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ESTIMATING THE DIMENSION OF THE THURSTON SPINE

OLIVIER MATHIEU

Abstract. For g ≥ 2, the Thurston spine Pg is the subspace of Teichmüller space Tg,
consisting of the marked surfaces for which the set of shortest curves, the systoles, cuts the
surface into polygons. Our main result is the existence of an infinite set A of integers g ≥ 2
such that

codimPg ∈ o(g/
√
log g),

when g ∈ A goes to ∞. This proves the recent conjecture of M. Fortier Bourque.
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Introduction

0.1 General Introduction
Let g ≥ 2. The Teichmüller space Tg is the space of all marked closed hyperbolic surfaces
of genus g. (Precise definitions used in the introduction can be found in Section 1.) It is a
smooth variety homeomorphic to R6g−6, see e.g. [5][6], on which the mapping class group Γg

acts properly. By Harer’s Theorem [7], Γg has virtual cohomological dimension 4g− 5. This
leads to the question, raised in [4]-can we find an equivariant deformation retraction of Tg

onto a subcomplex of dimension 4g − 5, or equivalently, of codimension 2g − 1?
In a remarkable note [17], Thurston considered the subspace Pg ⊂ Tg consisting of marked

surfaces for which the systoles fill the surface, i.e. the systoles cut the surface into polygons.
In loc. cit., he proved1 that Pg is an equivariant deformation retract of Tg. Since, Pg is called
the Thurston spine. It follows that codimPg ≤ 2g − 1.

Therefore, one could have expected that Pg has codimension 2g − 1 for all g. In that
direction, P. Schmutz Schaller provided examples of surfaces of genus g which are cut by a
minimal set of 2g systoles. (We could expect that Pg has locally codimension 2g−1, as it will

1In [11], some doubts have been raised about Thurston’s proof. The results stated below were clearly
motivated by his note [17], but their proofs are independent of loc. cit.. So, we will not discuss here if the
main result of [17] is proved or not.
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be explained in Subsection 0.2.) Also it was verified by I. Irmer using a Sage computation
that dimP2 = 3 [8].

However, a year ago, the breakthrough paper [3] showed that codimPg < 2g − 1, for
infinitely many g. More precisely, M. Fortier Bourque proved in [3] that

lim infg→∞ codimPg/g ≤ 1.
Moreover he had conjectured earlier [2] that

lim infg→∞ codimPg/g = 0.
Our paper provides a proof of his conjecture with, in addition, some explicit bound.

Theorem 1. We have
codimPg <

38√
ln ln ln g

g√
ln g

,

for infinitely many g ≥ 2.

This leads to the concrete question -which is the smallest g for which codimPg < 2g− 1?
In the last section, we will see that, for g = 17, we have codimP17 < 32. However, we do
not know if g = 17 is the smallest g answering the question.

0.2 The main idea of the proof
For g ≥ 2, let us fix, one and for all, an oriented closed topological surface Sg of genus
g. A marked hyperbolic surface S of genus g is a hyperbolic surface endowed with an
homeomorphism f : S → Sg, up to homotopy. Recall that a curve is free homotopy class of
an embedding S1 ↪→ Sg. Any curve C of S can be uniquely represented by a closed geodesic
of S. Thus its length L(C) can be viewed as a function on the Teichmüller space Tg.
Denote by Syst(S) the set of systoles of S, which is viewed as a finite set of curves of

S. For a finite set C = {C1, C2 . . . } of curves, let Sys (C) be the set of marked hyperbolic
surfaces S of genus g such that Syst(S) = C.
An obvious corollary of the submersion theorem is the following

Lemma. Let S ∈ Pg and let C be a filling subset of Syst(S) of minimal cardinality. If
(H) the set of differentials {dL(C) | C ∈ Sys (C)} is linearly independent at S,

then S is adherent to Sys (C) and we have
codimS Pg = Card C − 1.

Thus the proof is based on the following two ingredients

Step 1 finding hyperbolic surfaces S with Sys (C) or C small
Step 2 checking the hypothesis (H)

It would be more natural to start with surfaces S whose set of systoles is minimal, but it
seems difficult to find such surfaces.

The constructions of hyperbolic surfaces with a small number of systoles are based on
Penner systems. Recall that a Penner system is a finite set P of curves with a decomposition
P = B ∪R, whith the following conditions

(1) The curves in B, called the blue curves, are pairwise disjoint,
(2) The curves in R, called the red curves, are pairwise disjoint,
(1) P fills S, i.e. it cuts S into polygons.
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Each polygon cuts by P have sides of aternating colors red and blue, so the polygons have
an even number of sides. The Penner system P is called 2p − gonal if all polygons cut by P
are 2p-gons for some integer p. Since g ≥ 2, the integer p should be ≥ 3.

Let ϵ ∈]0, π[. There is a unique oriented hyperbolic 2p-gon Hp(ϵ) such that

(1) The side are alternatively coloured in blue and in red, and they have all the same
length,

(2) The value of directly oriented inner angles from a red side to a blue side is ϵ, although
the other angles are equal to ϵ : π − ϵ.

Given a 2p-gonal Penner system P on Sg, there is a unique hyperbolic metric on Sg such
that each 2p-gon cut by P is isometric to Hp(ϵ). Of course we assume that the isometry
preserves the side colors. Let SP(ϵ) the corresponding hyperbolic surface. In this way we
obtain a path in Tg

σ :]0, π[→ Tg, ϵ 7→ SP(ϵ),
We will called it the Sanki path of the standard Penner system P .

Each curve of P is cut into edges by the curves of opposite colours. Let us consider the
following axiom

(AX) Each blue curve B contains an edge whose extreme points belongs to two different
red curves,

Our first result is the following

Theorem 2. Let P be a 2p-gonal Penner system satisfying (AX). Then for all

We defined five axioms for Penner systems (AX1− 5). Our first result is the following

Theorem 3. Assume that the Penner system satisfies the axioms (AX1− 5). Then, the set
of differentials

{dL(C) |C ∈ Syst(Sg)}
is linearly independent at σ(ϵ), except for finitely many values of ϵ.

For the proof, we will finding surfaces S satisfying the criterion the hypothesis (H) and
with a small filling subset of systoles.

The starting point of the proof is based on the main result of [10], that we now recall.
A regular right-angled hexagon H of the Poincaré half plane H is called decorated if it is

oriented and its sides are cyclically indexed by Z/6Z. Up to direct isometries, there are two
such hexagons H and H, with opposide orientations.

A tesselation of a closed oriented hyperbolic surface S is called a standard tesselation if
each tile is isometric to H or H. Of course, it is presumed that the tiles are glued along
edges with the same index, therefore a tile isometric to H is surrounded by six tiles isometric
to H and conversely. A vertex of a standard tesselation is an intersection point of two
perpendicular geodesics. Therefore, the 1-skeleton of a standard tesselation consists of a
finite family of closed geodesics, called the curves of the tesselation.

For a hyperbolic surface S, denote by Syst(S) the set of systoles of S.

Theorem (Theorem 25 of [10]). There exists an infinite set A of integers g ≥ 2, and, for any
g ∈ A a closed oriented hyperbolic surface Sg of genus g endowed with a standard tesselation
τg such that
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(1) the systoles of Sg are exactly the curves of τg, and
(2) we have

Card Syst(Sg) ≤
57√

ln ln ln g

g√
ln g

.

The index of a curve of the tesselation τg is the common index of its edges. It is clear that
the subset C of curves of index ̸= 1 or 2 fills the surface and Card C = 2/3Card Syst(Sg).
Let Sys (C) be the set of marked hyperbolic surfaces S of genus g such that Syst(S) = C.

For any curve, or free homotopy class, C of Sg, let L(C) be its length, viewed as a function
on the Teichmüller space Tg. Set C = {C1, C2 . . . }. The subspace Sys (C) is defined by the
Card C − 1 equations

L(C1) = L(C2) = . . .
together with some inequalities. Intuitively, our result should follow from the following two
facts

(1) In Tg, the point Sg is adjacent to Sys (C), and
(2) for any point x ∈ S(C) closed to Sg, we have codimx S(C) = Card C − 1

If we assume that the differentials {dL(C) | c ∈ Syst(Sg)}, are linearly independent at the
point Sg, the previous two facts would follow from the submersion theorem. However, an
argument in Theorem 36 of [16] shows that these differentials are often linearly dependent at
Sg. For this reason, the cardinality of C does not determine the local codimension of Sys (C).

Following an idea of Sanki [15], we can deform the angles of the tiles, by alternately
replacing the right angles by angles of value ϵ and π − ϵ, for any ϵ ∈]0, π[. In this way we
obtain a path σ :]0, π[→ Tg, such that σ(π/2) is the hyperbolic surface Sg. We will called it
the Sanki path of the tesselation τg. The main idea of the proof is the following

Theorem 4 (see Section 5). The set of differentials
{dL(C) |C ∈ Syst(Sg)}

is linearly independent at σ(ϵ), except for finitely many values of ϵ.

It implies that the assertions (1) and (2) are correct for x = σ(ϵ), where ϵ ̸= π/2 is closed
enough to π/2.

The proof of Theorem 2 is based on a duality, which is expressed in terms of the Poisson
product associated with the Weil-Petersson symplectic structure on Tg. For any curve B
of the tesselation, we define a dual function L(B∗) which is a linear combination (with
coefficients ±1/2) of lengths of three curves, which are the boundary components of a well-
chosen pair of pants.

It results from an asymptotic analysis of Wolpert’s formula [19] that

(1) lim
ϵ→0

{L(B), L(A∗)}(σ(ϵ)) = δA,B

for any two curves A, B of the tesselation, where, as usual, δA,B denotes the Kronecker’s
symbol. Since δ := det({L(B), L(A∗)}) is an analytic function, it follows that δ(σ(ϵ)) is not
zero for any ϵ ̸= π/2 closed to π/2.

In fact the proof of equation (1) is based on elementary but lengthy trigonometric compu-
tations of Sections 2-4. To present the computations and the figures as simply as possible, we
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have restricted ourself to hexagonal tesselations. However similar results hold for tesselations
by 2p-gons for any p ≥ 3.

1. Background and Definitions

1.1 Marking of surfaces and the Teichmüller space
Let g ≥ 2. By definition, the Teichmüller space Tg is the space of all marked oriented closed
hyperbolic surfaces of genus g. It means that Tg parametrizes the set of those hyperbolic
surfaces, where the marking is a datum that distinguishes isometric surfaces corresponding
to distinct paramaters.

There are various equivalent definitions of the marking [5]. Here we will adopt the most
convenient for our purpose. Let Πg be the group given by the following presentation

⟨a1, b1, . . . , ag, bg | (a1, b1)(a2, b2) . . . (ag, bg) = 1⟩.
Then a point x of the Teichmuller space is a loxodromic (i.e. faithfull with discrete

image) representation ρx : Πg → PSL(2,R) modulo linear equivalence. At the point x, the
corresponding hyperbolic surface is Sx := H/ρx(Πg). With this definition, Tg is a connected
component of a real algebraic variety.

Formally, a curve c is a nontrivial conjugacy class of Πg. For a hyperbolic surface, any
free homotopy class has a unique geodesic representative. Thus c defines a closed geodesic
cx of Sx, for any x ∈ Tg. Here closed geodesics are nonoriented, so we will not distinguish
the conjugacy classes of c and c−1. Concretely, the marking of the surface Sx means that
each geodesic C of Sx is marked by a conjugacy class in Πg.
In this setting, the mapping class group Γg is the group of all outer automorphisms of Πg

which act trivially on H2(Πg) ≃ Z. It acts on Tg by changing the marking, or, more formally,
by twisting the representation of Πg.

1.2 Length of curves
The length of an arc, or a closed geodesic, e will be denoted l(e). When there is no possibility
of confusion, we will use the same letter for an arc e and its length. For example the
expression cosh H in the proof of Lemma 6 stands for cosh l(H).
Let x ∈ Tg. Given a curve c, set L(c)(x) = l(cx) where cx is the geodesic representative

of c at x. The formula 2 ch(L(c(x))) = |Tr(ρx(c))| shows that the function L(c) : Tg → R
is analytic. Let C be a closed geodesic of Sx. We set L(C) = L(c), where c is the curve
marking C.

1.3 The Thurston’s spine Pg

In riemannian geometry, a systole is an essential closed geodesic of minimal length. In fact,
for a hyperbolic surface, any closed geodesic is essential. Let Pg be the set of all points
x ∈ Tg such that the set of systoles fills Sx, i.e. it cuts Sx into polygons. The subspace Pg

is called the Thurston spine, see [17].
By definition, the Thurston spine Pg is a semi-analytic subset [17], and therefore it admits

a triangulation by [12]. In particular, the dimension dimx Pg at any point x ∈ Pg is well
defined. Set

dim Pg = Maxx∈Pg dimx Pg and codimPg := dim Tg − dim Pg.
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1.4 Orientation of the boundary components
In what follows, all surfaces S are given with an orientation. When S has a boundary ∂S, it
is oriented by the rule that, while moving forward along ∂S, the interior of S is on the right.
With this convention, when a circle of the plane is viewed as the boundary of its interior, it
is oriented in the clockwise direction.

1.5 Angles
Let C, D be two distinct geodesic arcs of a surface and let P be an intersection point. The
angle of C and D at P , denoted ∠PCD is measured anticlockwise from TPC to TPD, where
TPC and TPD are the tangent line at P of C and D. By definition ∠PCD belongs to ]0, π[.
When we permutes C and D there is the formula

∠PDC = π − ∠PCD.
In what follows, it will be convenient to set α = π − α for any α ∈ [0, π]. Also it will be
convenient to use the notation ∠DC when the point P is unambiguously defined.

The notion of inner angles is different. Let S be a surface whose boundary ∂S is piecewise
geodesic. Let c and d be two consecutive geodesic arcs of ∂S meeting at a point P . The
inner angle is a real number α ∈]0, 2π[. We have α < π when S is locally convex around
P . In that case, the equality ∠ cd = α means that the arc c preceeds d when going forward
along ∂S.

2. Trigonometry in H

As stated in the Introduction, the analysis of Sanki’s paths, defined in Section 5, is based on
many trigonometric computations. This section involves trigonometric computations in the
Poincaré half-plane H. Subsequent computations in the pairs of pants Π(k, ϵ) will be done
in Section 4.

Let dH be the hyperbolic distance on H. By definition, a line is a complete geodesic ∆ of
H. For any P,Q ∈ ∆, the closed arc between P and Q is called a segment and it will be
denoted PQ. When necessary, the segment PQ is oriented from P to Q.
Given three points A,B and C ∈ H, we denote by ABC the triangle T whose sides are

AB, BC and CA. By our convention, ∂T is oriented clockwise, but we do not require a
specific orientation of the sides. Given four points A,B,C and D ∈ H, we define in the same
way the quadrilateral ABCD, not ruling out the possibility that one pair of opposite sides
intersects.

For the whole section, we will fix an angle ϵ ∈]0, π[. In the pictures, we will assume that
ϵ < π/2.

2.1 The ϵ-pencil Fϵ(∆) in H
Let ∆ ⊂ H be a line. For any P ∈ ∆, let F (P ) be the line passing through P with
∠∆F (P ) = ϵ, see Section 1.5 for our convention concerning angles. Since no triangle
has two angles of values ϵ and ϵ, any two lines F (P ) and F (P ′) are parallel. The set
Fϵ(∆) := {F (P ) | P ∈ ∆} will be called the ϵ-pencil along the line ∆.
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Let ∆′ be a geodesic arc of H with ∆∩∆′ = ∅. When F (P ) meets ∆′, set Ω(P ) = F (P )∩∆′

and
ω(P ) := ∠∆′F (P ).

The line ∆ is oriented by the convention that, while going forward, the arc ∆′ is on the right.
Therefore the notion of an increasing function f : ∆ → R is well-defined.

In contrast with the Euclidean geometry, the angle ω(P ) is not constant. On the contrary,
it can vary from 0 to π, as it will now be shown.

Lemma 5. We have:

(1) The set I := {P ∈ ∆ | F (P ) ∩ ∆′ ̸= ∅} is an interval of ∆. Moreover, the map
ω : I →]0, π[ is increasing.

(2) Furthermore, if ∆′ is a line of H and dH(∆
′,∆) ̸= 0, then ω is bijective.

Proof of claim (1). Let PP’ be a positively oriented arc of I. Consider the quadrilateral

Q := PP ′Ω(P ′)Ω(P ). With our conventions, its inner angles are ϵ, ϵ, ω(P ′) and ω(P ). Since
the area of Q is

2π − [ϵ+ ϵ+ ω(P ′) + ω(P )] = ω(P ′)− ω(P ),
the function ω is increasing.

Next let P ′′ in the interior of the segment PP ′. Since the line F (P ′′) enters Q at P ′′, it
should left Q at another point. Since F (P ′′) is parallel to F (P ) and F (P ′), the exit point
lies in the segment Ω(P )Ω(P ′), hence P ′′ belongs to I. Since I contains a segment whenever
it contains its two extremal points, I is an interval.

Proof of Claim (2). We can assume that ∆ = Ri. By the assumption that dH(∆,∆′) > 0,
the lines ∆ and ∆′ do not intersect and their endpoints in ∂H are distinct. Therefore the
endpoints a, b of ∆′ in ∂H are real numbers with same signs. Without loss of generality, we
can also assume that 0 < a < b, as shown in Figure 1.

There is a line F+ (resp. F−) in Fϵ(∆) whose the endpoint in R>0 is b (resp. a). Set
P± = ∆ ∩ F±.

Let B be the open band delimited by F+ and F−. When P belongs to the interior of
P−P+, the line F (P ) lies in the interior of the band B and F (t) meets ∆′. It is clear from
the definition of F± that

lim
P→P−

ω(P ) = 0 and lim
P→P+

ω(P ) = π.

Hence by Assertion (1), ω is bijective.
□

2.2 The ϵ-edge
Let ϵ ∈]0, π[ and let ∆, ∆′ be two lines with dH(∆

′,∆) > 0. Let H be the the common
perpendicular arc to ∆ and ∆′ and let S ∈ ∆ and S ′ ∈ ∆′ be its endpoints.
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Figure 1. The band B

By Lemma 5 there is a unique P ∈ ∆ such that ω(P ) = ϵ. The edge e = PΩ(P ) will be
called the ϵ-edge of ∆ and ∆′. For ϵ = π/2, the ϵ-edge is the perpendicular arc H.

Lemma 6. Set L = dH(P, P
′) where P ′ = Ω(P ). If ϵ ̸= π/2, then

(1) H and e intersect at their midpoints.
(2) dH(P, S) = dH(P

′, S ′) < L/2.

Moreover the segment SP is positively oriented whenever ϵ < π/2.

Proof. We have ∠∆e = ϵ and ∠e∆′ = ϵ. The sum of the four angles of the quadrilateral
Q := SPΩ(P )S ′ is 2π. It follows that a pair of opposite edges must intersect, so e meets H
at some point M . The two triangles SPM and MΩ(P )S ′ have the same three angles, and
are therefore isometric. In particular dH(P, S) = dH(P

′, S ′).

It follows that e and the arc H = SS ′ intersect at their midpoint M , thus we have
dH(P,M) = L/2. Since PM is the hypothenuse of the right-angled triangle PSM , we have
dH(P, S) < L/2. The second claim follows. □

2.3 2p-gons trigonometry and edge colouring
Let p ≥ 3 be an integer.

Lemma 7. Up to isometry, there exists a unique hyperbolic 2p-gons H(ϵ) whose sides all
have the same length L = L(ϵ) and whose inner angles are alternately ϵ and ϵ.

Moreover we have

coshL = 1 +
2 cos(π/p)

sin ϵ
.

Proof of the existence of H(ϵ) and of the formula for coshL.
Let T be an oriented triangle whose angles are ϵ/2, ϵ/2 and π/3 and let X be the vertex at
the π/3-angle. Let T be the triangle isometric to T with opposite orientation. Let H(ϵ) be
the hexagon obtained by alternately gluing three copies of T and three copies of T around
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X. This hexagon satisfies the required conditions, so the existence is proved.

By the law of cosines for the triangle T , we have

coshL =
cos ϵ/2 cos ϵ/2 + cos π/3

sin ϵ/2 sin ϵ/2

= 1 +
1

2 sin ϵ/2 cos ϵ/2

= 1 +
1

sin ϵ
.

Proof of the uniqueness.
Let H be a hexagon whose sides all have the same length l, and whose angles are alternately
ϵ and ϵ. Let (Ai)i∈Z/6Z be the six vertices, arranged in a cyclic order. Moreover, we will
assume that the angles at A2, A4 and A6 are ϵ.

The triangles A1A2A3, A3A4A5 and A5A6A1 have the same angles at the point A2, A4 and
A6, and the two sides originating from these points have the same length l. Hence they are
isometric. It follows that the triangle A1A3A5 is equilateral.

Let X be the center of A1A3A5, and let T ′ = A1XA2 and T
′
= A2A3X. Since T ′ and T

′

have same side lengths they are isometric, with opposite orientations. Hence H is obtained

by alternately gluing three copies of T ′ and three copies of T
′
around X. It follows that

the angles of T ′ are ϵ/2, ϵ/2 and π/3. Therefore T ′ is isometric the the triangle T of the
existence proof. Hence H is isometric to H(ϵ), proving uniqueness. □

We can alternately assign the colours blue and red to the sides of H(ϵ), as follows: If S,
S ′ are consecutive sides with ∠S S′ = ϵ, then S is red and S ′ is blue, or, quickly speaking,
∠red blue = ϵ. For ϵ ̸= π/2 this colouring is unique.

2.4 The Saccheri quadrilateral in H(π/2)
In the hexagon H(π/2), let S1, S2 and S3 be three consecutive sides and let D be the arc
joining the vertex of S1∖S2 and the vertex of S3∖S2. Thus S1, S2, S3 and D are the four
sides of a Saccheri quadrilateral. Set L′ = l(D).

Lemma 8. We have
L′ < 2L(π/2).

Proof. Set L = L(π/2). The perpendicular line at the middle of S2 cuts the Saccheri quadri-
lateral into two isometric Lambert quadrilaterals. It follows that

sinhL′/2 = coshL/2 sinhL/2,
or equivalently sinh2 L′/2 = 4 sinh2 L/2, which implies that coshL′ = 5. On another hand
cosh 2L = 2 cosh2 2L− 1 = 7. It follows that L′ < 2L. □
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3. The three-holed sphere Σ(k, ϵ) and the pair of pants Π(k, ϵ)

From now on, let k ≥ 3 be an integer and let ϵ ∈]0, π[. We will often think of ϵ as being an
acute angle, as in the figures of this section. A topological three-holed sphere endowed with
an hyperbolic structure such that the three boundary components are arcwise geodesics
will be called a three-holed sphere. Moreover a three-holed sphere whose three boundary
components are geodesics will be called a pair of pants.

In this section, we will define a pair of pants Π(k, ϵ) endowed with a certain tesselation. We
will first consider a three-holed sphere Σ(k, ϵ) which has two geodesic boundary components
C and C ′ and one piecewise geodesic boundary component D. Since the inner angles of D
are < π, it is homotopic to a unique geodesic D. Then Π(k, ϵ) is the pair of pants lying in
Σ(k, ϵ), whose boundary components are C,C ′ and D.

3.1 The tesselated three-holed sphere Σ(k, ϵ)
Let us start with the planar graph Γ represented in Figure 2.

Figure 2. The graph Γ

It consists of two cycles C and C ′ of length k, which are connected by an edge e with end-
points P ∈ C and P ′ ∈ C ′. Starting from P in an anticlockwise direction, the other points
of C are denoted by P1, . . . , Pk−1. For each 1 ≤ i ≤ k − 1 there is an additional edge ei,
pointing outwards from C. One endpoint of ei is Pi and the other endpoint has valency one.
The vertices P ′

1, . . . , P
′
k−1 of C ′ and the edges e′i are defined similarly.

The edges of the cycles C and C ′ are coloured in red, the other edges are coloured in blue.
Now we will attach 2k−2-hexagons H(ϵ) along the edges of Γ to obtain a hyperbolic surface
Σ(ϵ, k). It will be convenient to define a metric on Γ by requiring that each edge, red or
blue, has length L = 1 + 1/ sin ϵ.
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First we attach two copies ofH(ϵ) along five consecutive edges of Γ. The first copy, denoted
H1(ϵ), is glued along the edges ek−1, Pk−1P, e, P

′P ′
1 and e′1. The second copy, denoted H2(ϵ),

is glued along the edges e′k−1, P
′
k−1P

′, e, PP1 and e1, see Figure 3.

2

Figure 3. Gluing two the first two copies H1(ϵ) and H2(ϵ) to Γ

Next we attach the remaining 2k− 4 hexagons along three edges. Indeed, for each integer
i with 1 ≤ i ≤ k − 2, we glue one copy of H(ϵ) along the edges ei, PiPi+1 and ei+1 and,
symmetrically, we glue another copy along e′i, P

′′
i Pi+1 and e′i+1, see Figure 4.

e

e

e

e

H

H

H

H H

e

e

e

2

1

Figure 4. Gluing the remaining hexagons H(ϵ) to Γ

It is tacitly assumed that all gluings respect the metric and the colours of edges.
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This defines a hyperbolic surface Σ(k, ϵ) which is homeomorphic to the 3-holed sphere
S0,3. Two boundary boundary components C and C ′ of Σ(k, ϵ) are geodesics. The third
component, call it D, is piecewise geodesic.

Lemma 9. The boundary component D is freely homotopic to a unique geodesic D. Moreover

(1) D lies in the interior of Σ(k, ϵ),
(2) D meets each arc ei and e′i exactly once, and
(3) D does not intersect e.

Proof. The curve D is piecewise geodesic. It is alternatively composed of 2(k − 2) blue arcs
and 2(k − 2) red arcs. Since k ≥ 3, D is not a geodesic. The inner angles of D are each
less than π, therefore D is freely homotopic to a unique geodesic D lying in the interior of
Σ(k, ϵ).

Let d be a blue edge. There is a 1-parameter family of curves (Dt)t∈[0,1], realizing a
homotopy from D = D0 to D = D1, such that the number of bigons formed by d and
D = Dt does not increase. Since there are no bigons formed by d and D0, the geometric
intersection numbers i(d,Dt) is constant, which proves the last two claims. □

3.2 The pair of pants Π(k, ϵ) and its central octogon Q(ϵ)
The geodesic D decomposes Σ(k, ϵ) into two pieces. The component Π(k, ϵ) ⊂ Σ(k, ϵ) with
geodesic curves C, C ′ and D is a pair of pants.

The blue arcs decompose Π(k, ϵ) into two hexagons adjacent to the central edge e and
2k − 4 quadrilaterals. Let H1(ϵ) := H1(ϵ) ∩Π(k, ϵ) and H2(ϵ) := H2(ϵ) ∩Π(k, ϵ) be the two
hexagons of the decomposition. Their union Q(ϵ) := H1(ϵ) ∪H2(ϵ) is a convex octogon.

Let H be the unique perpendicular arc joining C and C ′ and let S ∈ C and S ′ ∈ C ′ be
its endpoints. For ϵ = π/2, we have H = e. Otherwise H and e meet as shown in the next
lemma.

Lemma 10. The arc H lies in the octogon Q(ϵ). When ϵ ̸= π/2, H and e intersect at their
midpoint.

Moreover we have

(1) d(P, S) < L/2, and
(2) for ϵ < π/2, the point P belongs to H(ϵ).

Proof. The inner angles of Q(ϵ) are less than π, hence there is an isometric embedding
π : Q(ϵ) → H.

Let ∆ and ∆′ be the lines ofH containing, respectively, the arcs π
(
C∩Q(ϵ)

)
and π

(
C ′∩Q(ϵ)

)
.

Let H be the common perpendicular arc to ∆ and ∆′ and let S := H ∩∆ and S
′
:= H ∩∆′

be its feet. By Lemma 6, we have
dH(π(P ), S) < L/2.

Since π
(
C ∩Q(ϵ)

)
is the geodesic arc of ∆, centered at π(P ), of length 2L, it follows that

S is on the boundary of π
(
C ∩Q(ϵ)

)
. Similarly S

′
is on the boundary of π

(
C ∩Q(ϵ)

)
. By

convexity, the arc H lies in π
(
Q(ϵ)

)
.
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Hence H = π−1(H) belongs to Q(ϵ). The other claims follow from Lemma 6 and the fact
that π is an isometry. □

4. Trigonometry in the pair of pants Π(k, k′, p, ϵ)

Let k, k′ ≥ 2 and p ≥ 3 be integers and let ϵ ∈]0, π[. The pair of pants Π(k, k′, p, ϵ) from the
previous section is endowed with an ϵ-edge e joining C and C ′, whose endpoints are P ∈ C
and P ′ ∈ C ′. By Lemma 7, the length L of e satisfies

cosh(L) = 1 + 2 cos(π/p)/ sin ϵ.
Let H (resp. h, resp. h′) be the unique common perpendicular arc to C and C ′ (resp. to C

and D, resp. to C ′ and D). Cutting Π(k, ϵ) along H∪h∪h′ provides the usual decomposition
of the pair of pants into two right-angled hexagons.

4.1 Formula for coshH
As usual, we will use the same letter for an arc and for its length. As a matter of notation,
let S ∈ C and S ′ ∈ C ′ be the endpoints of H.

Lemma 11. We have

coshH = 1 + 2 cos(π/p) sin ϵ.

Proof. When ϵ = π/2, we have e = H and coshH = coshL = 2. Therefore we can assume
that ϵ ̸= π/2.

By Lemma 10, e and H belong to the octogon Q(ϵ) and they intersect at their midpoint
M . It follows that SM = H/2 and PM = L/2. By the sine law applied to the triangle
PSM , we have

sinhH/2 = sin ϵ sinhL/2.

From the identities 2 sinh2H/2 = coshH − 1 and 2 sinh2 L/2 = coshL− 1, it follows that

coshH − 1 = sin2 ϵ (coshL− 1).

By Lemma 7, we have coshL− 1 = 2 cos(π/p)/ sin ϵ, from which it follows that
coshH = 1 + 2 cos(π/p) sin ϵ.

□

4.2 Conventions concerning the asymptotics of angle functions
In what follows, we will consider analytic functions f :]0, π[→ R. In order to study their
asymptotic growth near 0, we will use the following simplified notations. For any pair of
functions A, B :]0, π[→ R, the expression

A ∼ B

means that

lim
ϵ→0

A

B
= 1.

Moreover the expression
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A ∼ ∗B
means that A ∼ aB for some positive real number a. Similarly, the expression A << B
means that

lim
ϵ→0

A

B
= 0.

4.3 Length estimates

Lemma 12. We have

(1) cosh rL ∼ sinh rL ∼ (erL)/2 ∼ ∗ϵ−r, for any r > 0,
(2) coshH − 1 ∼ ∗ϵ and H ∼ ∗ϵ1/2,
(3) d(S, P ) = L/2 + o(1), and

(4) h ∼ ∗ϵ k−1
2 and h′ ∼ ∗ϵ k′−1

2 .

Proof. By Lemma 7, we have coshL ∼ ∗ϵ−1. Therefore we have eL ∼ ∗ϵ−1 and
cosh rL ∼ sinh rL ∼ (erL)/2 ∼ ∗ϵ−r, for any r > 0,

which prove Assertion 12.1. Lemma 11, implies Assertion 12.2. By Lemma 10, H and e
intersect at their midpoint M . Since

|d(P, S)− d(P,M)| ≤ d(S,M) = H/2
we also have |d(P, S)− L/2| ∈ o(1), which proves Assertion 12.3.
We turn now to the proof of Assertion 12.4. The perpendicular arcs H, h and h′ decompose

the pair of pants Π(k, ϵ) into two isometric right-angled hexagons (see [5], Proposition 3.1.5)
and let A be one of them.

In an circular order, the hexagon A has sides h′, k′L/2, H, kL/2, h and D/2. In order to
prove the final statement, we first estimate coshD/2. By the law of cosines, we have

coshH =
cosh(kL/2) cosh(k′L/2) + coshD/2

sinh(kL/2) sinh(k′L/2)

It follows that
sinh(kL/2) sinh(k′L/2)(coshH − 1)

= cosh(kL/2) cosh(k′L/2)− sinh(kL/2) sinh(k′L/2) + coshD/2
= cosh((k − k′)L/2) + coshD/2.

Thus we have
coshD/2 = sinh(kL/2) sinh(k′L/2)(coshH − 1)− cosh((k − k′)L/2).

By Assertions 12.1 and 12.2, we have
cosh((k − k′)L/2) ∼ ∗ϵ−|k−k′|/2, and

sinh(kL/2) sinh(k′L/2)(coshH − 1) ∼ ∗ϵ1−(k+k′)/2.
Since k, k′ are ≥ 2, we have (k + k′)/2− 1 > |k − k′|/2, therefore we have

sinhD/2 ∼ coshD/2 ∼ ∗ϵ1−(k+k′)/2.
By the law of sines, we have



ESTIMATING THE DIMENSION OF THE THURSTON SPINE 15

sinhh =
sinhH sinh k′L/2

sinh d
and therefore h ∼ sinhh ∼ ∗ϵ(k−1)/2. The assertion concerning h′ is similar. □

4.4 The angles ωi and ω′
i

By Lemma 9, the geodesic D meets the arcs ei and e′i exactly once each, so we can define
ωi := ∠Dei and ω′

j := ∠De′i
for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k′ − 1.

Lemma 13. We have

(1) ω1 < ω2 < · · · < ωk−1, and
(2) ω′

1 < ω′
2 < · · · < ω′

k′−1.

Proof. The pair of arcs e1 and ek−1 decompose Π(k, ϵ) into two connected components. Let
Q0 be the contractible component, which is a quadrilateral whose sides are e1, ek−1, an arc
of C and an arc of D. It is larger than the quadrilateral Q of Figure 5, because the top edge
is e1 instead of h.

Let π : Q0 → H be a isometric embedding. Set ∆′ = π(D ∩Q) and let ∆ be the line of
H containing the arc π(C ∩Q0). The arcs π(e1), . . . , π(ek−1) belongs to the ϵ-pencil Fϵ(∆)
of the line ∆. The first claim therefore follows from Lemma 5 (1). The second claim is
similar. □

4.5 Angle estimates

Lemma 14. For any integers 1 ≤ i ≤ k − 1 and 1 ≤ i ≤ k′ − 1, we have

lim
ϵ→0

ωi = 0 and lim
ϵ→0

ω′
j = 0.

Proof. By Lemma 13, it is enough to show that limϵ→0 ωk−1 = 0 and limϵ→0 ω
′
k′−1 = 0.

The pair of arcs h and ek−1 cut Π(k, ϵ) into two connected components, where Q is the
contractible component, as shown in Figure 5. Then Q is a convex quadrilateral whose
vertices are the endpoints of h, namely N := h ∩ C and Ω := h ∩ D and the endpoints of
ek−1, namely Ωk−1 := ek−1 ∩D and Pk−1.

Let v be the diagonal of Q joining Pk−1 and Ω. Set
ϵ− = ∠Cv, ϵ+ = ∠vek−1, γ

− = ∠hv and γ+ = ∠vD.
By definition we have

ϵ− + ϵ+ = ϵ, and γ− + γ+ = π/2.
First, we look at the trigonometry of the triangle Pk−1NΩ. Set a = d(N,Pk−1). We

have a = (k/2 − 1)L + d(S, P ). By Lemma 11, we have d(S, P ) = L/2 + o(1), therefore
a = uL+ o(1), where u = (k − 1)/2. It follows that

cosh a ∼ ∗ϵ−u.
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k
e

Figure 5. This figure illustrates the notation from the proofs of Lemmas 14
and 13.

Since cosh v = cosh a coshh, it follows from Lemma 12 that

cosh v ∼ cosh a ∼ ∗ϵ−u.

By the sine law, we have sin ϵ− = sinhh/ sinh v. It follows from Lemma 12 and the previous
estimate that ϵ− ∼ ∗ϵ2u. Since k ≥ 3, we have ϵ− << ϵ and therefore

ϵ+ ∼ ϵ.

By combining the cosine and sine laws, we have cos γ− = sin ϵ− cosh a = sinhh cosh a/ sinh v,
and therefore

cos γ− ∼ ∗ϵu.
Next, we will look at the trigonometry of the triangle Pk−1ΩΩk−1. Since sin γ+ = cos γ−,

we have

γ+ ∼ sin γ+ ∼ ∗ϵu.
Using the cosine law, we have cosωk−1 = sin ϵ+ sin γ+ cosh v − cos ϵ+ cos γ+). Adding one

on each side and using that cosωk−1 = − cosωk−1, we obtain

1− cosωk−1 = sin ϵ+ sin γ+ cosh v + (1− cos ϵ+ cos γ+).

We will now estimate the right term of the previous identity. Using a Taylor expansion,
it is clear that

1− cos ϵ+ cos γ+ ∈ O(ϵ2) +O(ϵ2u) = O(ϵ2).

On the other hand, we have

sin ϵ+ sin γ+ cosh v ∼ ∗ϵ.
Hence we have 1− cosωk−1 ∼ ∗ϵ, i.e.

ωk−1 ∼ ∗ϵ1/2,
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and therefore we have proved that limϵ→0 ωk−1 = 0.
□

5. Sanki’s paths and curve duality

For the whole section, we assume given an oriented topological closed manifold S of genus
g endowed with an isomorphism ρ : Πg → π1(S), defined modulo the inner conjugations. It
will be called the marking of the topological surface S.
We will consider a set Tess(S) of hexagonal tesselations of S, which are defined by a set

CR of red curves and a set CB of blue curves. Following an idea of [15][2], we define, for
each τ ∈ Tess(S), a path, called a Sanki’s path, σ :]0, 2π[→ Tg. Intuitively, Sanki’s path are
infinitesimal analogs of Penner’s construction [13] of quasi-Anosov homeomorphisms.

When τ satisfies some additional properties, we define, for each blue curve B a dual object
B∗, which is a linear combination of three curves with coefficients ±1/2. Of course, B∗ is
not a multicurve, but its length function L(B∗) is well defined. The first result of the paper
is Theorem 17, showing a kind of duality between B and B∗. It is expressed in terms of the
Poisson bracket {L(A), L(B∗)} relative to the Weil-Petersson symplectic form [19].

5.1 The set of hexagonal tesselations Tess(S)
Let H be an oriented topological hexagon whose six sides are alternatively coloured in red
and blue. Strictly speaking H is a closed disc whose boundary is divided into six compo-
nents, but the terminology hexagon is more suggestive.

Let Tess(S) be the set of all tesselations τ of S satisfying the following two axioms:

(AX1) The tiles are homeomorphic to H and they are glued pairwise along edges of the
same colour.

(AX2) Each vertex of the tesselation has valence four.

The last axiom implies that each vertex is the endpoint of four edges, which are alternately
red and blue. The graph consisting of red edges is a disjoint union of cycles. Those cycles are
called the red curves of the tesselation and the set of red curves is denoted Cred. Similarly, we
define the blue curves of the tesselation and the set Cblue of blue curves. The set Curv(τ) :=
Cred ∪ Cblue is called the set of curves of the tesselation.

5.2 Sanki paths
We will now define the Sanki’s path of a tessalation τ ∈ Tess(S). Let ϵ ∈]0, π[. Define
a metric on the 1-skeleton τ1 of τ by requiring that all edges have length L. Recall that
L = arcosh(1 + 1/ sin ϵ) is the side lengths of the hexagon H(ϵ) defined in Subsection 2.3.

For each closed face f of the tesselation, let ϕf : H(ϵ) → f be a homeomorphism such
that its restriction to the boundary δf : ∂H(ϵ) → ∂f preserves the metric and the colour of
the edges.

A tesselation of S is obtained where each tile is endowed with a hyperbolic structure.
Along each edge of τ1, two geodesic arcs have been glued isometrically. Around each vertex
of τ1, the four angles are alternatively ϵ and ϵ, hence their sum is 2π. By Theorem 1.3.5 of
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[5], there is a hyperbolic metric on S extending the metric of the tiles. Together with the
marking ρ of S, we obtain a well defined marked hyperbolic surface Sτ (ϵ).

The idea of deforming right-angled regular polygons by polygons with angles of value alter-
natively ϵ and π− ϵ first appeared in [15] and it was used in [2]. Therefore the corresponding
path στ :]0, π[→ Tg, ϵ 7→ Sτ (ϵ) will be called the Sanki’s path of the tessalation τ . Since the
function coshL = 1 + 1/ sin ϵ is analytic, the path στ is analytic.

It should be noted that, around each vertex the colours, blue or red, and the angles, ϵ or
ϵ, of the edges alternate. Therefore the blue curves and the red curves are geodesics with
respect to the hyperbolic metric on Sτ (ϵ).

5.3 k-regular tesselations
For a closed oriented surface S, (AX1) and (AX2) is the minimal set of axioms required to
define the Sanki’s path. We will now define more axioms. The axiom (AX3) will ensure that
the curves have the same length, while the axioms (AX4) and (AX5) are connected with the
duality construction.

Let k ≥ 2 be an integer and let S be a closed surface. A tesselation τ ∈ Tess(S) is called
a k-regular tesselation iff it satisfies the following axiom

(AX3) Each curve of τ , blue or red, consists of exactly k edges.

Denote by Tess(S, k) the set of all k-regular tesselations. For any k-regular tesselation τ , we
will consider two additional axioms. The first axiom is

(AX4) A blue edge and a red curve meet at most once.

Assume now that τ ∈ Tess(S, k) satisfies (AX4). Let R be a red curve, let b, b′ be two blue
edges adjacent to R and let N be a small regular neigborhood of R. Since S is oriented,
N∖R consists of two open annuli, N±. By axiom (AX4), b has only one endpoint in R,
therefore b intersect either N+ or N−. Similarly, b′ intersect either N+ or N−. We say that
b, b′ are adjacent on the same side of C if they both intersect N+ or if they both intersect
N−. Our last axiom is

(AX5) Two distinct blue edges are adjacent on the same side of at most one red curve.

Denote by Tess45(S, k) the set of k-regular tesselations satisfying the axioms (AX4) and
(AX5).

4.4 The isometric embedding πb : Π(k, ϵ) → Sτ (ϵ)
From now on, assume that k ≥ 3. Let τ ∈ Tess45(S, k). In order to define the duality, we
first associate to each blue edge a pair of pants Π(k, ϵ) ⊂ Sτ (ϵ).
Let b be a blue edge with endpoints Q and Q′, and let R and R′ be the red curves passing

through Q and Q′. By axiom (AX4), the two curves R and R′ are distinct, so the graph
Γ0 := R ∪R′ ∪ b is a union of two circles connected by an edge. Since S is oriented, a small
normal open neighbourhood N of Γ0 is a thickened eight. Then R ∪ R′ cuts N into three
components, two of them are homeomorphic to annuli and the third one, call it Ω, contains b.
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In a planar representation of Γ0, Ω is the exterior of R∪R′. Since R and R′ are boundary
components of Ω, these curves inherit an orientation. By axiom (AX3), R contains k vertices
of the tesselation. Starting from Q in the anticlockwise direction, the other k − 1 points of
R are denoted by Q1, . . . , Qk−1. For each 1 ≤ i ≤ k− 1 let bi be the blue edge starting at Qi

on the same side as b. The points Q′
1, . . . , Q

′
k−1 of R′ and the edges b′i are defined similarly.

Adding the edges bi, b
′
i to the graph Γ0, we obtain a graph Γ.

Let ϵ ∈]0, π[ and recall that Sτ (ϵ) is the tesselated surface Sg representing a point in Tg.

Let Γ be the graph defined in Section 4.1. There is a local isometry π : Γ → Γ such that
π(P ) = Q, π(Pi) = Qi, π(ei) = bi, π(C) = R, π(P ′) = Q′, π(P ′

i ) = Q′
i, π(ei) = bi and

π(C ′) = R′. Clearly, it can be extended uniquely to a local isometry π : Π(k, ϵ) → Sτ (ϵ).
Let πb be its restriction to Π(k, ϵ).

Lemma 15. The map πb : Π(k, ϵ) → Sτ (ϵ) is an isometric embedding.

Proof. Since b joins R and R′, it follows from Axiom (Ax4) that R and R′ are distinct. By
Axioms (Ax4) and (Ax5), the point Qi, respectively Q′

j is the unique endpoint of bi ∩ Ω,
respectively of b′j ∩ Ω. Hence the blue edges b, bi and b′j are all distinct. For any two edges
e ̸= e′ of Γ ∩ Π(k, ϵ), we therefore have π(e) ̸= π(e′).

Let F, F ′ be two faces of Π(k, ϵ) such that π(F ) = π(F ′). Since each face F or F ′ has at
least two blue edges in Γ, it follows that F and F ′ contain a common blue edge e ⊂ Γ. It
follows easily that F = F ′.

Consequently, the restriction of π to Π(k, ϵ)∖D is injective. By Lemma 9, Π(k, ϵ) lies in
Σ(k, ϵ)∖D. Therefore π induces an isometric embedding πb : Π(k, ϵ) → Sτ (ϵ). □

5.5 The dual functions L(B∗)
Let τ ∈ Tess45(S, k) for some integer k ≥ 3.
We are now going to define the dual function L(B∗), for any blue curve of B of the

tesselation. Choose anf fix one edge b of B. Let R, R′ be the two red curves containing the
endpoints of b and set Db = πb(D). Set

L(B∗) =
1

2
(L(R) + L(R′)− L(Db)).

Informally speaking, L(B∗) is the length function associated with the “dual curve” B∗ =
1/2(R+R′−Db). Strictly speaking, the function L(B∗) depends of the choice of the edge b.
For any F,G ∈ C∞(Tg), let {F,G} be their Poisson bracket induced by the the Weil-

Petersson symplectic form on Tg, see e.g. [19]. The duality between B and B∗ is demon-
strated in the next lemma.

Lemma 16. Let τ ∈ Tess45(S, k) and let στ :]0, π[→ Tg be the associated Sanki path.
For any A, B ∈ Cblue, we have
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lim
ϵ→0

{L(A), L(B∗)}(στ (ϵ)) = δA,B,

where δA,B is the Kronecker delta.

Proof. Let B ∈ Cblue. By definition there is an edge b of B such that 2L(B∗) = L(R) +
L(R′)− L(Db) where R and R′ are the two red curves containing the endpoints of b.

Set Π = πb(Π(k, ϵ)) and D = πb(Db). For each i ∈ {1, 2, . . . , k − 1}, set
βi = ci ∩ Π(k, ϵ) and β′

i = c′i ∩ Π(k, ϵ).
By Lemma 15, βi is an arc, with one endpoint Pi in R and the other endpoint Ωi on D.
Similarly, β′

i is an arc, with one endpoint Q′
i in R′ and the other endpoint, say Ω′

i, belongs
to D. We have

(1) βi does not intersect R
′,

(2) βi ∩R = Qi and ∠Rβi = ϵ
(3) βi ∩D = Ωi ∠Dβi = ωi,

where the angles ωi are defined in Section 4.4. Similarly, we have

(1) β′
i does not intersect R,

(2) β′
i ∩R′ = P ′

i and ∠Rβi = ϵ
(3) β′

i ∩D = Ωi ∠Dβ′
i = ω′

i.

Let A ∈ Cblue be another blue curve. Set
I = {i | 1 ≤ i ≤ k − 1 and βi ⊂ A}, and
I ′ = {i | 1 ≤ i ≤ k − 1 andβ′

i ⊂ A}.
When A ̸= B, the curve A meets R ∪ R′ ∪ Db exactly at the points Pi,Ωi for i ∈ I and

P ′
i ,Ω

′
i for i ∈ I. Therefore by Wolpert’s formula [18], we have

{L(A), L(R) + L(R′)− L(Db)}(στ (ϵ))
= [

∑
i∈I cos ϵ− cosωi] + [

∑
i∈I′ cos ϵ− cosω′

i].
By Lemma 14, we have

lim
ϵ→0

ωi = 0,

and therefore

lim
ϵ→0

{L(A), L(B∗)}(στ (ϵ)) = 0

When A = B, the computation is similar except that, in addition to the arcs βi for i ∈ I
and β′

i for i ∈ I ′, the geodesic A contains b. Therefore, one obtains
{L(A), L(R) + L(R′)− L(Db)}(στ (ϵ))
= 2 cos ϵ+ [

∑
i∈I cos ϵ− cosωi] + [

∑
i∈I cos ϵ− cosω′

i],
and therefore

lim
ϵ→0

{L(A), L(A∗)}(στ (ϵ)) = 1.

□
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5.6 The duality theorem
Suppose k ≥ 3 and choose τ ∈ Tess(S, k). Recall that στ :]0, π[→ Tg is the Sanki path.

Theorem 17. Assume that τ satisfies the axioms (AX4) and AX(5). Then for any ϵ ∈]0, π[
outside some finite set F , the set

{dL(C) | C ∈ Curv(τ)}
is linearly independent at the point στ (ϵ).

Proof. For ϵ ∈]0, π[, let δ(ϵ) be the determinant of the square matrix

({L(A), L(B∗)}(στ (ϵ)))A,B∈Cblue ,

and set F = {ϵ ∈]0, π[ | δ(ϵ) = 0}.
By Lemma 16, we have limϵ→0 δ(ϵ) = 1. Moreover, changing the orientation of S amounts

to replacing ϵ by ϵ, so we also have limϵ→π δ(ϵ) = ±1. Since δ is an analytic function on
]0, π[, it follows that F is finite.

It remains to show that, for ϵ /∈ F , the differentials at στ (ϵ) of the set of length functions
{L(C) | C ∈ Curv(τ)} are linearly independent.
Let ϵ /∈ F . Let (aA)A∈Curv(τ) be an element of R|Curv(τ)| such that∑

A∈Curv(τ)

aAdL(A)|στ (ϵ) = 0.

Let B ∈ Cblue. Recall that B∗ is a linear combination of two red curves R,R′ and a certain
geodesic Db. Neither the geodesics Db nor the red curves meet any red curve transversally.
Hence we have {L(C), L(B∗)} = 0 for any red curve C. It follows that∑

A∈Cblue

{aAL(A), L(B∗)}

is zero at στ (ϵ). Since δ(ϵ) ̸= 0, we have aA = 0 for any A ∈ Cblue.
Therefore, it follows that ∑

A∈Cred

aAdL(A)|στ (ϵ) = 0.

Since it is a subset of some Fenchel-Nielsen coordinates, the set of differentials {dL(A) | A ∈
Cred} is linearly independent. Therefore we also have aA = 0 for any A ∈ Cred.
Hence the differentials (dL(A))A∈Curv(τ) are linearly independent at στ (ϵ). □

6. Local structure of Pg along a Sanki’s path

Our previous work [10] provides a systematic construction of k-regular tesselations τ . To
apply Theorem 17, we first show that the axioms (AX4) and (AX5) are automatically
satisfied when the curves of Sτ (π/2) are the systoles.

Then we deduce the local structure of the Thurston’s spine along a Sanki’s path.
To prove the main result, we will apply Theorem 17 to the tesselations τg of the surface

Sg obtained in [10]. Obviously they satisfy the axioms (AX1 − 3) and it remains to prove
that the tesselations τg also satisfy (AX4) and (AX5).
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6.1 Verification of the axioms (AX4) and (AX5)
As usual, suppose S is a surface of genus g ≥ 2, k ≥ 3 and τ ∈ Tess(S, k).

Lemma 18. Assume that the set of systoles of Sτ (π/2) is the set of curves of τ . Then the
tesselation τ satisfies the axioms (AX4) and (AX5).

Proof. By a well-known lemma of riemannian geometry, two distinct systoles intersect in at
most one point, therefore (AX4) is satisfied.

The proof of Axiom (AX5) is more delicate. Let C,C ′ ∈ C and let c, d be two distinct
blue edges connecting C and C ′ on the same side. Let (P, P ′) ∈ C × C ′ be the endpoints of
c, and let (Q,Q′) ∈ C × C ′ be the endpoints of d, as shown in Figure 6.

Since c and d are adjacent to C on the same side, there is a planar representation of C and
C ′ where c and d are on the exterior of C. This planar representation provides an orientation
of C and C ′, called the direct orientation.

Let F1 and F2 be the two hexagons containing d. Set f1 = F1∩C, f2 = F1∩C, f ′
1 = F1∩C,

f ′
2 = F1∩C. By definition, f ′

1, d and f1 are consecutive edges of F1. We can assume f ′
1, d and

f1 are ordered relative to the direct orientation. Consequently f2 follows f1 relative to the
orientation of C. Since S is oriented, f ′

1 follows f ′
2 in the direct orientation of C ′. Therefore

the relative position of F1 and F2 along C and C ′ is as in Figure 6.

Figure 6. Respective positions of F1 and F2. They appear on the left side
and the right sides of the figure: it should be understood that they lie on a
cylinder.

For i = 1 or 2, let γi be the arc of C from Q to P and containing fi. Similarly let γ′
i be

the arc of C ′ from P ′ to Q and containing f ′
i . Let us orient c from P to P ′ and d from Q′ to Q.

The arc γ1, γ2, γ
′
1 and γ′

2 cover C ∪ C ′, therefore we have
L(γ1) + L(γ′

1) + L(γ2) + L(γ′
2) = 2kL.

It is possible to assume without loss of generality that
L(γ1) + L(γ′

1) ≤ kL.
The path γ1 consists of L(γ1)/L edges. Let g1 be the last edge of γ1. Similarly, let g′1 be

the first edge of γ′
1. By definition, g1 contains P and g′1 contains P ′. Let G1 be the hexagon
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with the three consecutive edges g1, c and g′1.

Now f1 ̸= g1 and f ′
1 ̸= g′1, otherwise the edge d would join g1 and g′1. Hence we have

F1 ̸= G1. Therefore there is a factorization γ1 = f1 ∗ δ1 ∗ g1, where δ1 is the geodesic arc
between f1 and g1 and where the notation ∗ stands for the concatenation of paths. Similarly,
there is a factorization γ′

1 = f1 ∗ δ′1 ∗ g1.

We show now that the loop
γ := γ1 ∗ c ∗ γ′

1 ∗ d,
is not null-homotopic. Assume otherwise. Set Sg = Sτ (π/2), let π : H → Sg be the universal
cover of Sg and let γ̃ be a lift of γ in H. Since γ is composed of four geodesic arcs, and the
angles between them are π/2, the lift γ̃ would bound a quadrilateral whose inner angles are
all π/2 or 3π/2 which is impossible. It follows that γ is not null-homotopic.

The hexagon F1 contains a Saccheri quadrilateral whose basis is d and with feet given by
f1 and f ′

1. Let d′ be the fourth side, oriented from f ′
1 to f1. As a path, d′ is homotopic to

f ′
1 ∗ d ∗ f1.

Similarly, let c′ be the last side, oriented from g1 to g′1, of the Saccheri quadrilateral in G1

whose basis is c and whose feet are g1 and g′1. Similarly, c′ is homotopic to g1 ∗ d ∗ g′1.

Up to a reparametrization, we have
γ = δ1 ∗ g1 ∗ c ∗ g′1 ∗ δ′1 ∗ f ′

1 ∗ d ∗ f1.
Hence γ is homotopic to γ̃ = δ1 ∗ c′ ∗ δ′1 ∗ d′. Since we have L(c′) = L(d′) = L′, we have

L(γ̃) = L(γ1) + L(γ′
1) + 2L′ − 4L < kL

by Lemma 8, which contradicts that C is the set of systoles. □

6.2 Two corollaries
We will now derive two corollaries concerning the structure of Pg at the neighborhood of a
Sanki’s path.

Given a finite set of curves C = {C1, C2, . . . , Cn}, let E(C) be the set of x ∈ Tg such that
L(C1)(x) = L(C2)(x) = · · · = L(Cn)(x).

Also let Sys (C) be the set of points x ∈ Pg such that C is the set of systoles at x.
Let X ⊂ Pg be a locally closed subset, and let x ∈ X. We say that X is locally a smooth

manifold at x if U ∩X is a smooth manifold for some open neighborhod of X. When it is the
case, the local codimension codimx X is well defined. Our previous definition do not require
that x belongs to X.

Corollary 19. Let τ ∈ Tess(S, k) for some k ≥ 3 such that Curv(τ) is the set of systoles of
Sτ (π/2).
Let C ⊂ Curv(τ) be any filling subset. Then for any ϵ ̸= π/2 closed to π/2, we have

(i) στ (ϵ) belongs to Sys (C),
(ii) Sys (C) is a smooth manifold in the neighborhood of στ (ϵ), and
(iii) codimστ (ϵ) Sys (C) = Card C − 1.



24 OLIVIER MATHIEU

Proof. By Lemma 18, the tesselation τ belongs to Tess45(S, k). Hence by Theorem 17, the
map

L(C) : T (S) → RC, x 7→ (L(C)(x))C∈Curv(τ)

is a submersion at the point στ (ϵ) for all ϵ ̸= π/2 closed to π/2. By the submersion theorem,
E(C) is smooth of codimension Card C − 1 around the point στ (ϵ) and στ (ϵ) is adherent to
the set E+(C) of all x ∈ E(C) defined by the inequations

L(C)(x) < L(C ′)(x), for all C ∈ C and C ′ ∈ Curv(τ)∖C.
Thus Assertion (ii) and (iii) follows from the fact that Sys (C) is an open set of E(C), see

[16][17]. □

Corollary 20. Under the hypothesis of Corollary 19, the point στ (π/2) is adherent to Sys (C)
and we have

codimSys (C) < Card (C).

6.3 The main result from [10]
A decoration of the hexagon H(π/2) is a cyclic indexing of it six sides by Z/6Z. Up to direct
isometries, there are exactly two decorated hexagons, say H and H.
Let S be a closed hyperbolic surface. A standard hexagonal tesselation τ of S is a tesse-

lation of S, where each tile is isomorphic to H or H. Of course, it is assumed that tiles are
glued along edges of the same index.

Theorem (Theorem 25 of [10]). There exists an infinite set A of integers g ≥ 2, and, for any
g ∈ A, a closed oriented hyperbolic surface Sg of genus g endowed with a standard tesselation
τg satisfying the following assertions

(1) the systoles of Sg are the curves of τg, and
(2) we have

Card Syst(Sg) ≤
57√

ln ln ln g

g√
ln g

.

6.4 Proof of Theorem 1

Theorem 1. There exists an infinite set A of integers g ≥ 2 such that
codimPg <

38√
ln ln ln g

g√
ln g

,

for any g ∈ A.

Proof. Let A be the set of the of the theorem of Subsection 6.3. Let g ∈ A and let τg be the
corresponding tesselation.

By hypotheses, any curve C of τ consists of edges of the same index. By extension it will
be called the index of the curve. Let C be the set of all curves of index 3, 4, 5 or 6. We claim
that C fills the surface.
Let P be a vertex at the intersection of two curves of index 1 and 2. Let Q be the union of

the four hexagons surrounding P . It turns out that Q is a 12-gon whose edges have indices
distinct from 1 and 2. It follows that C cuts the surface into these 12-gons.
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It is clear that Card C = 2/3Card Syst(Sg). To finish the proof, it is enough to show that
τg satisfies the hypothesis of Corollary 20.

We can assign the red colour to the edges of τg, of index 1, 2 or 3 and the blue colour to
other edges. Moreover, since all curves have the same length, the tesselation is k-regular for
some k. The case k = 2 was excluded from consideration in [10] so we have k ≥ 3. In fact,
the decoration implies that k is even [10], so we have k ≥ 4. It follows that τg belongs to
Tess(S, k) for some k ≥ 4.

It follows from Corollary 20 that
codimPg <

38√
ln ln ln g

g√
ln g

.

□

7. Examples

Before [3], it was a challenging question to know if codimPg was less than 2g − 1. Since
the bounds in [3] are not explicit, it is still interesting to know the smallest g for which
codimPg < 2g − 1. We will describe our construction for g = 17 and show that codimP17 <
33.

We will first briefly explain the case 2k = 2 which was excluded from consideration in
order to avoid some specificity.

7.1 Standard 2k-regular tesselations
We will briefly explain the construction of all standard 2k-regular tesselations, following [10].
Let H be a decorated right-angled regular hexagon of the Poincaré half-plane H. For each
i ∈ Z/6Z, let si be the reflection in the line ∆i containing the side of index i of H. The
group W generated by these reflections is a Coxeter group with presentation

⟨si | (sisi+1)
2 = 1,∀i ∈ Z/6Z⟩.

By a theorem of Poincaré, the collection of hexagons {w.H} is the set of tiles of a tesselation
of τ of H.

Let W+ be the subgroup of index two consisting of products of an even number of gener-
ators. Let k ≥ 1. Let H be a subgroup of W satisfying

(1) H is a finite index subgroup of W+,
(2) Hw ∩ ⟨si, si+1⟩ = {1}, and
(3) Hw ∩ ⟨sisi+1⟩ = ⟨(sisi+1)

k⟩,
for any i ∈ Z/6Z and w ∈ W , where Hw stands for wHw−1.
Then H/H is a closed oriented hyperbolic surface endowed with a 2k-regular standard tes-
selation. Conversely, any such tesselated surface is isometric to H/H, where H satisfies the
previous conditions, see [10], Theorem 12. This leads to the question, only partially answered
by Criterion 18 of [10] - when the curves of the tesselation are the systoles of the surface?

7.2 Schmutz’s genus two surface.
The case 2k = 2 is simple, but it has been excluded because of its particularity. In fact, the
three-holed sphere Σ(2, ϵ) is equal to Π(2, ϵ).

There is only one subgroup H of W satisfying the previous three conditions, and we have
W/H ≃ (Z/2Z)2. The corresponding surface S2 := H/H is the genus 2 surface tesselated
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by 4 hexagons, see Figure 7. It has been proved in [16] that the set C of the curves of the
tesselation are the systoles.

The curve S2 has six points Pi, for i ∈ Z/6Z, which are fixed by the hyperelleptic invotion.
Denote by Ci,i+1 the curve of C containing Pi and Pi+1.

Tedious computations show that C is the set of systoles at the point σ(ϵ) for any ϵ ∈
]π/4, π/2. The limit point σ(π/4) is the Bolza’s surface with 12-systoles [1]. Let C ′ be the
six new systoles of σ(π/4). Each of these systoles contains the hyperelliptice point Pi and
Pi+2 for some i. For ϵ < π/4, C ′ is the set of systoles at the point σ(ϵ). Since C ′ does not fill,
σ(ϵ) is no more in Pg for ϵ < π/4.

A similar analysis can be carried for ϵ ≥ π/2. The limit points at π/4 and 3π/4 are Bolza’s
surface with distinct markings.

Figure 7. Up to repetition, there are only six vertices on the left side of this
figure, which are the points Pi indexed by 1, 2, . . . , 6. They are located on the
x-axis of the figure on the right. The hyperelliptic involution is a 180-degree
rotation around this axis. Three systoles are located on the vertical plane and
the other three are on the horizontal plane.

7.3 An exemple of genus 17.
When 2k = 4, the analysis is more complicated. We will describe a surface of genus 17
endowed with a 4-regular tesselation.

Let H ⊂ W be the normal subgroup generated by the elements (sisi+3)
2 and set S17 =

H/H. The quotient Γ := W/H is isomorphicto (Z/2Z)6, hence S17 is tesselated by 64
hexagons. It follows that S17 has genus 17.

Lemma 21. The systoles of S17 are exactly the curves of the given tesselation.

Proof. This specific example does not fully satisfies the hypotheses of criterion 18 of [10], so
we will briefly explain the proof.
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The group Γ is given with 6 generators, and its Caley graph Cay Γ is the one-skeleton of
a 6-dimensional cube. There is an embedding of Cay Γ in S17. The vertices are the centers
of the hexagons and the edges are the geodeosic arcs connecting two vertices belonging to
two adjacent faces and crossing their common edge.

A loop in Cay Γ is a word w on the letters (si)i∈Z/6Z representing 1 in Γ. The letters s1, s3
and s5 are called the red letters, and the other three are called the blue letters. For any word
w, let lR(w), resp. lB(w), be the number of occurences of red letters, resp. of blue letters.
Also set l(w) = lR(w) + lB(w).
As in Lemma 14 of [10], any closed geodesic γ is freely homotopic to a loop ω(γ) in

Cay Γ. Indeed if γ crosses sucessively some edges of index i1, i2, . . . in then ω(γ) is the word
si1si2 . . . sin . If at some point γ crosses a vertex at the intersection of two edges of indices
i and i + 1, the previous definition is ambiguous. By convention, we will consider that γ
crosses first an edge of index i and then an edge of index i+ 1.
We claim that the systoles of S17 are the curves of the tesselation, which have length 4L,

where L = arcosh 2. Let γ be a closed geodesic. Note that lR(ω(γ) and lB(ω(γ) are even.
First assume that l(ω(γ) > 4. We have lR(ω(γ) ≥ 4 or lB(ω(γ) ≥ 4 and γ is not a curve

of the tesselation. Therefore γ has length bigger that 4L by Lemma 17 of [10].
Next assume that l(ω(γ) ≤ 4 It is obvious that l(ω(γ) is bigger than 2, so we have

l(ω(γ)) = 4.
Note that ω(γ) cannot contains two identical consecutive letters, so ω(γ) = sisjsisj for

some i ̸= j. Note also that the words sisi+1sisi+i are null-homotopic in S17. If ω(γ) =
sisi+2sisi+2, then γ is a curve of the tesselation. If ω(γ) = sisi+3sisi+3, then γ is a concate-
nation of four arcs which connects the middles of a side of index i to a side of index i+3. If
c is one of these arcs, it cut an hexagon into two right-angled pentagons. By the formula of
Theorem 3.5.10 of [14], we have l(c) = arcosh3, therefore l(γ) = 4arcosh3 is bigger than 4L.
Since γ is defined up to an orientation, we have treated all cases where l(ω(γ)) = 4. □

The next lemma shows codimPg < 2g − 1 for g = 17.

Lemma 22. We have codimP17 < 33.

Proof. The surface S17 has 48 curves. Let C be the set of all curves of index 3,4,5, or 6. As in
the proof of Theorem 1, the set C fills the surface. Since Card C = 32, we have codimP17 < 32
by Corollary 20. □

Remark. The set C of the proof is not a minimal filling subset. Intuitive computations
suggest that the minimal filling subsets have cardinality 25, and that codimP17 = 24.
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