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Québec, QC, Canada G1V 0A6

Michael.Lau@mat.ulaval.ca

2Institut Camille Jordan

UMR 5028 du CNRS, Université Claude Bernard Lyon 1
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Abstract: We consider bounded weight modules for the universal central ex-
tension sl2(J) of the Tits-Kantor-Koecher algebra of a unital Jordan algebra J .
Universal objects called Weyl modules are introduced and studied, and a combi-
natorial dominance criterion is given for analogues of highest weights.

Specializing J to the free Jordan algebra J(r) of rank r, the category Cfin
of finite-dimensional Z-graded sl2(J)-modules shares many properties with the
representation theory of algebraic groups. Using a deep result of Zelmanov, we
show that this subcategory admits Weyl modules. By analogy, we conjecture that
Cfin is a highest weight category. The resulting homological properties would
then imply cohomological vanishing results previously conjectured as a way of
determining graded dimensions of free Jordan algebras.
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1 Introduction

Let J be a unital Jordan algebra over an algebraically closed field k of char-
acteristic 0. Tits defined a Lie algebra structure on the space (sl2(k)⊗k J)⊕
Inn J , where Inn J is the Lie algebra of inner derivations [15]. This construc-
tion was later generalized by Kantor [9] and Koecher [12] and is now called
the Tits-Kantor-Koecher algebra and denoted by TKK(J). The Lie algebra
TKK(J) is perfect and admits a universal central extension sl2(J) described
[2]. See also [1, 13].

With the exception of r = 1 and r = 2, the structure of the free Jordan
algebras J(r) is unknown. However, it was proved in [10] that its struc-
ture is determined by the sl2(k)-invariants of H∗(sl2(J(r))). The following
conjecture was provided.

Conjecture A [10, Conj. 3]. Hn(sl2(J(r)))sl2(k) = 0, for all n > 0.

Verification of this conjecture would give a recursive method to compute the
dimensions of the graded components of J(r). In the present paper, we will
interpret this conjecture in terms of representation theory.

Let {e, f, h} be the standard basis of sl2(k), and let h(a) = h⊗a ∈ sl2(J)
for all a ∈ J . For any sl2(J)-module M and integer j, let Mj be the weight
space Mj = {m ∈M : h(1).m = j m}. The module M is said to be bounded
of level n if

M =
⊕
−n≤j≤n

Mj

for some nonnegative integer n with Mn 6= 0.
A vector space V endowed with a linear map ρ : J → End(V ) is called a

J-space if it satisfies

(J1) [ρ(a), ρ(a2)] = 0,

(J2) [[ρ(a), ρ(b)], ρ(c)] = 4ρ(∂a,b c),
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for all a, b, c ∈ J , where ∂a,b(c) = a(cb)− (ac)b. When ρ(1) acts by multipli-
cation by n, V is called a J-space of level n. For any bounded sl2(J)-module
M of level n, the weight space Mn has a structure of J-space of level n, where
ρ(a) is the action of h(a). The J-space V is said to be dominant of level n if
V = Mn for some bounded sl2(J)-module M of level n.

Our first main result characterizes dominant J-spaces of level n. For any
partition σ = (σ1, σ2, . . . , σm) of n+1, we write |Cσ| for the cardinality of the
corresponding conjugacy class in Sn+1 and sgn(σ) for its signature. We write
ρσ(a) for the expression ρ(aσ1)ρ(aσ2) · · · ρ(aσm) for all a ∈ J . The following
result appears as Theorem 2.6.

Theorem B. Let (V, ρ) be a J-space of level n. Then V is dominant if and
only if it satisfies the following condition∑

σ ` n+1

sgn(σ) |Cσ| ρσ(a) = 0.

For any dominant J-space of level n, the Weyl module ∆(M) is the
bounded sl2(J)-module of level n defined by the following universal prop-
erty:

Homsl2(J)(∆(V ),M) = HomJ(V,Mn),

for all bounded sl2(J)-modules M of level n, where homomorphisms of J-
spaces are defined to be linear maps commuting with the action of J .

Assume now that J = ⊕n≥0 Jn is a finitely generated Z+-graded unital
Jordan algebra with J0 = k1. The grading on J clearly induces a grading on
the Lie algebra sl2(J). We show that the category Cfin of finite-dimensional
Z-graded sl2(J)-modules admits a Weyl module for each dominant J-space.

Theorem C. For any Z-graded finite-dimensional dominant J-space V of
level n, the Weyl module ∆(V ) is finite-dimensional.

Theorem C is nontrivial and uses a deep result of Zelmanov on nil Jordan al-
gebras. It appears as Theorem 3.1 in the paper, and shows that the category
Cfin shares many properties with categories of representations of reductive
algebraic groups in positive characteristic. This leads to the following con-
jecture.
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Conjecture D. The category Cfin is a highest weight category, in the sense
of Cline, Parshall, and Scott.

A proof of Conjecture D would also settle Conjecture A of [10].

Theorem E. Let r ≥ 1. If Cfin is a highest weight category, then Conjecture
A holds.

Theorem E appears below as Theorem 3.2.

2 Bounded weight modules

Let J be a unital Jordan algebra over an algebraically closed field k of char-
acteristic zero. All vector spaces, algebras, and tensor products will be taken
over k. For every a, b ∈ J , let La : J → J be the multiplication operator
La(b) = ab. Write ∂a,b = [La, Lb], and let κ be one half the Killing form on
sl2(k). We write Inn J for the set {∂a,b : a, b ∈ J} of inner derivations of J .
The element x ⊗ a in the vector space sl2(k) ⊗ J will be denoted by x(a).
We fix a standard basis {h, e, f} of sl2(k) with [h, e] = 2e, [h, f ] = −2f , and
[e, f ] = h.

2.1 Tits construction

In his 1962 paper, Tits defined a Lie algebra structure on the space

TKK(J) := sl2(k)⊗ J ⊕ Inn J,

with Lie bracket

1. (T1) [x(a), y(b)] = [x, y](ab) + κ(x, y)∂a,b

2. (T2) [∂, x(a)] = x(∂ a),

where x(a) = x ⊗ a for any x, y ∈ sl2, ∂ ∈ Inn J , and a, b ∈ J . This
construction was later generalized to Jordan pairs and triple systems by
Kantor and Koecher, and TKK(J) is known as the Tits-Kantor-Koecher
(TKK) algebra.
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2.2 Tits-Allison-Gao construction

The TKK algebra is perfect, that is, TKK(J) = [TKK(J), TKK(J)], so
TKK(J) admits a universal central extension, which we denote by sl2(J).
This Lie algebra was nicely described in the 1996 paper of Allison and Gao
[2] in the context of universal coverings of the Steinberg unitary Lie algebras
stun(J) for n ≥ 3. The case where n = 3 corresponds to TKK(J). See also
[1] for equivalent formulas written in terms of sl2(k).

As a vector space,

sl2(J) = (sl2(K)⊗ J)⊕ {J, J},

where {J, J} = (
∧2 J)/S and S = Span{a ∧ a2 | a ∈ J}. For any a, b ∈ J ,

we write {a, b} for the image of a∧b in {J, J}. The bracket on sl2(J) is given
by

(R1) [x(a), y(b)] = [x, y](ab) + κ(x, y){a, b}

(R2) [{a, b}, x(c)] = x(∂a,b c)

(R3) [{a, b}, {c, d}] = {∂a,b c, d}+ {c, ∂a,b d}.

for all a, b, c, d ∈ J and x, y ∈ sl2(k). It is a bit tricky to show that (R3) is
skew-symmetric [2].

There is an obvious Lie algebra epimorphism sl2(J)→ TKK(J) which is
the identity on sl2⊗J and sends the symbol {a, b} to ∂a,b. When the Jordan
algebra J is associative, we have {J, J} = HC1(J), and the construction
specializes to results of Kassel and Loday[11].1

2.3 The short grading of sl2(J)

The Lie algebra G := sl2(J) decomposes with respect to the adjoint action
of 1

2
h(1) as G = G−1 ⊕G0 ⊕G1, where

G−1 = f ⊗ J ,
G0 = h⊗ J ⊕ {J, J}, and
G1 = e⊗ J .

This decomposition is a root grading in the sense of Berman-Moody [3],
and is called the short grading of G. In fact, every root-graded Lie algebra

1The notation in [11] differs slightly from the modern conventions–Kassel-Loday write
HC2 for what is now denoted as HC1.
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of type A1 has a universal central extension isomorphic to sl2(J) for some
unital Jordan algebra J . See [13] or [1] for details.

2.4 Bounded modules

For any sl2(J)-module V and any k ∈ Z, let
Vk = {v ∈ V : h(1)v = k v}.

An sl2(J)-module V is said to be a bounded weight module of level ` if V =
⊕−`≤m≤` Vm, with V` 6= 0.

2.5 J-spaces

Recall that a vector space M endowed with a linear map ρ : J → End(M)
is called a J-space if ρ satisfies

(J1) [ρ(a), ρ(a2)] = 0,

(J2) [[ρ(a), ρ(b)], ρ(c)] = 4ρ(∂a,b c).

A J-space is said to be of level n if ρ(h(1)) = n id.

Lemma 2.1. Let (M, ρ̃) be a representation of the Lie algebra G0. Then the
map ρ : a 7→ ρ̃(h(a)) determines a J-space structure on M .

Conversely, if M is a J-space, then there is a unique G0-module structure
(M, ρ̃) such that ρ̃(h(a)) = ρ(a) for any a ∈ J .

Proof. Let (M, ρ̃) be a G0-module. For a ∈ J , set ρ(a) = ρ̃(a). Since
[h(a), h(a2)] = 4{a, a2} = 0, it follows that [ρ(a), ρ(a2)] = 0, proving (J1).
Let a, b, c ∈ J . We have [[h(a), h(b)], h(c)] = 4h(∂a,b c), and therefore [[ρ(a), ρ(b)], ρ(c)] =
4ρ(∂a,b c), proving (J2).

Conversely, assume that M is a J-space. It is clear that G0 is generated
by the vector space h⊗ J and defined by the relations

(H1) [h(a), h(a2)] = 0, and

(H2) [[h(a), h(b)], h(c)] = 4h(∂a,b c),

for any a, b, c ∈ J . Therefore there is a unique structure ρ̃ of G0-module on
M such that ρ̃(h(a)) = ρ(a)
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A linear map σ : J → Endk(M) is a Jordan birepresentation (and M
is a Jordan bimodule) if the semidirect product (a,m)(b, n) = (ab, bm + an)
gives a Jordan algebra structure to the vector space direct sum J ⊕M . This
condition is equivalent to the conditions

(M1) [σ(a), σ(a2)] = 0, and

(M2) σ(a2b) + 2σ(a)σ(b)σ(a) = 2σ(ab)σ(a) + σ(a2)σ(b),

for all a, b ∈ J . It follows from [8, II.9(47’)] that (M1) and (M2) imply that
ρ = 2σ satisfies (J1) and (J2). The converse is not true, however. If (M,ρ)
is a J-space of level n, then setting a = b = 1 ∈ J in (M2), we see that the
only possible values for n = ρ(1) are 0, 1 or 2 (Peirce decomposition), if we
wish to induce a J-bimodule structure on M with action σ = 1

2
ρ. But as we

will see in Example 2.10, there exist J-spaces of any level.

2.6 Dominant J-spaces

Any J-space M of level n can be induced to a generalized Verma module

V (M) = U(G)⊗U(G0⊕G1) M,

where G1 acts as zero on M . The main result of this section will be an
analysis of which J-spaces M of level n determine G-modules V (M) with
bounded quotients V (M)/X, such that the composition of natural maps

M ↪→ V (M)→ V (M)/X

is an injection of G0 ⊕G1-modules. Such a quotient V (M)/X will be called
a bounded M-quotient of V (M) of level n, and in this case, M is said to be
dominant. Note that if V (M)/X is a bounded M -quotient of level n, then n
is a nonnegative integer and the weight n subspace (V (M)/X)n is precisely
M .

Proposition 2.2. Let M be a J-space of nonnegative integer level n, with
G0-action given by ρ : J → Endk(M). Then the generalized Verma module
V (M) has a bounded M-quotient if and only if

e(1)n+1f(a)n+1m = 0,

for all a ∈ J and m ∈M .
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Proof. If V (M) has a nonzero bounded M -quotient V (M)/X, then M =
(V (M)/X)n = V (M)n, so Xn = 0. By sl2-theory, we see that (V (M)/X)m =
0 for allm < −n, soXm = V (M)m for allm < −n. In particular, f(a)n+1m ∈
V (M)−n−2 = X−n−2 ⊆ X for all m ∈ M , so e(1)n+1f(a)n+1m ∈ X for all
a ∈ J and m ∈M . But then e(1)n+1f(a)n+1m ∈ V (M)n ∩X = 0.

Conversely, suppose that e(1)n+1f(a)n+1m = 0 for all a ∈ J and m ∈M .
Let Z ⊂ V (M) be a G-submodule which is maximal with respect to the
property that Zn = 0. Linearisation of the relation e(1)n+1f(a)n+1m = 0
gives

e(1)n+1f(b1) · · · f(bn+1)m = 0,

for all b1, . . . , bn+1 ∈ J and m ∈M . Then for any a1, . . . , an+1 ∈ J , we have

h(a1) . . . h(an+1)e(1)n+1f(b1) · · · f(bn+1)m = 0,

from which it follows that

e(a1) · · · e(an+1)f(b1) · · · f(bn+1)m = 0,

for all ai, bj ∈ J andm ∈M . In particular, this shows that f(b1) · · · f(bn+1)m ∈
Z, and V (M)k ⊆ Z for all k ≤ −n − 2. Therefore, V (M)k = Zk for all
k < −n, and V (M)/Z is a bounded M -quotient.

We now introduce some notation. Let σ = (σ1, . . . , σm) be a partition of
n+ 1, that is,

σ1 ≥ · · · ≥ σm ≥ 1, for some m ≥ 1, where σ1 + · · ·+ σm = n+ 1.

We write |Cσ| for the cardinality of the conjugacy class Cσ of permutations
in the symmetric group Sn+1 with cycle structure σ. The sign of these per-
mutations will be denoted by sgn(σ), and we write ρσ(a) for the expression
ρ(aσ1)ρ(aσ2) · · · ρ(aσm) for all a ∈ J and σ ` n + 1. It follows easily from
Condition (C1) that [ρ(ai), ρ(aj)] = 0 for all i, j, so this product is indepen-
dent of the order of the factors.

The Newton polynomials N`(x) = x`1 + · · · + x`n in n indeterminates
x1, . . . , xn generate the ring of symmetric polynomials k[x1, . . . , xn]Sn . We
write

Nσ(x) = Nσ1(x)Nσ2(x) · · ·Nσm(x)

for each partition σ = (σ1, . . . , σm) of n+1. The space Pn+1 ⊂ k[x1, . . . , xn]Sn

of symmetric polynomials of total degree n+ 1 is clearly of dimension p(n+
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1) − 1, where p(n + 1) is the number of partitions of n + 1. The Newton
polynomials N1(x), . . . , Nn(x) are algebraically independent, so

{Nσ(x) : σ ` n+ 1 such that σ 6= (1, 1, . . . , 1)}

is a basis for Pn+1, and the set

{Nσ(x) : σ ` n+ 1}

has exactly one linear dependence relation, up to scalar multiple. We include
an amusing representation-theoretic argument below, that we have not seen
elsewhere in the literature.

Proposition 2.3. Up to scalar multiple, the unique linear dependence rela-

tion on the set {Nσ(x) : σ ` n+ 1} is
∑

σ ` n+1

sgn(σ)|Cσ|Nσ(x) = 0.

Proof. By the Frobenius character formula,

Nσ(x) =
∑
λ

χλ(σ)Sλ,

where the sum is taken over all partitions λ 6= (1, 1, . . . , 1) of n + 1. Here
χλ(σ) is the character (evaluated at any permutation of cycle structure σ)
of the Specht module associated with λ, and Sλ is the Schur polynomial
associated to λ. See [6] for details.

Since sgn is the character of the sign representation, the Specht module
associated to (1, . . . , 1), we see that∑

σ ` n+1

sgn(σ)|Cσ|Nσ(x) =
∑

σ∈Sn+1

sgn(σ)Nσ(x)

=
∑

σ∈Sn+1

χ(1,...,1)(σ)
∑

λ 6=(1,...,1)

χλ(σ)Sλ

=
∑

λ 6=(1,...,1)

Sλ
∑

σ∈Sn+1

χ(1,...,1)(σ)χλ(σ),

and the inner product

(χ(1,...,1), χλ) =
∑

σ∈Sn+1

χ(1,...,1)(σ)χλ(σ)

is 0 whenever λ 6= (1, . . . , 1), by the orthogonality relations.
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Remark 2.4. Proposition 2.3 can also be proved with a more standard
combinatorial argument: Let V be a vector space of dimension n, with basis
{e1, . . . , en}. Let h : V → V be defined by h(ei) = xiei, and let h⊗(n+1) :
V ⊗(n+1) → V ⊗(n+1) be the induced endomorphism. For σ ∈ Sn+1, we have

Tr(h⊗(n+1) ◦ σ) = Nσ(x).

Since
∑

σ∈Sn+1
sgn(σ)σ acts as zero on V ⊗(n+1), the dependence relation fol-

lows.

The following well-known formula, originally due to Garland [7] and rein-
terpreted by Chari and Pressley [4], will be used to prove boundedness con-
ditions.

Lemma 2.5. Let p : U(G) → U(G−1)U(G0) be the projection relative to
the (vector space) decomposition U(G) = U(G)G1 ⊕ U(G−1)U(G0). Then
p(e(1)rf(a)n+1) is the coefficient of un+1 in the generating function

(−1)rr!(n+ 1)!

(n+ 1− r)!

(
∞∑
s=1

f(as)us

)n+1−r

exp

(
−
∞∑
t=1

h(at)

t
ut

)
.

Theorem 2.6. Let (M,ρ) be a J-space of level n. Then the following con-
ditions are equivalent:

(1) M is dominant.

(2) e(1)n+1f(a)n+1m = 0 for all a ∈ J and m ∈M .

(3)
∑

σ ` n+1

sgn(σ)|Cσ|ρσ(a) = 0.

Proof. By Proposition 2.2, Conditions (1) and (2) are equivalent, so we
need only prove that (2) and (3) are equivalent.

Since e(1)n+1f(a)n+1 is homogeneous of degree 0 with respect to the grad-
ing induced by ad (h⊗1), we see that its action on any highest weight vector
m is given by the action of its projection p on the subspace U(G0) with re-
spect to the decomposition U(G)0 = U(G0)⊕(U(G)G1 ∩ U(G)0) of the space
U(G)0 of degree 0 elements of U(G).
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By Lemma 2.5, p(e(1)n+1f(a)n+1) is the coefficient of un+1 in the gener-
ating series

(−1)n+1(n+ 1)!(n+ 1)!exp

(
−
∞∑
k=1

h(ak)

k
uk

)
.

Computing directly, the coefficient of un+1 in exp
(
−
∑∞

k=1
h(ak)
k
uk
)

is

∑
σ`n+1

(−1)rσ
hσ(a)

(
∏rσ

i=1 σi)
(∏mσ

j=1 aj!
) ,

where σi is the length of the ith row of the Young frame Tσ associated
to the partition σ, rσ is the number of rows of Tσ, mσ is the number of
columns of Tσ, aj is the number of rows of length j in Tσ, and hσ(a) =
h(aσ1)h(aσ2) · · ·h(aσrσ ). If odd(rσ) (respectively, even(rσ) is the number of
odd-length (respectively, even-length) rows of Tσ, we see that (−1)n+1 =

(−1)odd(rσ), so

(−1)n+1(−1)rσ = (−1)n+1(−1)odd(rσ)(−1)even(rσ) = (−1)even(rσ) = sgn(σ).

By elementary counting arguments,

|Cσ| =
(n+ 1)!

(
∏rσ

i=1 σi)
(∏mσ

j=1 aj!
) .

See [14, Proposition 1.1.1], for instance. The projection of e(1)n+1f(a)n+1 on

U(G0) is thus (n+ 1)!
∑

σ ` n+1

sgn(σ)|Cσ|hσ(a), so Conditions (2) and (3) are

equivalent.

Example 2.7. By Theorem 2.6, any dominant J-space M of level 0 is trivial,
in the sense that ρ : J → Endk(M) is the zero map and M , equipped with
the trivial G-action, is the unique bounded M -quotient of V (M).

Example 2.8. Dominant J-spaces (M,ρ) of level 1 satisfy ρ(a2) = ρ(a)2 for
all a ∈ J , so

ρ(ab) =
1

2
(ρ(a)ρ(b) + ρ(b)ρ(a)), (2.9)
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for all a, b ∈ J by linearization. Dominant J-spaces (M,ρ) of level 1 are thus
precisely associative specializations, Jordan algebra homomorphisms ρ from
J to special Jordan algebras of linear operators on a vector space M .

Example 2.10. For levels higher than 2, dominant J-spaces are never Jordan
bimodules. See the discussion after Lemma 2.1 for details. Many such J-
spaces exist. For example, it follows immediately from Proposition 2.3 and
Theorem 2.6, that the map

ρ : k[t]→ Endk
(
k[x1, . . . , xn]Sn

)
(2.11)

t` 7→ N`(x)

defines a dominant J-space of level n for the (associative) Jordan algebra
J = k[t], an example we will consider in more detail in Section 3.

3 Weyl modules and highest weight categories

Let n be a nonnegative integer. The categories Cb(M) of bounded weight
modules attached to bounded J-spaces M of level n admit universal objects
∆(M), called Weyl modules. Every bounded M -quotient of level n is a
homomorphic image of ∆(M), and it is clear that

∆(M) = V (M) / U(G)
∑
`<−n

V (M)` =
n⊕
`=0

∆(M)n−2`,

where ∆(M)n−2` is the vector subspace of weight n− 2`. Identifying

G−1 = {f ⊗ a : a ∈ J} ⊂ G = (sl2(k)⊗ J)⊕ {J, J}

with J , the weight space V (M)n−2` identifies with the vector space S`J ⊗M
for ` = 0, . . . , n.

3.1 Weyl modules for finite dimensional dominant J-
spaces

Let J =
⊕∞

`=0 J` be a finitely generated Z+-graded unital Jordan algebra
with J0 = k1. Let M =

⊕∞
`=0M` be a Z-graded dominant J-space of level

n. We now prove one of our main results, that the category Cfin of finite-
dimensional Z-graded sl2(J)-modules contains its Weyl modules.
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Theorem 3.1. Let M be a Z-graded dominant J-space of level n, for a Z+-
graded and finitely generated Jordan algebra J with J0 = k1. Then the Weyl
module ∆(M) is finite dimensional if and only if M is finite dimensional.

Proof. If ∆(M) is finite dimensional, then M ⊆ ∆(M) is clearly also finite
dimensional. Conversely, assume that M is finite dimensional. Up to a
possible shift in grading, we may assume that M is Z+-graded. Let N be the
largest nonnegative integer for which the graded component MN is nonzero.
Let a ∈ J be a homogeneous element with deg a > N , and let v ∈ M . By
Lemma 2.5, e(1)nf(a)n+1v is the coefficient of un+1 in the formal series

(−1)nn!(n+ 1)!
∞∑
s=1

f(as)us exp

(
−
∞∑
t=1

h(at)

t
ut

)
v.

By degree considerations, h(at)v = 0 for all t ≥ 1, so

e(1)nf(a)n+1v = (−1)nn!(n+ 1)!f(an+1)v,

and f(an+1)v = 0 as an element of ∆(M).
In particular, f

(
b(N+1)(n+1)

)
M = 0 for all b in the (non-unital) Jordan

subalgebra J+ =
⊕∞

`=1 J` ⊂ J . Let I = {x ∈ J+ : f(x)M = 0}. For all
x ∈ J+, y ∈ I, and m ∈M ,

0 = h(x)f(y)m

= f(y)h(x)m− 2f(xy)m

= −2f(xy)m

since h(x)M ⊆ M and f(y)M = 0. Therefore, xy ∈ I and I is an ideal of
J+.

Since b(N+1)(n+1) ∈ I for all b ∈ J+, the Jordan algebra J+/I is nil of
bounded index, hence locally nilpotent by a result of Zelmanov [16]. But J ,
and thus J+/I, is finitely generated, so J+/I is nilpotent and there exists
N ′ > 0 such that every product (in any association) of N ′ elements of J+ is
in I. The (finitely many) generators of J may be chosen to be homogeneous
and of positive degree at most r for some r > 0. In particular, Js ⊆ I for all
s ≥ rN ′. That is, f(a)M = 0 for all a ∈ J with deg a ≥ rN ′.

The weight space ∆(M)n−2` is spanned by monomials of the form

f(a1) · · · f(a`)w
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with a1, . . . , a` ∈ J and w ∈ M. Since the f(ai) commute with each other,
the set

{f(a1) · · · f(a`)w : w ∈M and a1, . . . , a` ∈ J with deg ai < rN ′ for all i}

already spans ∆(M)n−2`. As M and Ji are finite dimensional for all i, it now
follows that dim ∆(M)n−2` < ∞ for all `, and the Weyl module ∆(M) =⊕n

`=0 ∆(M)n−2` is also finite dimensional.

3.2 Highest weight categories and character formulas
for free Jordan algebras

Cline, Parshall, and Scott [5] introduced the notion of highest weight category
as a unifying theme in representation theory, modelled after highest weight
representations of semisimple algebraic groups and their Lie algebras. Their
definition requires labelling simple objects by a poset Λ, and the existence
of enough injectives, as well as costandard objects labelled by the same in-
dex set as the simples and satisfying various axioms. Given the similarities
between the category Cfin of finite-dimensional Z-graded sl2(J(r))-modules
and the representation theory of reductive algebraic groups in positive char-
acteristic, we conjecture that Cfin is a highest weight category, with the Weyl
modules and their duals (twisted by the Cartan involution) as the standard
and costandard objects, respectively. In a highest weight category, the higher
ext-groups Exti(∆(λ),∇(µ)) = 0 for all i > 0 and λ, µ ∈ Λ. If Cfin is indeed
a highest weight category as conjectured above, the vanishing of higher ext-
groups would, in fact, settle the main conjecture of [10] and thus describe
the graded dimensions of the free Jordan algebras J(r).

Theorem 3.2. If Cfin is a highest weight category with Weyl modules and
their duals as its standard and costandard objects, then Hi(sl2(J(r))) contains
no nonzero trivial sl2(k)-modules for i > 0.

Proof. Let J be the free unital Jordan algebra J(r) on r generators, and
suppose that Cfin is a highest weight category as in the hypotheses of the
theorem. As noted above, in a highest weight category, Exti(∆(λ),∇(µ))
vanishes for all i > 0 and indices λ, µ of simples, where ∆(λ) and ∇(µ) are
the corresponding standard and costandard objects. In Cfin, the Weyl and
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dual Weyl modules corresponding to the trivial 1-dimensional sl2(J)-module
k are themselves 1-dimensional, so

ExtiCfin(k, k) = 0 for all i > 0.

But ExtiCfin(k, k) = H i(sl2(J)), and the cohomology ring

H∗(sl2(J)) = H∗(sl2(k))⊗H∗(sl2(J), sl2(k)).

As H0(sl2(J)) = H0(sl2(k)) = k, we see that H∗(sl2(J)) = k and the relative
cohomology H i(sl2(J), sl2(k)) = 0, for all i > 0. The result now follows
from the universal coefficient theorem and the interpretation of the relative
cohomology as the sl2(k)-invariants in H i(sl2(J)).

3.3 Example: Weyl modules for free Jordan algebras
of rank 1

For any Jordan algebra J with unit 1 and n ∈ Z+, let

T (J) = k1⊕ J ⊕
(
J⊗2
)
⊕
(
J⊗3
)
⊕ · · ·

be its tensor algebra, and let I ⊆ T (J) be the two-sided ideal generated by
the relations

1− n1, (3.3)

a⊗ a2 − a2 ⊗ a, (3.4)

a⊗ b⊗ c+ c⊗ b⊗ a− b⊗ a⊗ c− c⊗ a⊗ b+ b(ac)− a(bc), (3.5)∑
σ`n+1

sgn(σ)|Cσ|Tσ(a), (3.6)

for all a, b, c ∈ J , where Tσ(a) = aσ1 ⊗ aσ2 ⊗ · · · ⊗ aσm for all partitions
σ = (σ1, . . . , σm) ` n + 1. The associative algebra Un(J) = T (J)/I is
called the universal J-space envelope of level n. There is a unique asso-
ciative algebra homomorphism ρ̌ : T (J) → Endk(M) extending the action
ρ : J → Endk(M) of any J-space (M,ρ) of level n, and in light of Lemma
2.1 and Theorem 2.6, the map ρ̌ descends to the quotient Un(J). By con-
struction, dominant J-spaces of level n and left Un(J)-modules are equivalent
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notions, and a J-space (M,ρ) of level n is said to be free of rank r if (M, ρ̌)
is a free Un(J)-module.

Let F = Un(J) be the universal J-space envelope of level n for a unital
Jordan algebra J . If J is finitely generated as a Jordan algebra, then F is
finitely generated as an associative algebra, by Relation (3.6). For example,
if J = k[t] is the free Jordan algebra of rank 1, then F = k[x1, . . . , xn]Sn is
the algebra of symmetric polynomials, where t` corresponds to the Newton
polynomial N`(x) = x`1 + · · ·+x`n ∈ F . If J is free of rank m, then U0(J) = k
and U1(J) is the quotient of the free associative algebra in m generators by
the ideal generated by the relation a⊗ b⊗ c+ c⊗ b⊗ a = b⊗ a⊗ c+ c⊗ a⊗ b
for all a, b, c ∈ J .

Let L be the two-dimensional simple sl2(k)-module. The Jordan algebra
J = k[t] is commutative and associative, and it is easy to see that {J, J} = 0
and the TKK algebra G = sl2(J) = sl2(k)⊗ J is centrally closed. The space
L[t] = L⊗ k[t] is obviously a G-module, where

(x⊗ p(t)).(v ⊗ q(t)) = xv ⊗ p(t)q(t),

for all x ∈ sl2(k), v ∈ L, and p(t), q(t) ∈ J . This gives a G-module structure
on the space Sn(L[t]) ⊂ T (L[t]) of homogeneous symmetric tensors of degree
n.

Proposition 3.7. Let F = k[x1, . . . , xn]Sn be the rank 1 free Un(k[t])-module.
Then the Weyl module ∆n(F ) is isomorphic to Sn(L[t]).

Proof. Let v ∈ L be a nonzero vector of weight 1 with respect to the
action of h ∈ sl2(k). There is a natural injection ι : F −→ Sn(L[t]), with

ι :
∑
σ∈Sn

x
aσ(1)
σ(1) · · ·x

aσ(n)
σ(n) 7−→

∑
σ∈Sn

(v ⊗ taσ(1))⊗ · · · ⊗ (v ⊗ taσ(n)).

This maps extends uniquely to a G-module epimorphism

V (F )→ Sn(L[t])

u.p 7→ u.ι(p), for all u ∈ U(G) and p ∈ F,

with kernel
∑

`<−n V (F )`.

Remark 3.8. In fact, for every prime Jordan algebra J and every n ≥ 2,
there is a dominant J-space of level n, on which the Lie algebra G0(J) =

16



(h ⊗ J) ⊕ {J, J} acts faithfully. If J is special, then there is a faithful as-
sociative specialization ρ : J → Endk(M), and M is a J-space of level 1.
The faithfulness of the extension ρ̃ : G0 → Endk(M) on {J, J} follows im-
mediately from the assumption that J is prime. We can then take the n-fold
tensor product of M to obtain a faithful J-space of level n.

If J is the Albert algebra A, then we can construct a faithful G0-module of
level n as a tensor product of copies of the level 2 and level 3 representations
of the Albert algebra, obtained from representations of the exceptional Lie
algebra E6, viewed as the subalgebra (k h ⊗ A) ⊕ {A,A} of the Lie algebra
sl2(A).

This observation is clearly not true for arbitrary (non-prime) Jordan alge-
bras. For example, the Lie algebra G0(k[t, t−1]) has a nontrivial centre that
acts as 0 on all bounded modules.
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[15] J. Tits, Une classe d’algèbres de Lie en relation avec les algèbres de
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