and letd;, H, denote their respective mean curvatures. Suppose thag #@xests an open set
A C U such that

(i) MinAC My,
(i) A1(x) andfy(z) are H*-a.e. constant od/; N A.
Then,Hy(z) = Hy(z) for HF-a.e.x € My N A.

Proof. Up to multiplication by suitable constants, we may assunthaut loss of generality that; (z) =
02(x) = 6o constant, for*-almost everyz € M; N A. Moreover, the theory of rectifiable sets and of
rectifiable measures ensures th#t-a.e. pointz € Mj N A is genericin the sense that it satisfies

() ©F(|VilL(M2\ M), x) = 0 andO*(||V;||, ) = 6o for i = 1,2;
(i) =z is a Lebesgue point faf/; and Ho;
(ii)) [|6Vsl|(B(x)) = o([[V[[(Br(x))) for V= V1, V3.

Suppose, without loss of generallty, that= 0 is a generic pomt of\/; N A. Letrg be such thatB,, :=
B,,(0) C A, let MZ = M\ M andV, = v(Mz,ez) Obwoust,Vz is a rectifiablek-varifold, but possibly
§V; has an extra singular part with respecﬂl@“ By (3.6), for almost every & r < rg

/ Hod|[Val| + o(|Vall(B,)) = / 2o
B, 9B,

= —/ na2doa —/ __ nadoy,
(()Brli 0B7'OM2

whereo, = 6, H*~1L M>. Since bothM; and M are rectifiable, they have the same tangent spad¢*at
almost every point of\/; N A, thusr, = 1, for H*-a.e.z € M1 N A. Then, observe that the coarea formula
and the assumptiafp(x) = 01(x) = 0 H"*-almost everywhere o/, N A yield, for almost every 6< r < o,

/ (62— 01)dH*1=0
837-0M1

02(0B, N Mi) = 01(8B,) = 0H* 2B, N M),
whereo; = 6; H*~1L_M;, i = 1, 2. We deduce by (3.6) that, for a.e<0r < 7o,

/ nados = / mdoy = — / Hyd|Va - oIVl (B,)).
OB,NM; 9B, B,

Beingx = 0 generic, and as — 0", we have

(3.8)

that is,

1
L / Had|[Va|] — 60H2(0) (3.9)
weTr B,
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and

1 1
— / nadoy = —— / Hyd|| V|| +0(1) — 6oH1(0), (3.10)
W™ JoB.nM; WET™ JB,
thus, in view of (3.8), it remains to prove th%[ _ pdop = o(r’“) — at least for a suitable sequence of radii
8B,NM,

—to get the locality property at = 0, i.e. thatH1(0) = H»(0).
For everyX € C%(A, R™), we observe that, by the definition of the first variation, #mahks to the inclusion
MiNAC M,
Va(X) = / div g, X 02 dH*
M

- /~ divyy X f2dH" + / diva, X 01 dH"
72 2 My
= Vo(X) + 6V (X),

hence _
16V2[|(A) < [|5Va[l(A) + [I6V2]|(A).

Therefore, V> has locally bounded first variation iA, like V3 andV,. Furthermore, using the genericity of 0,

one gets
10Va[l(Br)

— — to|H1(0)|

WET

and
16V2||(Br)

ot to| H2(0)],

asr — 0, whence
16VA[[(By) + [16V2l[(Br) = O(r¥),

and finally
16V2l(B,) = O("). (3.11)

Let g(r) := ||V2||(B,). Sinceg(0) = 0 andg is non-decreasing off), +-o0) — thusg has locally bounded
variation — it holds forevery X o < 3 < 19

B8
9(8) - gla) = / J(®)dt + | Dg|((a, B])

(e}

whereg'(t)dt and D*g are, respectively, the absolutely continuous part and itigutar part of the distribu-
tional derivativeDg. Besides, the coarea formula (1.5) yields

_ |IM2| o h
9(8) —g(a) = _dVa| > - d||Va|| = doadt.
Bg\BaNM; Bs\BaNM; || a JoBiNM,

SinceD*g andg/(t)dt are mutually singular, it follows that

s s
/ g (t)dt 2/ / _ doydt,
(o3 (0% aBthz

for almost every X «, 3 < ro. Therefore, by the Radon-Nikodym Theorem,

g'(r) > 02(0B, N My),  fora.e. 0<r < r.

We deduce that for almost everyc (0, ro)

/ __mpdoz| < Uz(aBr N Mz) < g/('r). (8.12)
OB,-NM>
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Then, it follows from the relative isoperimetric inequgl{B.2) that for almost every & r < rg

k—1 ~
9T < C(19Vall (Br(@) + (1),
thus, by (3.11), for another suitable constant still deddgC,

g(r) T <Ot +4(r)), (3.13)

At the same time, the genericity of= 0 and the assumptio®* (H* L M>, z) = 0 give
g(r) = o(rF). (3.14)

Let NV be the set of real numbers {9, rg) such that (3.12) and (3.13) hold. Clearly, has full measure in
(0,70). To conclude, we need to show that there exists a sequenediofi )nen € N decreasing to 0, such
that

g'(rn) = o(r})- (3.15)

By contradiction, suppose that there exist a constgnt- 0 and a radius & r; < rg, such thay/(r) > Cyrk
for everyr € N N (0,r1). Then, by (3.13) and for an appropriate constant> 0,

g(r)' % < Cag'(r)

thus, fora.e. O< r < rq, L
ORNICE=e
Observing thay(r) is non-decreasing ang(0) = 0, we can integrate both sides of the inequality between 0

andr, to obtain

1 T
kg(r)k > —
g(r)x > A

rk

ie.g(r) > (ol in contradiction with the fact that(r) = o(r*). In conclusion, by (3.12) and (3.15), there
2

exists a sequence of radii, ),y decreasing to 0 such that (3.14) holds and

/ _mpdoy = o(rfb).
8Brh NM>

Combining with (3.8), (3.9) and (3.10), we conclude the [roo O

Corollary 3.5. LetVy; = v(M, 0r), be a rectifiables-varifold with positive density and locally bounded first
variation, such that

(i) there exist an open set ¢ R” and aC? k-manifoldS such thatS N A ¢ M,
(i) Orr(x) = o constant forH -a.e.x € SN A

Then,H ) (z) = Hg(z) for H*-almost every: € S N A, whereH,; and Hg denote, respectively, the gener-
alized mean curvature df); and the classical mean curvature §f

Proof. Itis an obvious consequence of the previous theorem by giofigerving that, thanks to the divergence
theorem for smooth sets, the classical mean curvdiiyref S coincides with the mean curvature of the varifold
V(S, 90). [m]

Conjecture 3.6.We would expect that the locality property of the mean cumebf k-varifolds, k£ > 1, holds
true under the sole hypothesis of locally bounded first viama However, we have not been able to prove this
assertion in full generality.
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4 Applications

4.1 Lower semicontinuity of the elastica energy for curves ilR™

Let £ be an open subset & with smooth boundarg E and let us consider the functional

F(B) = /d (@t Blros () ") M),

wherep > 1, kgp(y) denotes the curvature gte JF anda, 5 are positive constants. This functional is an
extension to boundaries of smooth sets and to differentature exponents of the celebrated elastica energy

/ (o + Br2)dH?
.

that was proposed in 1744 by Euler to study the equilibriumfigoirations of a thin, flexible beamsubjected
to end forces. This energy, mainly used in elasticity thebas also appeared to be of interest for a shape
completion model in computer vision [15, 16].
Let 7 denote the lower semicontinuous envelope — the relaxatioh/= with respect ta.! convergence,
i.e. for any measurable bounded subBet R?,

F(E)= inf {lim inf F(E), B C R? open 9FE), € C?, |E,AE| — 0},
—00

where|E, AE| denotes the Lebesgue 2-dimensional outer measure of thaelyio difference of the sets),
andFE.

Many properties ofF andF have been carefully studied in [6, 7, 8]. In particular, isheeen proved in [6]
that, wheneveE, (Ey,), C R?, 0F, (OEy), € C? and|E,AE| — 0 ash — 0, then

o

/ (o + Blrap|P)dHE < lim inf/ (o + Blrog, [P)dHY  foranyp > 1.
OFE h— OF),

This lower semicontinuity result is proved through a parterization procedure that can be extended to the
case of sets whose boundaries can be decomposed as a unamarbsesingV>? curves. As a consequence,
F(E) = F(E) for any E in this class [6].

Thanks to Theorem 2.1, we can easily prove the lower semiugityt of the p-elastica energy for curves in
R™, n > 2, and forp > 1, thus getting an affirmative answer also for the gasel. In this context, it is more
appropriate to use the convergence in the sense of curegaegq19, 10] for the definitions and properties of
currents), and the following result ensues:

Theorem 4.1.Let (C)ren With C, = Uie[(k) C,; be a sequence of countable collections of disjoint, closed

and uniformly bounded’? curves inR™, converging in the sense of currents to a countable cobectf
disjoint, closedC? curvesC = Uier Ci, and satisfying

keN

sup Z / (1+ |/<ack’z.|p)d7'[1 < +o00.
iel (k) Cri

Then, fora, 5 > 0,

PYdHY

/ (a+ Blrc,,

iel (k) Cri

Z/ (o + Blrc, [P)dHE < likminf
Ci — 00

iel
for everyp > 1.

Proof. With the notations of Section 1, we consider the sequenceamifolds Vi, = v(Cy, 1). As an obvious
consequence of our assumptions, & have uniformly bounded first variation and their curvasiare in
LP(||Vk|). By Allard’s Compactness Theorem for rectifiable varifo[ds 19], and possibly taking a subse-
guence, we get thal/; ) converges in the sense of varifolds to an integral variféldith locally bounded first
variation. In addition, by Theorem 2.34 and Example 2.38in [

16



(i) if p > 1then the absolute continuity 6%} with respect td| V|| passes to the limit, i.6/ has curvature
in LP, and

/ (a + Bley|P)d||V] < likminf Z / (a—i—ﬁka’i\P)dHl;
Rn —00 Ck,i

1€l (k)

(ii) if p =1, thendV may not be absolutely continuous with respect’tobut the lower semicontinuity of
both measuregdV'|| and||V|| implies that

/Rn(a+ﬁ|f<v|)dl|vl < al[VI(R™) + B[6V ]| (R™)

IN

lim inf 1NdHE.
im in Z | (et Blrc, )an
icl(k) ki

Besides, as the convergence of the curves holds in the sémserents, we know that{*_C = ||V¢| <
IV, whereVz = v(C,1). Since bothV; andV have locally bounded first variation, it is a consequence of
Theorem 2.1 that the curvatures \gf andV coincide -almost everywhere o6. In conclusion, for every
p=>1

> [ @+ st < [ (@t sl
ier /Ci R
< liminf 1P)dHE
< hkrggol Z ; .(a+6|mc,m| )dH
iel(k) " ki
and the theorem ensues. a

Remark 4.2.Using the same kind of arguments, the result can be exterdedions of W2? curves inR",
p>1

Remark 4.3.1n higher dimension, the elastica energy becomes the @biVillmore energy [20], that can
also be generalized to arbitrary mean curvature exponeignthe form

/(a+ﬁ]H5|p)de.
S

with S a smoothk-surface inR™ and Hg its mean curvature vector. Our partial locality result fectifiable
k-varifolds inR™ is not sufficient to prove the extension to smoétlurfaces of the semicontinuity result for
curves stated above. This is due to the fact that the limifaldrobtained in the proof of Theorem 4.1 might
not have a locally constant multiplicity. For instance, sioler the varifoldi” obtained by adding the horizontal
z-axis (with multiplicity 1) to the varifold” that we have built in section 2.2. Then, one immediately nlese
that thez-axis is contained in the support §%||, but the multiplicityd of V is not locally constant at the
points corresponding to the “fat” Cantor séttékes both values 1 and 2 in any neighbourhood of such points)
Therefore, Theorem 3.4 cannot be directly used in this sdoa

Were the locality property true in general, one would obth&lower semicontinuity result in any dimension
k and codimensiom — k, and for anyp > 1. Currently, to our best knowledge, the most general lower
semicontinuity result for the cage> 1 is due to R. Schéatzle [18, Thm 5.1] and is valid wipen 2.

4.2 Relaxation of functionals for image reconstruction

Recall that for any smooth functian: R™ — R and for almost every € R, 9{u > t} is a union of smooth
hypersurfaces whose mean curvature at a poistgiven by

Vu
|Vu|

H(z) = div (z).
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Thus, for any open sét C R™ and by application of the coarea formula, we get

“+o0o
/ / (1+ |Ha{u>t}|p)d7'(n71 dt = / [Vul|(1+ |div Vu [PYdx,
—x Jonofust} = Q |Vu|

where the integrand of the right term is taken to be zero wen&«| = 0. The minimization of the energy

. Vu
F(u): /Q [Vu|(1+ ]dlv|vu|
has been proposed in the context of digital image proced4diBgl2, 14] as a variational criterion for the
restoration of missing parts in an image. It is thereforauratto study the connections betweéitu), and
its relaxationF(u) with respect to the convergence of functionslLih. In particular, the question whether
F(u) = F(u) for smooth functions has been addressed in [4] and a positis&er has been given whenever
n > 2 andp > n — 1. Following the same proof line combined with our Theorerh @nd with Schétzle's

Theorem 5.1 in [18], one can prove the following :
Theorem 4.4.Letu € C2(R™). Then

)da

n=2 and p>1 or

F(u) = F(u) whenever
n>3 and p>2

Proof. Let (up)nen C LY(R™) N C?(R™) converge ta: in LY(R™) and setl. := lim inf F(uy), assuming with

no loss of generality that < co. Using Cavalieri’s formula and possibly taking gosubse@ee'rt follows that
for almost everyt € R,
]l{uth} — ]l{uZt} in Ll(Rn)

Observing that, by Sard’s Lemméy;, > t}, h € N, and{u > ¢} have smooth boundaries for almost every
t € R, we get thato{u;, > t} converges t@{u > t} in the sense of rectifiable currents for almost every
t € R [19]. Therefore, applying either Theorem 4.1 or Theoremib.[lL8], we obtain that for almost every
teR

h—o00

/ (1+ |H{u>t}\p)dH”71 < lim inf/ 1+ |H{uh>t}|P)dHn71
{u>t} - {up >t} B

n=2 and p>1 or

n>3 and p>2

Integrating oveiR and using Fatou’s lemma, we get

Flu) < lihm inf F(up,),

whenever {

thusF is lower semicontinuous in the class@f functions and coincides witik on that class. m]

A Monotonicity identity and isoperimetric inequality

See the note to the reader at the end of the introduction.

In this section we recall some fundamental results of therthef varifolds, which can be found in [1] (see
also [19, 10]). We also provide their proofs, for conveniet the reader. The first result is the following

Theorem A.1 (Monotonicity identity).Let V' be ak-varifold in R™ with locally bounded first variation. De-
notingu(t) := ||V||(B;) and

Q=" -

1 d / |zs|?
il dv(z,S), (A1)
t/‘j’(t) dt BtXGn,k |$| ( )

T N ||
% exp </ Q(t) dt) - 'LL/E][;) = /(B T ||;U|*z+2 exp (/ Q) dt) av(z,S) (A.2)
P r\Dp)XGn k P
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Formula (A.2) shows the interplay between some crucial tities associated to a varifold with locally
bounded first variatio®V'. The local boundedness o is needed basically to apply Riemann-Stieltjes
integration by parts, and is meaningful also in the follogvkey estimate:

1oV (B
Q0= v

In particular, from (A.2) and (A.3) one deduces that anyisteiry varifoldV, i.e. such thatlV = 0, must
satisfy the well-known monotonicity inequality

(A.3)

p(r)  plp) / |zgL|
- —= = av(xz,S) > 0, O<p<r<oo. (A.4)
rk pF (Bo\Bp)xCn e |2[FF2 (=, 5)

Identity (A.2) holds for balls centered at a pointe R™ close to the support of the varifold, and will be
obtained following the technique sketched here (with trseiaptiona = 0):

(i) the first variation is calculated on a smooth, radiallyrsgetric vector fieldgy(z) = 6(]x|) z, where
0 € D(R);

(i) the termdV (gy) is, then, written in two equivalent forms, only using thetftmat |z|? = |zg|? + |z |2,
wherexgs andzg. denote, respectively, the tangential and the orthogonalpoment of the vector
with respect to thé-planes;

(iii) the resulting identity is represented in terms of aiezensional Riemann-Stieltjes integrals, and then
interpreted as the nullity of a certain distributidn{f);

(iv) finally, to obtain (A.2) one has to test the null distrilain ¥ on a suitably chosen, absolutely continuous
functionf : [p,r] > R,with0 < p < r < 0.

Then, (A.2) can be used to prove the following genéeaperimetric inequality

Theorem A.2 (Isoperimetric inequality for varifolds)lhere exists a constardi > 0 such that, for every
k-varifold V' with locally bounded first variation and evegye D(R™), ¢ > 0,

1
k
/ cdvi<c ([ eavi) (/ pdlov) + [ |v%dv> »5)
{z: p(@)OF(|V,2) 21} R" R R X Gk

The localization of this inequality yields the relative pgvimetric inequality (3.1) shown in section 3.

A.1 Basic facts on Riemann-Stieltjes integrals and consequees

Before entering the proof of (A.2), we recall some basicdaxincerning Riemann-Stieltjes integrals of func-
tions of one real variable (see 2.5.17 and 2.9.24 in [10])sdwalv how they can be used to represent integrals of
certain functions with respect to Radon measureR®vorR" x G,, ;.. Suppose thaj : [a,b] — Ris a function

of bounded variation, then for every continuous functjon|a,b] — R one can define thRiemann-Stieltjes
integral

b
| s@agto :supzf glas1) — glas), (A6)

where the supremum is calculated over all subdw@mp& a<apx <---<anyy1=bandallty,... ty
such that; € [a;,a;+1],fori=1,..., N.

Proposition A.3.[10, 2.9.24] Letf, 0 : [a,b] — R be continuous functions and assu¢éns absolutely contin-
uous onja, b]. Then

/ f(t)do(t / 1o’ dact. (A7)

Moreover, ifg has bounded variation ifu, b] then
b
/ ot dct+ [ o) dgle) = g)9(b) - g(@b(@). (A8)
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Next, we apply the Riemann-Stieltjes integral to reducegrdls with respect to Radon measures defined
on the Grassmann bundi’ x G,, j to one-dimensional integrals, as shown in the following

Proposition A.4.LetV be ak-varifold, lety : R" x G,, 1, — R be non-negative and measurable, andllée
absolutely continuous o, r]. Then

[ ol s)avs) - /We@>¢xw, (A.9)
(Br\Bp)xGy i p

where we have set

m—/ o(z, S)dV (z, 5).
(Bt\BP)XGn,k

Proof. Simply write the integral in the left-hand side of (A.9) asuarsof integrals over differences of concen-
tric balls. Then, the proof follows from (A.6). o

In the following lemma, we introduce some special functiohene real variable that will be used later in the
proof of the monotonicity identity (A.2). We first define anpmptune test vector field, .(z): given

1 ifr<1
Ne(r)=<¢1—(r—1)/e fl<r<1l+e

0 otherwise,
we set fort, e > 0 andx € R”

Xie(x) = ne(t_l\x|):v. (A.10)
Given ak-planesS, we compute

: - 1|asf?
divs Xt o (z) = kne(t™z]) — o o 1p,,,.\B.(2)-

Lemma A.5.LetV be a varifold with locally bounded first variatiofl”. Givent € R, we define

u(t) = /BXG dV (z,S) (A.11)
€t) = / |xSL|2dV(x,S) (A.12)
Bt xGp i |$’

d 2

v(t) = kp(t) — — / 251 4y (2, 9) (A.13)
dt EtXGn,k |$|

for t > 0, and zero elsewhere, with the convention that the integgamel zero in(A.12) and (A.13) whenever

x = 0. Then, the functions defined above are right-continuousdadibunded variation ofR. Moreover, the

functionQ(t) = t”#(ft)), defined when and .(t) are both positive, satisfigg(t) < %.

Proof. Clearly, u(t) and¢(t) are right-continuous and non-decreasing, thus of boundedtion. On the other
hand, one can easily see that, for almost al 0,

v(t) = lim 0V (Xye).

e—0t

Therefore, by taking & » < ¢t one has

() —v(r)| = lim 6V(Xpe — Xrc)

< hm(i)ljrlf t(1+ O)lI6V|[(Byare) \ Br)
= t[[|6VI[(B:) — I8V[I(B,)].
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Sincel|§V|| is a Radon measure, we conclude th@!) is of bounded variation. Moreover, one has

limsup [v(t) = v(r)| < lim ¢[|6V][(B:) = 0V[(By)] = O,

t—rt

hencev(t) is right-continuous at almost alle R. The last assertion aboQk(¢) is also an immediate conse-
quence of the previous estimates:a(n). i

A.2 Proof of the monotonicity identity (A.2)

We test the first variation of on a radial vector field” of the formY (z) = 6(|z|)z, wheref € D(R). A
simple approximation argument shows that the suppoft @hay even contain 0 for the proof below to be
valid, thus all function® € D(R) are allowed for testing. Hence, settihg- || we have

|2

SV(Y) = /G . divsY (z) dV (z, S) = /G (Rn)[e’() +EO(8)] dV (, S). (A.14)

Thanks to the identityz|? = |zg|? + |xg. |? we rewrite the right-hand side of (A.14) as follows

/ o128 fz+ke( ] dV(a:,S):/ [£6/(t) + kO(1)] dV(:c,S)—/ ot )"’”S;‘ v (z,S).
G (En) G G (B

Defining (), £(t), (t) as in Lemma A.5, and owing to Propositions A.3 and A.4, we catewA.ls()Aél:)
_ / V()0 () dt = / 10/ (1) dpu(t) — & / ()0 () di — / 0/ (1) de(t). (A.16)

Integrating by parts (see formula (A.8)) we obtain
/ [v(t) — ku(t)]0'(t) dt + / 0'(t) tdu(t) — / 0'(t) dé(t) = 0. (A.17)

In other words, le € D'(R) be the distribution defined by

ww—/Mw—m@wwwf/wnww—/ww@@.

Clearly, (A.17) says that the distributional derivativedofs zero, henc& must be equal to a constant R.
On the other hand, choosirgt) = 0 for all ¢ > 0 one concludes that= 0, that is,

U(6) = / [ (t) — ku(t)]0(t) dt + / 0(t) tdu(t) — / 0(t) de(t) = 0 (A.18)

for all & € D(R). By approximation, one gets (A.18) valid for all absolutelyntinuousd with compact
support inR. Another integration by part as in (A.8) lets us write (A.18}he form

/{ —m]()@ﬂ)<»w+ﬁm<>pmww:/7mwm (A.19)
p

which is true for any absolutely continuous functifn [p, r] — R.

To conclude, we only need to choog€) in order that the first integral in (A.19) becomes zero. Aroth
requirement is the termf(p) to be equal tgo=". In conclusion, we simply takg(t) as the solution to the
following Cauchy problem:

that is,

F(t) =t~ Lexp / L) (A.20)
P

DefiningQ(t) = t”ﬂ((tt)) for ¢ > 0 and plugging (A.20) into (A.19), one obtains (A.2) as wante
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A.3 Proof of the isoperimetric inequality (A.5)
Define the varifoldV, = ¢V, such that

V(o) = /a(x,S) o(x)dV (z,S)

forall @ € CO(R™ x G, 1), and assume thgsV,|| is a Radon measure (otherwise the result holds trivially).
Fix A € (1, +00) and define a suitable radius

—(W;IL@)%

Takea € R™ and supposé(a)y(a) > 1. The monotonicity identity (A.2) thus implies

N _ s [Vl (Blar) o1
p/ Qe 5y @B < ) (A2

whereQ),(t) is defined as in (A.1), wit¥,, replacingl’. From (A.21) we infer that

sk

Vell(B(a, 5))

sk

Vel (R™)

hmmf exp/ Qy(t) > wib(a)p(a)

Y

wiB(a)p(a)

= 0(a)p(a)A
> A
that is,
lim inf / Qp(t)dt > log A > 0.

r—0t

From Lemma A.5 and the previous inequality, we get

* [16Vell(B(a, t))
Vel (B(a, 1))

thus for any 0< € < log A there exists' = 7(a, €) such that, for all 0< r < 7,

lim inf
r—0t

dt > log A,

r

* [[0Vell(B(a, t))

dt > log A — ¢,
r [Vell(B(a,t))

whence the existence bf (0, s) for which

SV II(Bla, D)

—= > log A — ¢ (A.22)
Vel (B(a, 1))
holds true. By the Besicovich Covering Theorem we deduce
1 1
s n [Vel((R™)E A% n
: > < e — = . .
IVelha : 0@)e(e) 2 1) < Cngo s IOV RY) = Cp = A IV R (A29)
k

1
Ak

log A

Therefore, the minimization of the function —
choiceX = exp(k + €), for which

- on the interval(exp(e), +-00) leads to the optimal




Then, passing to the limit in (A.23) as— 0™, we obtain

1
%
/ pdlV] <C ( / stIIV|> 1SV, I (R™).
{a: pa)0(a)>1}

Combining with
18Vl (™) < / o d|oV| + / VSe(a)|dV (2, S),

we obtain (A.5).
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