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Abstract

Let K be a field of characteristic zero. For integers n, D ≥ 1, let

Jn(D) be the degree n component of the free Jordan algebra J(D) over D
generators. A conjecture for the character (in particular for the dimension)

of the GL(D)-module Jn(D) is proposed.

Let sl2 J(D) be the Tits-Allison-Gao construction of J(D). Two nat-

ural conjectures for the homology of Lie algebra sl2 J(D) are stated, and

each of them implies the previous conjecture.

The cyclicity of the Jordan structures, namely that the symmetric group

SD+1 acts on the multilinear part of J(D), plays an essential role to connect

the Lie algebra homology of sl2 J(D) and the character of Jn(D).

Introduction. Let K be a field of characteristic zero and let J(D) be the free
Jordan K-algebra (without unit) over the D generators x1, . . . , xD. Then

1



J(D) = ⊕n≥1 Jn(D)
where Jn(D) consists of all degree n homogenous Jordan polynomials over
the variables x1, . . . , xD. The aim of this paper is a conjecture about the char-
acter, as a GL(D)-module, of each homogenous component Jn(D) of J(D).
In the introduction, only the conjecture for dim Jn(D) will be described, see
Section 1.10 for the whole Conjecture 1.

Conjecture 1 (weakest version). Set an = dim Jn(D). The sequence an
is the unique solution of the following equation:
(E) Rest=0 ψ

∏∞
n (1− zn(t+ t−1) + z2n)andt = 0,

where ψ = Dzt−1 + (1−Dz)− t.

It is easy to see that equation E provides a recurrence relation to uniquely
determine the integers an, but we do not know a closed formula.

Some computer calculations show that the predicted dimensions are cor-
rect for some interesting cases. E.g., for D = 3 and n = 8 the conjecture
predicts that the space of special identities has dimension 3, which is correct:
those are the famous Glennie’s Identities [6]. Similarly for D = 4 the con-
jecture agrees that some tetrads are missing in J(4), as it has been observed
by Cohn [3]. Other interesting numerical evidences are given in Section 2.
Since our input is the quite simple polynomial ψ, these numerical verifications
provide a good support for the conjecture.

Conjecture 1 is elementary, but quite mysterious. Indeed it follows from
two natural, but more sophisticated, conjectures about Lie algebras homol-
ogy.

For a sl2-module M , denote by Mad the sum of all submodules which
are isomorphic to the adjoint representation. Let LieT be the category of
Lie algebras g on which sl2 acts by derivation such that g = gsl2 ⊕ gad as
an sl2-module. For any Jordan algebra J , Tits has defined a Lie algebra
structure on the space sl2⊗J ⊕ Inner J [24]. It has been later generalized by
Kantor [10] and Koecher [11] and it is now called the TKK-construction and
denoted by TKK(J). Here we use another refinement of Tits construction,
due to Allison and Gao [1]. The corresponding Lie algebra will be denoted
by TAG(J), or, more simply, by sl2 J . The Lie algebra sl2 J belongs to the
category LieT

Since the TAG-construction is functorial, it is obvious that sl2 J(D) is a
free Lie algebra in the category LieT. Therefore it is very natural to expect
some homology vanishing, as the following

2



Conjecture 2. We have
Hk(sl2 J(D))sl2 = 0 and
Hk(sl2 J(D))ad = 0

for any k ≥ 2.

Conjecture 2 is very natural [14], and it implies Conjecture 1. However, we
do not believe that the homology space Hk(sl2 J(D))ad = 0 is tractable, so
we prefer the following weaker

Conjecture 3. We have
Hk(sl2 J(D))sl2 = 0, for any k ≥ 1.

It is obvious that H1(sl2 J(D))sl2 = 0, so Conjecture 3 is really the pleasant
half of Conjecture 2. Moreover, Conjecture 3 is obvious for k = 1, it follows
from Allison-Gao paper [1] for k = 2 and it is also proved for k = 3 in our
paper.

The fact that Conjecture 3 implies Conjecture 1 is more delicate, and it
requires to introduce some new definitions and statements. Let J (D) be the
space of all multilinear Jordan polynomials in the variables x1, . . . , xD. We
prove in Section 5

Theorem 1 (weak version). The natural SD-action on J (D) extends to
a SD+1-action.

Indeed the complete version of Theorem 1, proved in Section 5, relates
J (D) to sl2 J(D + 1)sl2 , from which the SD+1-action appears easily. It is
used in Section 6 to prove that

Theorem 2. Conjecture 3 implies Conjecture 1.

More precisely, Conjecture 3 for sl2 J(D+ 1) implies Conjecture 1 for J(D).
Even the weak version of Theorem 1 has some striking consequences.

E.g the space SI(D) of multilinear special identities of degree D, which is
is obviously a SD-module, is indeed a SD+1-module for any D ≥ 1. This
allows to easily compute the character, as a SD-module, of J (D) for any
D ≤ 7 (previously, only the dimensions were known [6]).

The paper is organized as follows. In Section 1 the full version of Con-
jecture 1 is stated. Section 2 investigates the list of values of integers n and
D for which the weak version of Conjecture 1 has been checked. Sections 3
introduces Conjecture 2 and Section 4 explains which cases of the conjecture
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are proved. The main part of the paper is Section 5, where Theorem 1 and its
corollaries are proved. Theorem 2, which is also a consequence of Theorem
1, is finally proved in the last section.

As a conclusion, the reader could find Conjecture 3 too optimistic. How-
ever, it is clear from the paper that the groups H∗(sl2 J(D))sl2 are strongly
connected with the structure of the free Jordan algebras. We believe that it
provides an interesting approach for these questions.

Acknowledgements. We thank J. Germoni who used the SAGE software to
realize the computer computations of the paper. We also would like to thank
I. Shestakov for helpful discussions.

OM has been supported by UMR 5028 du CNRS and Labex MILYON/ANR-
10-LABX-0070. IK and OM have been supported by Cofecub Project 15716
and the Udl-USP project Free Jordan Algebras. IK has been supported by
CNPQ 307998/2016-9.

1. Statement of Conjecture 1

The introduction describes the weakest version of Conjecture 1, which de-
termines the dimensions of the homogenous components of J(D). In this
section, Conjecture 1 will be stated, as well as a weak version of it.

Let Inner J(D) be the Lie algebra of inner derivations of J(D). Conjec-
ture 1, stated in Section 1.9, provides the character, as GL(D)-modules, of
the homogenous components of J(D) and of Inner J(D). The weak version
of Conjecture 1 is a formula only for the dimensions of these homogenous
components, see Section 1.10.

In the preparatory Subsections 1.1 to 1.8, the main notations of the paper
are defined, and some combinatorial notions are introduced.

1.1 Generalities on Jordan Algebras
Throughout this paper, the ground field K has characteristic zero, and all
algebras and vector spaces are defined over K.

Recall that a commutative algebra J is called a Jordan algebra if its
product satisfies the following Jordan identity

x2(yx) = (x2y)x
for any x, y ∈ J . For x, y ∈ J , let ∂x,y : J ! J be the map z 7! x(zy)−(xz)y.
It follows from the Jordan identity that ∂x,y is a derivation. A derivation ∂
of J is called an inner derivation if it is a linear combination of some ∂x,y.
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The space, denoted Inner J , of all inner derivations is a subalgebra of the Lie
algebra Der J of all derivations of J .

In what follows, the positive integer D will be given once for all. Let J(D)
be the free Jordan algebra (without unit) over D generators. This algebra,
and some variants, has been investigated in many papers by the Novosibirsk
school of algebra, e.g. [20], [21], [22], [26],[27].

1.2 The ring R(G)
For a small abelian category A, let K0(A) be its Grothendieck group. As
usual, the class in K0(A) of an object V ∈ A is denoted [V ].
Let G be an algebraic reductive group and let Z ⊂ G be a central subgroup
isomorphic to K∗. In what follows a rational G-module will be called a
G-module or a representation of G.

Let n ≥ 0. A G-module on which any z ∈ Z acts by zn is called a G-
module of degree n. Of course this notion is relative to the the subgroup Z
and to the isomorphism Z ' K∗. However we will assume that these data
are given once for all.

LetRepn(G) be the category of the finite dimensionalG-modules of degree
n. Set

R(G) =
∏∞

n=0K0(Repn(G))
M>n(G) =

∏
k>nK0(Repk(G))

M(G) =M>0(G).
There are products

K0(Repn(G))×K0(Repm(G))! K0(Repn+m(G))
induced by the tensor product of the G-modules. Therefore R(G) is a ring
and M(G) is an ideal.

Moreover R(G) is complete with respect to theM(G)-adic topology, i.e.
the topology for which the sequence M>n(G) is a basis of neighborhoods of
0. Any element a of R(G) can be written as a formal series

a =
∑

n≥0 an
where an ∈ K0(Repn(G)).

Let Rep(G) be the category of the G-modules V , with a decomposition
V = ⊕n≥0 Vn, such that Vn ∈ Repn(G) for all n ≥ 0. For such a module V ,
its class [V ] ∈ R(G) is defined by [V ] :=

∑
n≥0 [Vn].

1.3 Analytic representations of GL(D) and their natural gradings
A finite dimensional rational representation ρ of GL(D) is called polynomial
if the map g 7! ρ(g) is polynomial into the entries gi, j of the matrix g. The

5



center of GL(D) is Z = K∗id, relative to which the degree of a representation
has been defined in the previous section. It is easy to show that a polynomial
representation ρ has degree n iff ρ(g) is a degree n homogenous polynomial
into the entries gi, j of the matrix g. Therefore the notion of a polynomial
representation of degree n is unambiguously defined.

By definition an analytic GL(D)-module is a GL(D)-module V with a
decomposition

V = ⊕n≥0 Vn
such that each component Vn is a polynomial representation of degree n. In
general V is infinite dimensional, but it is always required that each Vn is
finite dimensional. The decomposition V = ⊕n≥0 Vn of an analytic module
V is called its natural grading.

The free Jordan algebra J(D) and its associated Lie algebra Inner J(D)
are examples of analytic GL(D)-modules. The natural grading of J(D) is
the previously defined decomposition J(D) = ⊕n≥0 Jn(D) and the degree n
component of Inner J(D) is denoted InnernJ(D).

Let Poln(GL(D)) be the category of polynomial representations ofGL(D)
of degree n, let An(GL(D)) be the category of all analytic GL(D)-modules.
Set

Ran(GL(D)) =
∏

n≥0 K0(Poln(GL(D))), and
Man(GL(D)) =

∏
n>0 K0(Poln(GL(D))).

The class [V ] ∈ Ran(GL(D)) of an analytic module is defined as before.
Similarly a finite dimensional rational representation ρ ofGL(D)×PSL(2)

is called polynomial if the underlying GL(D)-module is polynomial. Also an
analytic GL(D) × PSL(2)-module is a GL(D) × PSL(2)-module V with a
decomposition

V = ⊕n≥0 Vn
such that each component Vn is a polynomial representation of degree n.

1.4 Weights and Young diagrams
The subsection is devoted to the combinatorics of the weights and the dom-
inant weights of the polynomial representations.

Let H ⊂ GL(D) be the subgroup of diagonal matrices. A D-uple m =
(m1, . . . , mD) of non-negative integers is called a partition. It is called a
partition of n if m1 + · · · + mD = n. The weight decomposition of an
analytic module V is given by

V = ⊕m Vm
where m runs over all the partitions, and where Vm is the subspace of all
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v ∈ V such h.v = hm1
1 hm2

2 . . . hmD
D .v for all h ∈ H with diagonal entries

h1, h2, . . . , hD. Relative to the natural grading V = ⊕n≥0 Vn of V , we have
Vn = ⊕m Vm

where m runs over all the partitions of n.
With these notations, there is an isomorphism [18]

Ran(GL(D)) ' Z[[z1, . . . , zD]]SD

where the symmetric group SD acts by permutation of the variables z1, . . . , zD.
Then the class of an analytic module V in Ran(GL(D)) is given by

[V ] =
∑

m dimVm zm1
1 zm2

2 . . . zmD
D .

For example, let x1, . . . , xD be the generators of J(D). Then for any partition
m = (m1, . . . , mD), Jm(D) is the space of Jordan polynomials p(x1, . . . , xD)
which are homogenous of degree m1 into x1, homogenous of degree m2 into
x2 and so on. Thus the class [J(D)] ∈ Ran(GL(D)) encodes the same infor-
mation as dim Jm(D) for all m.

Relative to the standard Borel subgroup, the dominant weights of poly-
nomial representations are the partitions m = (m1, . . . , mD) with m1 ≥
m2 ≥ · · · ≥ mD [18]. Such a partition, which is called a Young diagram, is
represented by a diagram with m1 boxes on the first row, m2 boxes on the
second row and so on. When a pictorial notation is not convenient, it will
be denoted as (na1

1 ,n
a2
2 . . . ), where the symbol na means that the row with

n boxes is repeated a times. E.g., (42,2) is represented by

For a Young diagram Y, the total number of boxes, namely m1+ · · ·+mD

is called its size while its height is the number of boxes on the first column.
When Y has height ≤ D, the simple GL(D)-module with highest weight Y
will be denoted by L(Y;D). It is also convenient to set L(Y;D) = 0 if the
height of Y is > D. For example L(13;D) denotes Λ3KD, which is zero for
D < 3.

1.5 Effective elements in R(G)
The classes [M ] of the G-modules M are called the effective classes in R(G).
Let M(G)+ be the set of effective classes in M(G). Then any a ∈ M(G)
can be written as a′ − a′′, where a′, a′′ ∈M(G)+.

1.6 λ-structure on the ring R(G)
The ring R(G) is endowed with a map λ :M(G)! R(G).

7



First λ a is defined for a ∈ M+(G). Any a ∈ M+(G) is the class of a
G-module V ∈ Rep(G). It is clear that M := ΛV belongs to Rep(G). Set

λ a =
∑

k≥0 (−1)k [Λk V ].
Moreover we have λ(a+ b) = λ aλ b for any a, b ∈M+(G).

For an arbitrary a ∈ M(G), there are a′, a′′ ∈ M+(G) such that a =
a′ − a′′. Since λ a′′ = 1 modulo M(G), it is invertible, and λ a is defined by

λ a = (λ a′′)−1λ a′.

1.7 The decomposition in the ring R(G× PSL(2))
Let G be a reductive group. For any k ≥ 0, let L(2k) be the irreducible
PSL(2)-module of dimension 2k+ 1. Since the family ([L(2k)])k≥0 is a basis
of K0(PSL(2)), any element a ∈ K0(G× PSL(2)) can be written as a finite
sum

a =
∑

k≥0 [a : L(2k)] [L(2k)]
where the multiplicities [a : L(2k)] are elements of K0(G).

Assume now that G is a subgroup of GL(D) which contains the central
subgroup Z = K∗id. We consider Z as a subgroup of G × PSL(2), and
therefore the notion of a G × PSL(2)-module of degree n is well defined.
Indeed it means that the underlying G-module has degree n. As before any
a ∈ R(G× PSL(2)) can be decomposed as

a =
∑

k≥0 [a : L(2k)] [L(2k)]
where [a : L(2k)] ∈ R(G). Instead of being a finite sum, it is a series whose
convergence comes from the fact that

[a : L(2k)]! 0 when k !∞.

1.8 The elements A(D) and B(D) in the ring Ran(GL(D))
Let G ⊂ GL(D) be a reductive subgroup containing Z = K∗id. Let KD be
the natural representation of GL(D) and let KD|G be its restriction to G.

Lemma 1. 1. There are elements a(G) and b(G) in M(G) which are
uniquely defined by the following two equations in R(G× PSL(2))

λ(a(G)[L(2)] + b(G)) : [L(0)] = 1
λ(a(G)[L(2)] + b(G)) : [L(2)] = −[KD|G].

2. For G = GL(D), set A(D) = a(GL(D)) and B(D) = b(GL(D)).
Then A(D) and B(D) are in Man(GL(D)).

3. Moreover a(G) = A(D)|G and b(G) = B(D)|G.

Proof. In order to prove Assertion 1, some elements an and bn in M(G) are
defined by induction by the following algorithm. Start with a0 = b0 = 0.
Then assume that an and bn are already defined with the property that
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λ(an[L(2)] + bn) : [L(0)] = 1 modulo M>n(G)
λ(an[L(2)] + bn) : [L(2)] = −[KD|G] modulo M>n(G).

Let α and β be in K0(Repn+1(G)) defined by
λ(an[L(2)] + bn) : [L(0)] = 1− α modulo M>n+1(G)

λ(an[L(2)] + bn) : [L(2)] = −[KD|G]− β modulo M>n+1(G).
Thus set an+1 = an + α and bn+1 = bn + β. Since we have
λ(α[L(2)] + β) = 1− α.[L(2)]− β modulo M>n+1(G), we get

λ(an+1[L(2)] + bn+1) : [L(0)] = 1 modulo M>n+1(G)
λ(an+1[L(2)] + bn+1) : [L(2)] = −[KD|G] modulo M>n+1(G),

and therefore the algorithm can continue.
Since an+1−an and bn+1− bn belong to K0(Repn+1(G)), the sequences an

and bn converge. The elements a(G) := lim an and b(G) := lim bn satisfy the
first assertion. Moreover, it is clear that a(G) and b(G) are uniquely defined.

The second assertion follows from the fact that, for the groupG = GL(D),
all calculations arise in the ring Ran(GL(D)). Thus the elements A(D) and
B(D) are in Man(GL(D)).

For Assertion 3, it is enough to notice that the pair (a(G), b(G)) and
(A(D)|G, B(D)|G) satisfy the same equation, so they are equal.

1.9 The conjecture 1
After these long preparations, we can now state Conjecture 1.

Conjecture 1. Let D ≥ 1 be an integer. In Ran(GL(D)) we have
[J(D)] = A(D) and [Inner J(D)] = B(D),

where the elements A(D) and B(D) are defined in Lemma 1.

1.10 The weak form of Conjecture 1
We will now state the weak version of Conjecture 1 which only involves the
dimensions of homogenous components of J(D) and Inner J(D).

Here G is the central subgroup Z = K∗id of GL(D). As in the subsection
1.4, R(Z) is identified with Z[[z]]. An Z-module V ∈ Rep(G) is a graded
vector space V = ⊕n≥0 Vn and its class [V] in Z[[z]] is

[V ] =
∑

n dim Vn z
n.

Let α be a root of the Lie algebra sl2 and set t = eα. Then K0(PSL(2)) is
the subring Z[t+ t−1] of Z[t, t−1] consisting of the symmetric polynomials in
t and t−1. If follows that

R(G× PSL(2)) = Z[t+ t−1][[z]].
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Next let a ∈ K0(PSL(2)) and set a =
∑

i ci t
i. Since [a : L(0)] = c0− c−1

and [a : L(2)] = c−1 − c−2 it follows that
[a : L(0)] = Rest=0 (t−1 − 1)a dt and [a : L(2)] = Rest=0 (1− t)a dt.

Indeed the same formula holds when a and b are in R(G× PSL(2)). In this
setting, Lemma 1 can be expressed as

Lemma 2. Let D ≥ 1 be an integer. There are two series a(z) =
∑

n≥n an(D)zn

and b(z) =
∑

n≥n bn(D)zn in Z[[z]] which are uniquely defined by the follow-
ing two equations:

Rest=0 (t−1 − 1)Φ dt = 1
Rest=0 (1− t)Φ dt = −Dz

where Φ =
∏

n≥1 (1 − znt)an(1 − znt−1)an(1 − zn)an+bn, an = an(D) and
bn = bn(D).

The weak version of Conjecture 1 is

Conjecture 1 (weak version). Let D ≥ 1. We have
dim Jn(D) = an(D) and dim Innern J(D) = bn(D)

where an(D) and bn(D) are defined in Lemma 2.

Indeed, Lemma 2 and the weak version of Conjecture 1 are the special-
ization of Lemma 1 and Conjecture 1 by the map R(GL(D) × PSL(2)) !
R(Z × PSL(2)).

1.11 About the weakest form of Conjecture 1
It is now shown that the version of Conjecture 1, stated in the introduc-

tion, is a consequence of the weak form of Conjecture 1.
It is easy to prove, as in Lemma 1, that the series an of the introduction is
uniquely defined. It remains to show that the series an of Lemma 2 is the
same.

Let’s consider the series an = an(D) and bn = bn(D) of Lemma 2. We
have

Rest=0 (t−1 − 1)Φ dt = 1, and
Rest=0 (1− t)Φ dt = −Dz.

Using that the residue is Z[[z]]-linear, and combining the two equations we
get Rest=0 ψΦ dt = 0, or, more explicitly

Rest=0 ψ
∏

n≥1 (1− zn)an+bn(1− znt)an(1− znt−1)an d t = 0.

By Z[[z]]-linearity we can remove the factor
∏

n≥1 (1−zn)an+bn and so we get
Rest=0 ψ

∏
n≥1 (1− znt)an(1− znt−1)an d t = 0

which is the equation of the introduction.
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2. Numerical Evidences for Conjecture 1

The weak version of Conjecture 1, stating that dim Jn(D) = an(D) and
dim Innern J(D) = bn(D) is now investigated. Throughout this section, it
will be called Conjecture 1.

The following two tables provide the list of integers n and D for which the
dimensions of Jn(D) and Innern J(D) are known and for which the integers
an(D) and bn(D) have been computed.

Table 1: cases for which dim Jn(D) and dim Innern J(D) are known

D dim Jn(D) Proof in see dim Innern J(D) Proof in
D = 1 any n folklore Sect. 2.3 any n folklore
D = 2 any n Shirshov Sect. 2.3 any n Sect. 2.5
D = 3 n ≤ 8 Glennie Sect. 2.3 n ≤ 8 Sect. 2.5
D any n ≤ 7 Sect. 2.2 Sect. 2.2 n ≤ 8 Sect. 2.5

Table 2: cases for which an(D) and bn(D) are known

D an(D) bn(D) based on see
D = 1 any n any n Jacobi Identity Sect. 2.6
D = 2 n ≤ 15 n ≤ 15 Weisstein and SAGE Sect. 2.7
D = 3 n ≤ 8 n ≤ 8 SAGE Sect. 2.8
D = 4 n ≤ 7 n ≤ 7 SAGE Sect. 2.9

For all integers n and D of the Table 2, it is correct that dim Jn(D) =
an(D) and dim Innern J(D) = bn(D), what provides some numerical evi-
dences for Conjecture 1.

In this section, we first explain how to obtain the dimensions of the Table
1. The dimension formula proved in sections 2.2 and 2.5 are indeed corollaries
of Theorem 1, proved in the later Section 5. Since these formulas are only
used for numerical verifications of Conjecture 1, it does not impact the rest
of the paper to postpone their proofs to Section 5.

Then we will describe how the computation of an(D) and bn(D) is imple-
mented in SAGE and which part can be checked without computer. Since
these evidences require to trust that the computations have been correctly
implemented, the output file is available upon request.

2.1 Generalities about the free Jordan algebras
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Let D ≥ 1 be an integer, let T (D) be the non-unital tensor algebra over D
generators x1, x2, . . . , xD and let σ be its involution defined by σ(xi) = xi.

A subspace J of an associative algebra A is called a Jordan subalgebra
if J is stable by the Jordan product x ◦ y = 1/2(xy + yx). The subspace
CJ(D) := T (D)σ is a Jordan subalgebra which will be called the Cohn’s
Jordan algebra. The Jordan subalgebra SJ(D) generated by x1, x2, . . . , xD
is called the free special Jordan algebra.

The kernel of the map J(D)! CJ(D), which is denoted SI(D), is called
the space of special identities. Let t4 ∈ T (4) be the element

t4 =
∑

σ∈S4
ε(σ)xσ1 . . . xσ4 .

Observe that t4 belongs to CJ(4) and recall

Cohn’s Reversible Theorem [3]. The Jordan algebra CJ(D) is generated
by the elements x1, x2, . . . , xD and by t4(xi, xj, xk, xl) for all 1 ≤ i < j < k <
l ≤ D.

Since t4 is called the tetrad, the cokernel M(D) of the map J(D)! CJ(D)
will be called the space of missing tetrads.

All the spaces J(D), T (D), CJ(D), SJ(D), SI(D), M(D) are analytic
GL(D)-modules. Relative to the natural grading, the homogenous com-
ponents of degree n are respectively denoted by Jn(D), Tn(D), CJn(D),
SJn(D), SIn(D), and Mn(D).

Set sn(D) = dim CJn(D). By definition, there is an exact sequence
0! SIn(D)! Jn(D)! CJn(D)!Mn(D)! 0.

Lemma 3. We have
dim Jn(D) = sn(D) + dim SIn(D)− dim Mn(D), where

s2n(D) = 1
2
(D2n +Dn), and

s2n+1(D) = 1
2
(D2n+1 +Dn+1)

for any integer n.

Proof. The first assertion comes from the previous exact sequence. The com-
putation of dim CJn(D) is obvious. It is also explained in Step 3 of the later
proof of Lemma 6.

In what follows, all results about the free Jordan algebra J(D) are ob-
tained by comparison with the easily understood space CJ(D). Roughly
speaking, J(D) is deduced from CJ(D) by adding the special identities and
removing the missing tetrads.

12



2.2 The dimension of Jn(D) for n ≤ 7

Glennie’s Theorem [6]. We have SIn(D) = 0 for n ≤ 7.

Therefore, for n ≤ 7, it is enough to determine the dimension of Mn(D) to
compute the dimension of Jn(D), what is done by the next lemma. Its proof
is based on Corollary 4, in Section 5. Lemma 4 is only used for numerical
verifications of Conjecture 1, so it does not impact the rest of the paper to
postpone part of its proof.

Lemma 4. For any D ≥ 1, we have have
dimM4(D) =

(
D
4

)
,

dimM5(D) = D
(
D
4

)
,

dimM6(D) = 2
(
D+1
2

)(
D
4

)
,

dimM7(D) = 2D
(
D+1
2

)(
D
4

)
− dim L(3,2,12;D).

Proof. The case n = 4 follows from the fact that M4(D) ' Λ4KD.
By Corollary 4, we have M5(D) = L(15, D) ⊕ L((2,13), D) which is

isomorphic to KD ⊗ Λ4KD and the formula follows.
It follows also from Corollary 4 that M6(D) ' L(2,14;D)2⊕L(3,13;D)2,

which is isomorphic to (S2KD ⊗ Λ4KD)2. It follows also from the proof of
Corollary 4 that, as a virtual module, we have [M7(D)] = [KD][M6(D)] −
[L(3,2,12;D)], what proves the formula.

2.3 The dimension of Jn(D) for D ≤ 3
It follows from the following

Folklore Theorem. We have J(1) = xK[x].

Shirshov’s Theorem. We have J(2) = CJ(2).

that dim Jn(D) = rn(D) for D ≤ 2, see [22]. However, for D = 3, there are
only partial results about J(3). Recall the following

Shirshov-Cohn Theorem [3]. The map J(3)! CJ(3) is onto.

Of course, it is an obvious corollary of the previously cited Cohn’s re-
versible Theorem. So for D = 3, the structure of J(3) only depends on the
space SI(3), for which there is
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Macdonald’s Theorem [17]. The space SI(3) contains no Jordan polyno-
mials of degree ≤ 1 into x3.

Since SIn(3) = 0 for n ≤ 7, the first interesting component is SI8(3).
Indeed it contains a special identity G8, discovered in [6], which is called the
Glennie’s identity. It is multi-homogenous of degree (3, 3, 2). In addition
of the original expression, there are two simpler formulas due to Thedy and
Shestakov [16][23].

Glennie’s Identity Theorem [6]. 1. We have G8 6= 0.
2. SI8(3) is the 3-dimensional GL(3)-module generated by G8.

Assertion 1 is proved in [6], and the fact that G8 generates a 3-dimensional
GL(3)-module is implicit in [6]. The authors do not know a full proof of
Assertion 2, neither they found it in the literature, but the experts consider it
as true. Note that by Macdonald’s Theorem, no partition m = (m1,m2,m3)
with m3 ≤ 1 is a weight of SI(3). It seems to be known that (4, 2, 2) is not
a weight of SI8(3) and that the highest weight (3, 3, 2) has multiplicity one.

It follows from Glennie’s Theorem and Shirshov-Cohn’s Theorem that
dim Jn(3) = dim CJn(3) = sn(3) for n ≤ 7, and

dim J8(3) = dim CJ8(3) + 3 = s8(3) + 3.
Some special identities of degree 9, 10 or 11 are known [16], nevertheless it
seems that dim Jn(3) is unknown for n > 8.

2.4 Generalities about inner derivations
A subspace L of an associative algebra A is called a Lie subalgebra if L is
stable by the Lie product [x, y] = (xy − yx).

Lemma 5. Let A be an associative algebra and let J ⊂ A be a Jordan
subalgebra. Then [J, J ] is a Lie subalgebra of A.

Moreover, assume that J contains a set of generators of A and that Z(A)∩
[A,A] = 0, where Z(A) is the center of A. Then we have Inner J ' [J, J ].

Proof. Let x1, x2, x3, x4 ∈ J . We have
∂x1,x2 x3 = 1/4 [[x1, x2], x3]

and therefore
[[x1, x2], [x3, x4]] = 4 [∂x1,x2 x3, x4] + 4 [x3, ∂x1,x2 x4].

It follows that [J, J ] is a Lie subalgebra.
Assume now the additional hypotheses of the lemma. Set C(J) = {a ∈

A|[a, J ] = 0}. Since J contains a set of generators of A, we have C(J) =
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Z(A). Therefore [J, J ] ∩ C(J) = 0, and we have Inner J = ad([J, J ]) '
[J, J ].

For D ≥ 1, the space A(D) = T (D)−σ is a Lie subalgebra of T (D). By
the previous lemma we have

InnerSJ(D) = [SJ(D), SJ(D)] ⊂ InnerCJ(D) = [CJ(D), CJ(D)].
Therefore InnerSJ(D) and InnerCJ(D) are Lie subalgebras of A(D). So
the embedding InnerSJ(D) ⊂ InnerCJ(D) induces a Lie algebra morphism

Inner J(D)! InnerCJ(D).
Its kernel SD(D) will be called the space of special derivations and its cok-
ernel MD(D) will be called the space of missing derivations.

All the spaces Inner J(D), InnerCJ(D), InnerSJ(D), A(D), SD(D) and
MD(D) are analytic GL(D)-modules. Relative to the natural grading, the
homogenous components of degree n are respectively denoted by Innern J(D),
InnernCJ(D), Innern SJ(D), An(D), SDn(D) and MDn(D).

Set rn(D) = dim InnernCJ(D). There is an exact sequence
0! SDn(D)! Innern J(D)! InnernCJ(D)!MDn(D)! 0.

Lemma 6. We have
dim Inner Jn(D) = rn(D) + dim SDn(D)− dim MDn(D), where

r2n(D) = 1
2
D2n + 1

4
(D − 1)Dn − 1

4n

∑
i|2n φ(i)D

2n
i ,

r2n+1(D) = 1
2
D2n+1 − 1

4n+2

∑
i|2n+1 φ(i)D

2n+1
i .

for any n ≥ 1, where φ is the Euler’s totient function.

Proof. The first assertion comes from the previous exact sequence. There
are 4 steps for the proof of the second assertion.

Step 1. We claim that
InnerCJ(D) = A(D) ∩ [T (D), T (D)].

Since [T (D), T (D)] =
∑

i [xi, T (D)], we get
A(D) ∩ [T (D), T (D)] =

∑
i [xi, CJ(D)] ⊂ [CJ(D), CJ(D)].

Therefore we have [CJ(D), CJ(D)] = A(D) ∩ [T (D), T (D)], and it follows
from Lemma 5 that InnerCJ(D) = A(D) ∩ [T (D), T (D)].

Step 2. Let σ be an involution preserving a basis B of some vector space
V . An element b ∈ B is called oriented if b 6= σ(b). Thus B is the union
of Bσ and of its oriented pairs {b, bσ}. The following formulas will be used
repeatedly

dim V σ = 1
2

(CardB + CardBσ),
dim V −σ is the number of oriented pairs.
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Step 3. Now the dimension of An(D) is computed (and also sn(D) for
the completeness of the proof of Lemma 3).

Let Bn be the set of words of length n over x1, . . . , xD, and let B =
∪n≥1Bn. A σ-invariant word w ∈ B of length 2n is of the form w = uσ(u)
for some u ∈ Bn and σ-invariant word w ∈ B of length 2n+ 1 is of the form
w = uxiσ(u) for some u ∈ Bn and 1 ≤ i ≤ D. It follows that

CardBσ
2n = Dn and CardBσ

2n+1 = Dn+1.
The set of words in x1, . . . , xD is a σ-invariant basis of T (D), thus it

follows from Step 2 that
dimA2n(D) = 1

2
(D2n −Dn), s2n(D) = 1

2
(D2n +Dn),

dimA2n+1(D) = 1
2
(D2n+1 −Dn+1), and s2n+1(D) = 1

2
(D2n+1 +Dn+1)

for any integer n ≥ 1.
Step 4. Next the dimension of An(D) modulo [T (D), T (D)] is computed.
A cyclic word is a word modulo cyclic permutation: for example x1x2x3

and x2x3x1 define the same cyclic word. For any n ≥ 1, let Bn be the set of
cyclic words of length n over x1, . . . , xD. Note that σ induces an involution
of Bn, and let cn(D) be the number of oriented pairs of Bn. E.g., for D = 2,
we have c6(2) = 1 since {x21x22x1x2, x2x1x22x21} is the unique oriented pair of
B6.

In the literature of Combinatorics, a cyclic word is often called a necklace
while a non-oriented cyclic word is called a bracelet, and their enumeration
is quite standard. There are closed formulas for their enumeration, e.g. the
webpage [25] is nice. Since 2cn(D) is the number of necklaces, of length n
over D letters, which are not bracelets it follows from the formulas in [25]
that

c2n(D) = 1
4n

∑
i|2n φ(i)D

2n
i − 1

4
(D + 1)Dn, and

c2n+1(D) = 1
4n

∑
i|2n+1 φ(i)D

2n+1
i − 1

2
Dn+1

for any n ≥ 1, where φ denotes the Euler’s totient function.
Since the set of cyclic words is a basis of T (D)/[T (D), T (D)], it follows

from the formula of Step 2 that
dimAn(D)/[T (D), T (D)] ∩ An(D) = cn(D).

Step 5. From Step 1, the following diagram
0! Inner(CJ(D))! A(D)! A(D)/[T (D), T (D)] ∩ A(D)! 0

is a short exact sequence. Therefore we have dim InnernCJ(D) = dimAn(D)−
cn(D) from which the explicit formula for rn(D) follows.

As for the free Jordan algebra, the space Innern J(D) is described by
comparison with InnernCJ(D). However the formula for dim InnernCJ(D)
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is more complicated than the obvious formula for dimCJn(D).

2.5 The dimension of Innern J(D) for D ≤ 2 or n ≤ 8
When D ≤ 2, the folklore theorem and by Shirshov’s Theorem imply that
Innern J(D) = InnernCJ(D) for D ≤ 2. Thus by Lemma 6 we have

dim Innern J(D) = rn(D),
for any D ≤ 2 and n ≥ 1.

Let now consider the case of an arbitrary D. Since dim Innern J(D) =
rn(D)+dim SDn(D)−dim MDn(D), the next two lemmas compute dim Innern J(D)
for any n ≤ 8.

Lemma 7. We have SDn(D) = 0 for any n ≤ 8 and any D.

Proof. The lemma follows from Corollary 6 proved in Section 5.

Lemma 8. We have MDn(D) = 0 for n ≤ 4, and
dim MD5(D) = D

(
D
4

)
−
(
D
5

)
,

dim MD6(D) =
(
D
6

)
+D2

(
D
4

)
−D

(
D
5

)
,

dimMD7(D) = 2[D dimL(3,13;D) +
(
D
2

)(
D
5

)
−
(
D
7

)
].

Moreover Corollary 5 provides a (very long) formula for dimMD8(D).

Proof. We have [L(2,13;D)] = [KD ⊗ Λ4KD]− [Λ5KD]. Using Corollary 5
of Section 5, we have dim MD5(D) = dim L(2,13;D) = D

(
D
4

)
−
(
D
5

)
.

By Corollary 5 we haveMD6(D) ' L(16;D)⊕L(2,14)(D)⊕L(22,12;D)⊕
L(3,13;D) which is isomorphic to Λ6KD ⊕KD ⊗MD5(D), from which the
formula follows.

We have KD ⊗ L(3,13;D) = L(4,13;D) ⊕ L(3,2,12;D) ⊕ L(3,14;D)
and Λ2KD ⊗ Λ2KD = L(22,13;D)⊕ L(2,15;D)⊕ Λ5KD. By Corollary 5,
MD7(D) is isomorphic to

[L(4,13;D)⊕ L(3,2,12;D)⊕ L(3,14;D)⊕ L(22,13;D)⊕ L(2,15;D)]2

follows that, as a virtual module, we have
[MD7(D)] = 2([KD][L(3,13;D)] + [Λ2KD][Λ2KD]− [Λ7KD]),

what proves the formula.

2.6 The case D = 1

Set Φ =
∞∏
n=1

(1 − znt)(1 − znt−1)(1 − zn) and, for any n ≥ 0, set Pn =

t−n + t−n+1 + · · ·+ tn.
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Observe that Rest=0(t
−1 − 1)Pndt is 1 for n = 0, and 0 when n > 0.

Similarly we have Rest=0(1− t)Pndt is 1 when n = 1 and 0 otherwise. Using
the classical Jacobi triple identity [7]

Φ =
∑∞

n=0(−1)nz
n(n+1)

2 Pn
it follows that

Rest=0(t
−1 − 1)Φdt = 1 and Rest=0(1− t)Φdt = −z.

therefore we have an(1) = 1 and bn(1) = 0 for any n. This is in agreement
with the fact that dim Jn(1) = 1 and dim Innern J(1) = 0, seen in Sections
2.3 and 2.5. So Conjecture 1 is proved for D = 1.

2.7 Numerical evidences for D = 2
By the results of Sections 2.3 and 2.5, we have dim Jn(2) = sn(2) and
dim Innern J(2) = rn(2). It has been checked with a computer that an(2) =
sn(2) = dim Jn(2) and bn(2) = rn(2) = dim Innern J(2) for any n ≤ 15.
Therefore Conjecture 1 holds for n ≤ 15.

The algorithm to compute the numbers an(2) and bn(2) has been imple-
mented in SAGE. It follows the recursion of the proof of Lemma 1. We used
that dim Innern J(2) = dim An(2) − cn(2), since the numbers cn(2) can be
extracted from [25] for n ≤ 15 (it is the number N(n, 2) −N ′(n, 2) of [25]).
For the computations, we used the ring Z[t, t−1][z]/(z16). Also the fact that
an(2) = sn(2) for n ≤ 15, has been partly checked by us, using that, modulo
z16, we have∏

8≤k≤15 (1− tzk)s2(k)(1− t−1zk)s2(k) = 1−
∑

8≤k≤15 s2(k)(t+ t−1)zk.

2.8 Numerical evidences for D = 3
By the results of Sections 2.3 and 2.5, we have dim Jn(3) = sn(3) for n ≤ 7,
dim J8(3) = s8(3)+3 and dim Innern J(2) = rn(3) for n ≤ 8. This correlates
with the SAGE computation that an(3) = sn(3) for n ≤ 7 , while a8(3) =
s8(3) + 3 and similarly bn(3) = rn(3) for n ≤ 8.

So, for D = 3, Conjecture 1 is checked for n ≤ 8.

2.9 Numerical evidences for D = 4
Also, by the results of Sections 2.3 and 2.5, we have dim Jn(4) = sn(4) for
n ≤ 3, while dim J4(4) = s4(4) − 1, dim J5(4) = s5(4) − 4, dim J6(4) =
s6(4)− 20, and dim J7(4) = s7(4)− 60.

Similarly, it follows that dim Innern J(4) = rn(4), for n ≤ 4, while
dim Inner5 J(4) = r5(4)− 4, dim Inner6 J(4) = r6(4)− 16, and
dim Inner7 J(4) = r7(4)− 80.
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SAGE computations show that these dimensions agree with the numbers
an(4) and bn(4) of Conjecture 1, for n ≤ 7.

2.10 Conclusion
Let D be given. The dimensions of CJn(D), An(D) and InnernCJ(D) are
known, and the first two are given by a very simple formula. So it is quite
natural to test the conjecture for the smallest n for which Jn(D) 6= CJn(D),
Innern J(D) 6= An(D) or Innern J(D) 6= InnernCJ(D).

For D = 2, the smallest oriented pair of cyclic words over two letters has
length 6. So n = 6 is the smallest integer n for which Innern J(2) 6= An(2).
In that case, the conjecture has been checked for n ≤ 15. So unformally
speaking, Conjecture 1 recognizes the existence of oriented pairs of cyclic
words over two letters.

For D = 3, n = 8 and n = 9 are the smallest integers for which, respec-
tively, Innern J(3) 6= An(3), Jn(3) 6= CJn(3), and Innern J(3) 6= InnernCJ(3).
This is due, respectively, to an oriented pair of cyclic words over three letters
of length 3, to a special identity of degree 8 and to a special derivation of
degree 9. Since Conjecture 1 has been checked for n ≤ 8, we can roughly say
that Conjecture 1 recognizes the existence of Glennie Identity. Unfortunately,
we do not know the space of SD3(9), so we cannot check the compatibility
of its dimension with the conjecture. .

For D = 4, n = 3, n = 4 and n = 5 are the smallest integers for
which, respectively, Innern J(4) 6= An(4), Jn(4) 6= CJn(4), and Innern J(4) 6=
InnernCJ(4). This is due, respectively, to an oriented pair of cyclic words
over four letters of length 3, to a missing tetrad of degree 4 and to a missing
derivation of degree 5. Since it has been checked for the corresponding degree,
we can say that Conjecture 1 recognizes the phenomenon of the missing
tetrads .

3. The Conjecture 2

Conjecture 1 is an elementary statement, but it looks quite mysterious. In
this section the less elementary Conjecture 2 will be stated. It is a very
natural conjecture in terms of representation Theory [14]. At the end of the
section, it will be proved that Conjecture 2 implies Conjecture 1.

3.1 The Tits functor T : LieT ! Jor
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Let T be the category of PSL(2)-modules M such that M = M sl2 ⊕Mad,
where Mad denotes the isotypic component of M of adjoint type. Let LieT
be the category of Lie algebras g in category T on which PSL(2) acts by
automorphisms.

Let Jor be the category of Jordan algebras. Let e, f , h be the usual basis
of sl2. For g ∈ LieT, set

T (g) = {x ∈ g | [h, x] = 2x}.
Then T (g) has an algebra structure, where the product x ◦ y of any two
elements x, y ∈ T (g) is defined by:

x ◦ y = 1
2

[x, f · y].
It turns out that T (g) is a Jordan algebra [24]. So the map g 7! T (g) is a
functor T : LieT ! Jor. It will be called the Tits functor.

3.2 The TKK -construction
To each Jordan algebra J one associates a Lie algebra TKK(J) ∈ LieT
which is defined as follows. As a vector space we have

TKK(J) = Inner J ⊕ sl2 ⊗ J .
For x ∈ sl2 and a ∈ J , set x(a) = x⊗ a. The bracket [X, Y ] of two elements
in TKK(J) is defined as follows. When at least one argument lies in Inner J ,
it is defined by the fact that Inner J is a Lie algebra acting on J . Moreover
the bracket of two elements x(a), y(b) in sl2 ⊗ J is given by

[x(a), y(b)] = [x, y](a ◦ b) + κ(x, y) ∂a,b
where κ is the Killing form of sl2. This construction first appears in Tits
paper [24]. Later this definition has been generalized by Koecher [11] and
Kantor [10] in the theory of Jordan pairs (which is beyond the scope of this
paper) and therefore the Lie algebra TKK(J) is usually called the TKK-
construction.

However the notion of an inner derivation is not functorial and therefore
the map J ∈ Jor 7! TKK(J) ∈ LieT is not functorial.

3.3 The Lie algebra TAG(J) = sl2 J
More recently, Allison and Gao [1] found another generalization (in the the-
ory of structurable algebras) of Tits construction, see also [2] and [14]. In
the context of a Jordan algebra J , this provides a refinement of the TKK-
construction. The corresponding Lie algebra will be called the Tits-Allison-
Gao construction and it will be denoted by TAG(J) or simply by sl2 J .

Let J be any Jordan algebra. First TAG(J) is defined as a vector space.
Let R(J) ⊂ Λ2J be the linear span of all a ∧ a2 where a runs over J and set
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BJ = Λ2J/R(J). Set
TAG(J) = BJ ⊕ sl2 ⊗ J .

Next, define the Lie algebra structure on TAG(J). For ω =
∑

i ai ∧ bi ∈
Λ2 J , set ∂ω =

∑
i ∂ai,bi and let {ω} be its image in BJ . By Jordan identity

we have ∂a,a2 = 0, so there is a natural map
BJ ! InnerJ, {ω} 7! ∂ω.

Given another element ω′ =
∑

i a
′
i ∧ b′i in Λ2 J , set δω.ω

′ =
∑

i (∂ω.a
′
i) ∧ b′i +

a′i ∧ ∂ω.b′i. Since ∂ω is a derivation, we have ∂ω.R(J) ⊂ R(J) and therefore
we can set ∂ω.{ω′} = {∂ω.ω′}.
The bracket on TAG(J) is defined by the following rules

1. [x(a), y(b)] = [x, y](a ◦ b) + κ(x, y){a ∧ b},
2. [{ω}, x(a)] = x(∂ωa), and
3. [{ω}, {ω′}] = ∂ω.{ω′},

for any x, y ∈ sl2, a, b ∈ J and {ω}, {ω′} ∈ BJ , where, as before we denote
by x(a) the element x⊗ a and where κ(x, y) = 1

2
Tr ad(x) ◦ ad(y).

It is proved in [1] that TAG(J) is a Lie algebra (indeed the tricky part
is the proof that [{ω}, {ω′}] is skew-symmetric). In general TKK(J) and
TAG(J) are different. For J = K[t, t−1], we have Inner(J) = 0, while BJ
is a one-dimensional Lie algebra. Therefore TKK(J) = sl2(K[t, t−1]) while

TAG(J) is the famous affine Kac-Moody Lie algebra ŝl2(K[t, t−1]).

Lemma 9. Let g ∈ LieT. Then there is a Lie algebra morphism
θg : TAG(T (g))! g

which is the identity on T (g).

Proof. Set d = gsl2 , so we have g = d⊕ sl2 ⊗ T (g). Since Homsl2(sl
⊗2
2 , K) =

K.κ, there is a bilinear map ψ : Λ2T (g)! d such that
[x(a), y(b)] = [x, y](a ◦ b) + κ(x, y)ψ(a, b)

for any x, y ∈ sl2 and a, b ∈ J . For x, y , z ∈ sl2, we have
[x(a), [y(a), z(a)]] = [x, [y, z]](a3) + κ(x, [y, z])ψ(a, a2).

The map (x, y, z) 7! κ(x, [y, z]) has a cyclic symmetry of order 3. Since
κ(h, [e, f ]) = 4 6= 0, the Jacobi identity for the triple h(a), e(a), f(a) implies
that

ψ(a, a2) = 0 for any a ∈ J .
Therefore the map ψ : Λ2T (g) ! d factors trough BT (g). A linear map
θg : TAG(T (g))! g is defined by requiring that θg is the identity on sl2⊗T (g)
and θg = ψ on BT (g). It is easy to check that θg is a morphism of Lie algebras.
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It is clear that the map TAG : J ∈ Jor 7! TAG(J) ∈ LieT is a functor,
and more precisely we have:

Lemma 10. The functor TAG : Jor ! LieT is the left adjoint of the Tits
functor T , namely:

HomLieT(TAG(J), g) = HomJor(J, T (g))
for any J ∈ Jor anf g ∈ LieT.

Proof. Let J ∈ Jor and g ∈ LieT. Since T (TAG(J)) = J , any morphism
of Lie algebra TAG(J) ! g restricts to a morphism of Jordan algebras
J ! T (g), thus there is a natural map

µ : HomLieT(TAG(J), g)! HomJor(J, T (g)).
Since the Lie algebra TAG(J) is generated by sl2 ⊗ J , it is clear that

µ is injective. Let φ : J ! T (g) be a morphism of Jordan algebras. By
functoriality of the TAG-construction, we get a Lie algebra morphism

TAG(φ) : TAG(J)! TAG(T (g))
and by Lemma 9 there is a canonical Lie algebra morphism

θg : TAG(T (g))! g.
So θg ◦ TAG(φ) : TAG(J) ! g extends φ to a morphism of Lie algebras.
Therefore µ is bijective.

3.4 Statement of Conjecture 2
Let D ≥ 1 be an integer and let J(D) be the free Jordan algebra on D
generators.

Lemma 11. The Lie algebra sl2 J(D) is free in the category LieT.

The lemma follows from Lemma 10 and the formal properties of the
adjoint functors.

Let k be a non-negative integer. Since Λk sl2 J(D) is a direct sum of sl2-
isotypic components of type L(0), L(2), . . . , L(2k) there is a similar isotypic
decomposition ofHk(g). For an ordinary free Lie algebra m, we haveHk(m) =
0 for any k ≥ 2. Here sl2 J(D) is free relative to category LieT. Since only the
trivial and adjoint sl2-type occurs in the category T, the following conjecture
seems very natural

Conjecture 2. We have
Hk(sl2 J(D))sl2 = 0 and
Hk(sl2 J(D))ad = 0,

for any k ≥ 2.
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3.5 Conjecture 2 implies Conjecture 1

Lemma 12. Assume that Hk(sl2 J(D))sl2 = 0 for any odd k. Then we have
BJ(D) = Inner J(D).

Proof. Assume otherwise, i.e. assume that the natural map φ : BJ(D) !
Inner J(D) is not injective. Since BJ(D) and Inner J(D) are analytic GL(D)-
modules, they are endowed with the natural grading. Let z be a non-zero ho-
mogenous element z ∈ Kerφ and let n be its degree. Set G = sl2 J(D)/K.z.
Since z is a homogenous sl2-invariant central element, G inherits a structure
of Z-graded Lie algebra.

Moreover z belongs to [sl2 J(D), sl2 J(D)]. Therefore sl2 J(D) is a non-
trivial central extension of G. Let c ∈ H2(G) be the corresponding cohomol-
ogy class and let ω ∈ (Λ2G)∗ be a homogenous two-cocycle representing c.
We have ω(Gi∧Gj) = 0 whenever i+ j 6= n. It follows that the bilinear map
ω has finite rank, therefore there exists an integer N ≥ 1 such that cN 6= 0
but cN+1 = 0.

There is a long exact sequence of cohomology groups [8]

. . . Hk(G)
j∗
−! Hk(sl2 J(D))

iz−! Hk−1(G)
∧c
−! Hk+1(G)

j∗
−! . . .

where j∗ is induced by the natural map j : sl2 J(D) ! G, where iz is the
contraction by z and where ∧c is the multiplication by c. Therefore there
exists C ∈ H2N+1(sl2 J(D)) such that cN = iz C. Since cN is sl2-invariant,
we can assume that C is also sl2-invariant, and therefore

H2N+1(sl2 J(D))sl2 6= 0
which contradicts the hypothesis.

Corollary 1. Conjecture 2 implies Conjecture 1.

Proof. Assume Conjecture 2 holds. In Ran(GL(D)× PSL(2)), the identity
[Λevensl2 J(D)]− [Λoddsl2 J(D)] = [Heven(sl2 J(D))]− [Heven(sl2 J(D))]

is Euler’s characteristic formula. By definition of the λ-operation, we have
[Λevensl2 J(D)]− [Λoddsl2 J(D)] = λ([sl2 J(D)]). Moreover by Lemma 12, we
have [sl2 J(D)] = [J(D)⊗ L(2)] + [Inner J(D)], therefore we get
λ([J(D)⊗ L(2)] + [Inner J(D)]) = [Heven(sl2 J(D))]− [Heven(sl2 J(D))].

It is clear that H0(sl2 J(D)) = K and
H1(sl2 J(D)) = sl2 J(D)/[sl2 J(D), sl2 J(D)] ' KD ⊗ L(2).

Moreover, by hypothesis, the higher homology groups Hk(sl2 J(D)) contains
no trivial or adjoint component. It follows that
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λ([J(D)⊗ L(2)] + [Inner J(D)]) : [L(0)] = 1, and
λ([J(D)⊗ L(2)] + [Inner J(D)]) : [L(2)] = −[KD].

So by Lemma 1, we get [J(D)] = A(D) and [Inner J(D)] = B(D).

4. Proved Cases of Conjecture 2

This section shows three results supporting Conjecture 2:
1. The conjecture holds for D = 1,
2. As a sl2-module, H2(sl2 J(D)) is isotypic of type L(4), and
3. The trivial component of the sl2-module H3(sl2 J(D)) is trivial.

4.1 The D = 1 case

Proposition 1. Conjecture 2 holds for J(1).

For D = 1, we have J(1) = tK[t]. So Conjecture 2 is an obvious conse-
quence of the following :

Garland-Lepowski Theorem [4]. For any k ≥ 0, we have
Hk(sl2(tk[t])) ' L(2k).

Conversely, Garland-Lepowski Theorem can be used to prove that J(1) =
tK[t]. Of course, it is a complicated proof of a very simple result!

4.2 Isotypic components of H2(sl2 J(D)).
Let D ≥ 1 be an integer. Let MT(sl2 J(D)) be the category of sl2 J(D)-
modules in category T. As an analytic GL(D)-module, sl2 J(D) is endowed
with the natural grading. LetMgr

T (sl2 J(D)) be the category of all Z-graded
sl2 J(D)-modules M ∈MT(sl2 J(D)) such that dim Mn <∞ for any n.

Lemma 13. Let M be a sl2 J(D)-module. Assume that
1. M belongs to MT(sl2 J(D)) and dimM <∞, or
2. M belongs to Mgr

T (sl2 J(D)).
Then we have H2(sl2 J(D),M)sl2 = 0.

Proof. 1) First assume M belongs to M(sl2 J(D)) and dimM < ∞. Let
c ∈ H2(sl2 J(D),M∗)sl2 . Since sl2 acts reductively, c is represented by a sl2-
invariant cocycle ω : Λ2 sl2 J(D) ! M∗. This cocycle defines a Lie algebra
structure on L := M∗ ⊕ sl2 J(D). Let

0!M∗ ! L! sl2 J(D)! 0
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be the corresponding abelian extension of sl2 J(D). Since ω is sl2-invariant,
it follows that L lies in LieT. By Lemma 11 sl2 J(D) is free in this category,
hence the previous abelian extension is trivial. Therefore we have

H2(sl2 J(D),M∗)sl2 = 0.
By duality, it follows that H2(sl2 J(D),M)sl2 = 0.

2) Assume now that M belongs toMgr
T (sl2 J(D)). For any integer n, set

M>n = ⊕k>nMk. Since the homology commutes with the inductive limits, it
is enough to prove that H2(sl2 J(D),M>n)sl2 = 0 for any n ∈ Z. So we can
assume that Mk = 0 for k � 0.

The Z-gradings of sl2 J(D) and M induce a grading of H∗(sl2 J(D),M).
Relative to it, the degree n component is denoted by H∗(sl2 J(D),M)|n, so
we are going to prove that H0(sl2, H2(sl2 J(D),M)|n) = 0 for any n ∈ Z.

Fix an integer n. The degree n-part of the complex Λ sl2 J(D)⊗M>n is
zero, so we have

H∗(sl2 J(D),M)|n ' H∗(sl2 J(D),M/M>n)|n.
Since M/M>n is finite dimensional, the first part of the lemma shows that
H0(sl2, H2(sl2 J(D),M)|n) = 0. Since n is arbitrary, we have

H2(sl2 J(D),M)sl2 = 0.

Proposition 2. The sl2-module H2(sl2 J(D)) is isotypic of type L(4).

Proof. It follows from Lemma 13 that H2(sl2 J(D))sl2 = 0.
The PSL(2)-module L(2), with a trivial action of sl2 J(D), belongs to

MT(sl2 J(D)). So it follows from Lemma 13 that H2(sl2 J(D), L(2))sl2 = 0.
Since

H2(sl2 J(D))ad = H2(sl2 J(D), L(2))sl2 ⊗ L(2)
we also have H2(sl2 J(D))ad = 0.

The only PSL(2)-types occurring in Λ2 sl2 J(D) are L(0), L(2) and L(4).
Since the L(0) and L(2) types do not occur in H2(sl2 J(D)), it follows that
H2(sl2 J(D)) is isotypic of type L(4).

4.3 Analytic functors
Let V ectK be the category of K-vector spaces and let V ectfK be the subcat-
egory of finite dimensional vector spaces. A functor F : V ectK ! V ectK is
called a polynomial functor [18] if

1. F (V ectfK) ⊂ V ectfK and F commutes with the inductive limits,
2. There is some integer n such that the map
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F : Hom(U, V )! Hom(F (U), F (V ))
is a polynomial of degree ≤ n for any U, V ∈ V ectfK . The polynomial functor
F is called a polynomial functor of degree n if F (z idV ) = zn idF (V ) for any

V ∈ V ectfK . It follows easily that F (V ) is a polynomial GL(V )-module of
degree n, see [18]. Any polynomial functor can be decomposed as a finite
sum F = ⊕n≥0 Fn, where Fn is a polynomial functor of degree n.

A functor F : V ectK ! V ectK is called analytic if F can be decomposed
as a infinite sum

F = ⊕n≥0 Fn
where each Fn is a polynomial functor of degree n. For an analytic functor
F , it is convenient to set F (D) = F (KD). For example, for V ∈ V ectK , let
J(V ) be the free Jordan algebra generated by a basis of the vector space V .
Then V 7! J(V ) is an analytic functor, and J(D) is the previously defined
free Jordan algebra on D generators.

4.4 Suspensions of analytic functors.
Let D ≥ 0 be an integer. Let KD be the space with basis x1, x2 . . . , xD. To
emphasize the choice of x0 as an additional vector, the vector space with basis
x0, x1 . . . , xD will be denoted by K1+D and its linear group will be denoted
by GL(1 +D).

Lemma 14. Let M be an analytic GL(1+D)-module. Let m = (m0, . . . ,mD)
be a partition of some positive integer such that

Mm 6= 0 and m0 = 0.
Then there exists a partition m′ = (m′0, . . . ,m

′
D) such that

Mm′ 6= 0 and m′0 = 1.

Proof. By hypotheses, there is an index k 6= 0 such that mk 6= 0. Let
(ei,j)0≤i,j≤D the usual basis of gl(1 +D). Set f = e0,k, e = ek,0 and h = [e, f ].
Then (e, f, h) is a sl2-triple in gl(1+D). Let m′ be the partition of n defined
by m′i = mi if i 6= 0 or k, m′k = mk − 1 and m′0 = 1. The eigenvalue of h
on Mm is the negative integer −mk, so the map e : Mm ! Mm′ is injective,
and therefore Mm′ is not zero.

Let F be an analytic functor. In what follows it will be convenient to
denote by K.x0 the one-dimensional vector space with basis x0. Let V ∈
V ectK . For z ∈ K∗, the element h(z) ∈ GL(K.x0⊕V ) is defined by h(z).x0 =
z x0 and h(z).v = v for v ∈ V . There is a decomposition

F (K.x0 ⊕ V ) = ⊕n F (K.x0 ⊕ V )|n
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where F (k ⊕ V )|n = {v ∈ F (K.x0 ⊕ V )|F (h(z)).v = znv}. It is easy to see
that F (V ) = F (K.x0 ⊕ V )|0. By definition, the suspension ΣF of F is the
functor V 7! F (K.x0⊕ V )1. A functor F is constant if F (V ) = F (0) for any
V ∈ V ectK .

Lemma 15. 1. Let F be an analytic functor. If ΣF = {0}, then F is
constant.

2. Let F, G be two analytic functors with F (0) = G(0) = {0}, and let
Θ : F ! G be a natural transformation. If ΣΘ is an isomorphism, then Θ
is an isomorphism.

Proof. 1) Let F be a non-constant analytic functor. Then for some integer
D, there is a partition m = (m1, . . . ,mD) of a positive integer such that
F (D)m 6= 0. By lemma 14, there exist a partition m′ = (m′0, . . . ,m

′
D) with

m′0 = 1 such that F (1 + D)m′ 6= 0. Therefore we have ΣF (D) 6= 0, what
proves the first assertion.

2) By hypothesis we have ΣKerΘ = {0} and KerΘ(0) = {0} (respectively
ΣCokerΘ{0} and CokerΘ(0) = {0}). It follows from the first assertion that
KerΘ = {0} and CokerΘ = {0}, therefore Θ is an isomorphism.

4.5 Vanishing of H3(sl2 J(D))sl2

Proposition 3. We have
H3(sl2 J(D))sl2 = 0.

Proof. We have
Σ Λsl2 J(D) = Λ sl2 J(D)⊗ Σsl2 J(D).

It follows that Σ Λsl2 J(D) is the complex computing the homology of sl2 J(D)
with value in the sl2 J(D)-module Σ sl2 J(D). Taking into account the degree
shift, it follows that

ΣH3(sl2 J(D))sl2 = H2(sl2 J(D),Σ sl2 J(D))sl2 .
Since Σ sl2 J(D) belongs to Mgr

T (sl2 J(D)), it follows from Lemma 13 that
ΣH3(sl2 J(D))sl2 = 0. It follows from Lemma 15 that H3(sl2 J(D))sl2 = 0.
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5. Cyclicity of the Jordan Operads

In this section, we will prove that the Jordan operad J is cyclic, what will be
used in the last Section to simplify Conjecture 2. Also there are compatible
cyclic structures on the special Jordan operad SJ and the Cohn’s Jordan
operad CJ . As a consequence, the degree D multilinear space of special
identities or missing tetrads are acted by SD+1.

5.1 Cyclic Analytic Functors
An analytic functor F is called cyclic if F is the suspension of some analytic
functor G. We will now describe a practical way to check that an analytic
functor is cyclic. In what follows, we denote by x1, . . . , xD a basis of KD and
we denote by K1+D the vector space K.x0 ⊕KD.

Let F , G be two analytic functors and let Θ : F ⊗ Id ! G be a natural
transform, where Id is the identity functor. Note that

Σ(F ⊗ Id)(D) = ΣF (D)⊗KD ⊕ F (D)⊗ x0.
The triple (F,G,Θ) will be called a cyclic triple if the induced map

ΣF (D)⊗KD ! ΣG(D)
is an isomorphism, for any integer D ≥ 0.

Lemma 16. Let (F,G,Θ) be a cyclic triple. There is a natural isomorphism
F ' ΣKer Θ.

In particular, F is cyclic.

Proof. We have
Σ(F ⊗ Id)(D) = ΣF (D)⊗KD ⊕ F (D)⊗ x0, and
Σ(F ⊗ Id)(D) = ΣF (D)⊗KD ⊕KerΣΘ(D).

Therefore F (D) ' F (D)⊗x0 is naturally identified with Ker ΣΘ(D), i.e. the
functor F is isomorphic to ΣKer Θ. Therefore F is cyclic.

5.2 S-modules
Let D ≥ 1. For any Young diagram Y of size D, let S(Y) be the correspond-
ing simple SD-module. Indeed SD is identified with the group of monomial
matrices of GL(D), and S(Y) ' L(Y;D)1D . It will be convenient to denote
its class in K0(Sn) by [Y].

By definition a S-module is a vector space P = ⊕n≥0P(n) where the
component P(n) is a finite dimensional Sn-module. An operad is a S-
module P with some operations, see [5] for a precise definition. Set K0(S) =
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∏
n≥0 K0(Sn), see [18]. The class [E ] ∈ K0(S) of a S-module is defined by

[E ] =
∑

n≥0 [E(n)].
For a S-module E , the S-modules ResE and IndE are defined by

Res E(n) = Res
Sn+1

Sn
E(n+ 1),

Ind E(n+ 1) = Ind
Sn+1

Sn
E(n)

for any n ≥ 0. The functors Res and Ind gives rise to additive maps on
K0(S) and they are determined by the Young rules

Res[Y] =
∑

Y′∈ResY [Y′],
Ind[Y] =

∑
Y′∈IndY [Y′]

where ResY (respectively IndY) is the set of all Young diagrams obtained
by deleting one box in Y (respectively by adding one box to Y). For example,
Res[(33)] = [(32,2)] because only the southeast corner box can be removed
from the diagram

in order that the new shape is still a Young diagram.
A S-module E is called cyclic if E = ResF for some S-module F .

5.3 Schur-Weyl duality
The Schur-Weyl duality is an equivalence of the categories between the ana-
lytic functors and the S-modules.

For an analytic functor F , the corresponding S-module F = ⊕n≥0F(n)
is defined by

F(n) = F (n)1n .
If F = ΣE for some analytic functor E, it is clear that

F (n)1n = E(1 + n)11+n .
Therefore the cyclic analytic functors gives rise to cyclic S-modules. Con-
versely, for any S-module E , the corresponding analytic functor SchE , which
is called a Schur functor, is defined by:

SchE(V ) = ⊕n≥0H0(Sn, E(n)⊗ V ⊗n)
for any V ∈ V ectK . E.g., SchS(Y)(D) = L(Y;D) for any Young diagram Y.

The class of an analytic functor F is [F ] =
∑

n≥0 [F (n)1n ] ∈ K0(S).

Lemma 17. Let (F,G,Θ) be a cyclic triple. Then we have
[Ker Θ] + [G] = Ind ◦ Res[Ker Θ] = Ind[F ]

Proof. It follows from the fact that the Schur-Weyl duality establishes the
following correspondences:
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Categories Analytic functors S-modules
Cyclic analytic functors Cyclic S-modules

Functor ⊗ Id Ind
Functor Suspension Σ Res

5.4 A list of analytic functors and S-modules
We will now provide a list of analytic functors P . For those, the analytic

GL(D)-module P (D) has been defined, so the definition of the corresponding
functor is easy. This section is mostly about notations.

For example, for V ∈ V ectK , let T (V ) be the free non-unital associative
algebra over the vector space V . The functor [T, T ] is the subfunctor defined
by [T, T ](V ) = [T (V ), T (V )]. Similarly, there are functors J : V 7! J(V ),
SJ : V 7! SJ(V ) and CJ : V 7! CJ(V ) which provide, respectively, the free
Jordan algebras, the free special Jordan algebras and the free Cohn-Jordan
algebras.

Concerning the derivations, we will consider the analytic functors BJ ,
BSJ , InnerSJ and InnerCJ . The last two are functors by Lemma 5.

For the missing spaces, we will consider the analytic functors of missing
tetrads M = CJ/SJ , of missing derivations MD = InnerCJ/InnerSJ , which
is a functor by Lemma 5. Also we will consider the functor of special identities
SI = KerJ ! SJ .

Since it is a usual notation, denote by Ass the associative operad. The
other S-modules will be denoted with calligraphic letters. The Jordan op-
erad is denoted by J . As a S-module, it is defined by J (D) = J(D)1D . The
special Jordan operad SJ and the Cohn-Jordan operad CJ are defined sim-
ilarly. The S-modules M, MD and SI are the S-modules corresponding
to the analytic functors M , MD and SI.

5.5 The cyclic structure on T and CJ
We will use Lemma 16 to describe the cyclic structure on the tensor algebras.
It is more complicated than usual [5], because we are looking at a cyclic
structure which is compatible with the free Jordan algebras. The present
approach is connected with [19].

The natural map TV ⊗ V ! [TV, TV ], u⊗ v 7! [u, v] for any V ∈ V ectK
is a natural transformation ΘT : T ⊗ Id! [T, T ].

Lemma 18. The triple (T, [T, T ],ΘT ) is cyclic.
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Proof. Let’s begin with a simple observation. Let n be an integer, let M =
⊕0≤k≤nMk be a vector space and let t : M ! M be an automorphism of
order n + 1 such that t(Mk) ⊂ Mk+1 for any 0 ≤ k < n and tMn ⊂ M0.
Then it is clear that the map

⊕0≤k<nMk ! ( 1− t)(M), u 7! u− t(u)
is an isomorphism

To prove the lemma, it is enough to prove that the triple (Tn, [T, T ]n+1,ΘT )
is cyclic for any integer n. Let V ∈ V ectk and set W = k.x0 ⊕ V . Since we
have [TW, TW ] = [TW,W ], it follows

ΣΘT (Tn ⊗ Id)(V )) = Σ[T, T ]n+1(V ).
Once TnW ⊗W is identified with W⊗n+1, the map

ΘT : TnW ⊗W ! Tn+1W, u⊗ w 7! [u,w]
is identified with the map 1−t, where t is the automorphism of W⊗n+1 defined
by t(w0 ⊗w1 ⊗wn) = wn ⊗w0 ⊗ ...⊗wn−1. Set Mk = V ⊗k ⊗ x0 ⊗ V ⊗n−k for
any k. We have

Σ(Tn ⊗ Id)(V ) = ⊕0≤k≤nMk, and ΣTnV ⊗ V = ⊕0≤k<nMk.
Since t(Mk) ⊂ Mk+1 for any 0 ≤ k < n and tMn ⊂ M0, it follows from the
previous observation that ΘT induces an isomorphism from ΣTnV ⊗ V to
Σ[T, T ]n+1(V ), so the triple (T, [T, T ],ΘT ) is cyclic.

Let V ∈ V ectK . It follows from Lemma 5 that InnerCJV = [CJV,CJV ].
So the natural map CJV ⊗ V ! InnerSV, u ⊗ v 7! [u, v] is a natural
transformation ΘCJ : CJ ⊗ Id! InnerCJ .

Lemma 19. The triple (CJ, InnerCJ,ΘCJ) is cyclic.

Proof. It is clear that the triple (CJ, InnerCJ,ΘCJ) is a direct summand of
the previous one, so it is cyclic.

5.6 A preliminary result

According to [15], Schreier first proved a statement similar to the next The-
orem in the more difficult context of the free group algebras. Next it has
been proved by Kurosh [13] and Cohn [3] in the context of the free monoid
algebras, or, equivalently for the enveloping algebra of a free Lie algebra.

Schreier-Kurosh-Cohn Theorem [15]. Let F be a free Lie algebra, and
let M be a free module. Then any submodule N ⊂M is free.
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Let D ≥ 1 be an integer and let F be the free Lie algebra generated by
F1 := sl2⊗KD, i.e. F is a free Lie algebra on 3D generators on which PSL(2)
acts by automorphism. Let M(F, PSL(2)) be the category of PSL(2)-
equivariant F -modules. The F -action on a module M ∈ M(F, PSL(2))
is a PSL(2)-equivariant map M ⊗ F ! M,m ⊗ g 7! g.m. It induces the
map

µM : H0(sl2,M
ad ⊗ F1)! H0(sl2,M).

Recall that X = Xsl2 ⊕ sl2.X for any PSL(2)-module X.

Lemma 20. Let 0 ! Y ! X ! M ! 0 be a short exact sequence in
M(F, PSL(2)). Assume that

1. the F -module X is free and generated by sl2.X,
2. Y is generated by sl2.Y .
Then the map µM is an isomorphism.

Proof. Since X is free, the action X ⊗ F1 ! F.X,m ⊗ g 7! g.m is an
isomorphism, therefore the map

H0(sl2, X ⊗ F1)! H0(sl2, F.X)
is an isomorphism. Since F1 is of adjoint type, we have H0(sl2, X ⊗ F1) =
H0(sl2, X

ad ⊗ F1). As X is generated by sl2.X we have H0(sl2, X/F.X) = 0,
so we have H0(sl2, F.X) = H0(sl2, X). It follows that µX is an isomorphism.

By Schreier-Kurosh-Cohn Theorem, Y is also free, and therefore µY is also
an isomorphism. By the snake lemma, it follows that µM is an isomorphism.

Similarly, for M ∈MT(sl2 J(D)), the action induces a map
µM : H0(sl2,M

ad ⊗ (sl2 ⊗ J1(D)))! H0(sl2,M).

Lemma 21. Let M be the free sl2 J(D)-module in category MT(sl2 J(D))
generated by one copy of the adjoint module L(2). Then the map µM is an
isomorphism.

Proof. Let F be the free Lie algebra of the previous lemma. Any PSL(2)-
equivariant isomorphism φ : F1 ! sl2 ⊗ J1(D) gives rise to a Lie algebra
morphism ψ : F ! sl2 J(D), so M can be viewed as a PSL(2)-equivariant
F -module.

Let X ∈ M(F, PLS(2)) be the free F -module generated by L(2) and
let P be the free F -module in category MT(F, PLS(2)) generated by L(2).
There are natural surjective maps of F -modules
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X
π
−! P

σ
−!M .

It is clear that Ker π is the F -submodule of X generated by its L(4)-
component. Let K be the L(4)-component of F . It is clear that sl2 J(D) =
F/R where R is the ideal of F generated by K. Therefore Kerσ is the F -
submodule of P generated by K.P . Since P is in T, we have K.P ⊂ P ad,
therefore Kerσ is generated by its adjoint component.

Set Y = Kerσ ◦ π. It follows from the descriptions of Kerπ and Kerσ
that Y is generated by its L(2) and its L(4) components. Thus the short
exact sequence

0! Y ! X !M ! 0
satisfies the hypotheses of Lemma 20. It follows that µM is an isomorphism.

5.7 Cyclic structures on J and SJ
The natural map J(V ) ⊗ V ! BJ(V ), a ⊗ v 7! {a, v}, defined for all

V ∈ V ectK is indeed a natural transformation ΘJ : J ⊗ Id! BJ .

Lemma 22. The triple (J,BJ,ΘJ) is cyclic.

Proof. Let D ≥ 0 be an integer. Let M be the free sl2 J(D)-module in
categoryMT(sl2 J(D)) generated by one copy L of the adjoint module. Let
g be the Lie algebra sl2 J(D) n M . Let φ be a PSL(2)-equivariant map
φ : J(D) ⊗K1+D ! g defined by the requirement that φ is the identity on
J(D)⊗KD and φ|J(D)⊗x0 is an isomorphism to L.

By Lemma 11, sl2 J(D) is free in the category LieT. Therefore φ extends
to a Lie algebra morphism Φ : sl2 J(D) ! G. Note that Φ sends ΣJ(D) to
M . Since ΣJ(D) a the sl2 J(D)-module generated by J(D) ⊗ x0, it follows
that

Σsl2 J(D) 'M as a sl2 J(D)-module.
By Lemma 21, µM is an isomorphism, which amounts to the fact that

ΣJ(J)⊗KD ! ΣBJ(D), a⊗ v 7! {a, v}
is an isomorphism. Therefore the triple (J,B(J),ΘJ) is cyclic.

The natural transformation ΘJ induces a natural transformation ΘSJ :
SJ ⊗ Id! InnerSJ . Similarly, we have

Lemma 23. The triple (SJ, InnerSJ,ΘSJ) is cyclic.
Moreover the natural map ΣB SJ(D) ! Σ InnerSJ(D) is an isomor-

phism for all D.
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Proof. For any D, there is a commutative diagram

ΣJ(D)⊗KD
a
� ΣSJ(D)⊗KD b

↪−! ΣCJ(D)⊗KD

α′ # α ↙ ↘ β # β′

ΣBSJ(D) � ΣBSJ(D) � ΣInnerSJ(D) ↪! ΣInnerCJ(D)
In the diagram, the horizontal arrows with two heads are obviously surjective
maps, and those with a hook are obviously injective maps. By Lemma 22
the map α′ is onto and by Lemma 19 the map β′ is one-to-one. By diagram
chasing, α and β are isomorphisms. Both assertions follow.

5.8 Cyclicity Theorem
There is a commutative diagram of natural transformations:

J ⊗ Id ! SJ ⊗ Id ! S ⊗ Id ! T ⊗ Id
# ΘJ # ΘSJ # ΘS # ΘT

BJ ! InnerSJ ! InnerS ! [T, T ]

Theorem 1. The four triples (J,BJ, InnerSJ ,ΘJ), (SJ, InnerSJ ,ΘSJ),
(CJ, InnerCJΘCJ) and (T, [T, T ], ΘT ) are cyclic. Moreover the operads J ,
SJ , CJ and T are cyclic.

Proof. The first Assertions follows from Lemmas 18, 19, 22 and 23. It follows
that the S-modules J , SJ , S and T are cyclic. For an operad, the definition
of cyclicity requires an additional compatibility condition for the action of
the cycle, see [5]. Since this fact will be of no use here, the proof will be
skipped. It is, indeed, formally the same as the proof for the associative
operad, see [5].

5.9 Consequences for the free special Jordan algebras

Corollary 2. We have BSJ(D) ' InnerSJ(D) for any D, or, equivalently,
TAG(SJ(D)) ' TKK(SJ(D)).

Proof. Lemma 23 shows that the natural map ΣBSJ = ΣInnerSJ is an
isomorphism. Thus the corollary follows from Lemma 15.

For any D, set M(D) = M(D)1D .
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Corollary 3. The space M(D) of multilinear missing tetrads is a SD+1

-module

Proof. By Theorem 1, SJ and S are compatibly cyclic. ThereforeM(D) is
a SD+1-module

For a Young diagram Y, denote by ci(Y) the height of the ith column.

Lemma 24. Let Y be a Young diagram of size D + 1. Assume that S(Y)
occurs in the SD+1-module M(D).

1. We have c1(Y) ≥ 5 or c1(Y) = c2(Y) = 4.
2. If moreover D = 2 or 3 modulo 4, then we have c1(Y) ≤ D − 1.

Proof. Recall that
S(Y)|SD

= ⊕Y′∈ResY S(Y′).
Since M(3) = 0 by Cohn’s reversible Theorem, ResY contains no Young
diagram of height < 4. So it is proved that c1(Y ) ≥ 4. Moreover if c1(Y) = 4,
removing the bottom box on the first column does not give rise to a Young
diagram, what forces that c2(Y) = 4. Assertion 1 is proved.

Note that the sign representation of SD occurs with multiplicity one in
T (D). So if D = 2 or D = 3 modulo 4, this representation occurs in the
multilinear part of A(D), so it does not occur in M(D). It follows easily
that c1(Y) ≤ D − 1.

The Jordan multiplication induces the maps L : CJ1(D) ⊗ Mn(D) !
Mn+1(D). On the multilinear part, it provides a natural map:

LD : Ind
SD+1

SD
M(D)!M(D + 1).

Lemma 25. For D even, the map LD is onto.

Proof. In the course of the proof of Cohn’s Reversible Theorem [16], it ap-
pears that CJ1(D).CJn(D) = CJn+1(D) when n is even. Therefore the map
LD is onto for D even.

Corollary 4. 1. As a S5-module, we have M(4) = S(15).
2. As a S6-module, we have M(5) = S(2,14).
3. As a S7-module, we have M(6) = S(3,14)

2

4. As a S8-module, we have
M(7) = S(4,14)

2 ⊕ S(3,2,13)⊕ S(22,14)⊕ S(3,15).
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Proof. The cases D = 4 or D = 5 are easy and the proof for those cases is
skipped. We have dimM(D) = D!/2− dimSJ (D) for any D ≥ 1. In [6], it
is proved that dimSJ (6) = 330 and dimSJ (7) = 2345. Therefore we have

dimM(6) = 30 and dimM(7) = 175.
Let’s consider the case D = 6. The two Young diagrams of size 7 and

height 5 are Y1 = (3,14) and Y2 = (22,13). By Lemma 24, S(Y1) and
S(Y2) are the only possible simple submodules of the S7-moduleM(6). We
have dim S(Y1) = 15 and dim S(Y2) = 14. Since dim M(6) = 30, we have
M(6) ' S(3,14)

2
.

For D = 7 , let’s consider the following Young diagrams of size 7

K1 = K2 = K3 = K4 = K5 =
We have Ind ResS(3,14) = S(K1)2 ⊕ S(K2)⊕ S(K3)⊕ S(K4)⊕ S(K5). It
follows from Lemma 25 that

M(7) = ⊕1≤i≤5 S(Ki)
ki

where k1 ≤ 4 and ki ≤ 2 for 2 ≤ i ≤ 5. The list of Young diagrams Y such
that ResY ⊂ {K1, K2, K3, K4, K5} is

Y1 = Y2 = Y3 = Y4 =
If follows that the S8-module M(7) can be decomposed as

M(7) = ⊕1≤i≤4 S(Yi)
mi .

Since dimM(7) = 175 while dimS(Y1) = 35, dimS(Y2) = 64, dimS(Y3) =
20, and dimS(Y4) = 21, it follows that

35m1 + 64m2 + 20m3 + 21.m4 = 175.
The inequality ki ≤ 2 for i ≥ 2 adds the constraint mi ≤ 2 for any i. Thus
the only possibility is m1 = 2, m2 = 1, m3 = 1, m4 = 1, and therefore

M(7) = S(Y1)2 ⊕ S(Y2)⊕ S(Y3)⊕ S(Y4)
.

Corollary 5. We have MD(D) = 0 for D ≤ 4, and
MD(5) = S(2,13),
MD(6) = S(16)⊕ S(2,14)⊕ S(3,13)⊕ S(22,12)
MD(7) = [S(2,15)⊕ S(22,13)⊕ S(3,14)⊕ S(3,2,12)⊕ S(4,13)]2, and
[MD(8)] = 4 [4,14] + 6 [3,2,13] + [22,4] + 5 [3,15] + 2 [2,16]

+2 [2,16] + 2 [23,12] + [32,12] + 3 [4,2,12] + 2 [5,13],
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where [Y] stands for the class of S(Y), for any Young diagram Y.

Proof. The natural transformation ΘCJ : CJ ⊗ Id ! InnerCJ gives rise to
a natual transformation ΘM : M ⊗ Id ! MD. By Lemmas 23 and 19, the
triple (M ⊗ Id,MD,ΘM) is cyclic. Therefore the following equality

[MD(D + 1)] = [Ind ◦ ResM(D)]− [M(D)]
holds in K0(SD+1) by Lemma 17. Since Corollary 4 provides the character
of the SD+1-moduleM(D) for D ≤ 7, it is possible to compute the character
of MD(D) for any D ≤ 8. The other case being simpler, some details will
be provided for MD(8).

Let’s consider the notations of Corollary 4. We have
[M(7)] = 2 [Y1] + [Y2] + [Y3] + [Y4].

It follows that
Res[M(7)] = 4 [K1] + 2 [K2] + 2 [K3] + 2 [K4] + [K5], and

Ind ◦ Res[M(7)] = 6 [Y1] + 7 [Y2] + 2 [Y3] + 6 [Y4] + 2 [2,16]
+2 [2,16] + 2 [23,12]+ [32,12] + 3 [4,2,12] + 2 [5,13]

from which the formula follows.

5.10 Consequence for the free Jordan algebras

Corollary 6. We have Bk(J(D)) = Innerk J(D) = Innerk SJ(D) for any
k ≤ 8 and any D.

Proof. By Theorem 1, we have
ΣBk(J(D)) ' ΣJk−1(D)⊗KD, and ΣBk(SJ(D)) ' ΣSJk−1(D)⊗KD.

By Glennie Theorem, Jk−1(D) and SJk−1(D) are isomorphic for k ≤ 8.
Therefore we have

ΣBk(J(D)) ' ΣBk(SJ(D))
for any k ≤ 8 and any D. By Lemma 15, it follows that Bk(J(D)) '
Bk(SJ(D)) whenever k ≤ 8.

Let’s consider the commutative diagram
Bk(J(D))

α
−! Bk(SJ(D))

# a # b

Innerk J(D)
β
−! Innerk SJ(D)

Observe that all maps are onto. By Corollary 2, b is an isomorphism, while
it has been proved that α is an isomorphism for k ≤ 8. Therefore, the maps
a and α are also isomorphism, what proves Corollary 6.
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Corollary 7. The space SI(D) of special identities is a SD+1-module.

Proof. By Theorem 1, J and SJ are cyclic and the map J (D) ! SJ (D)
is SD+1-equivariant. Therefore SI(D) is a SD+1-module.

For example, let G be the multilinear part of the Glennie Identity. As an
element of SI(8), it generates a simple S8 module M ' S(32). What is the
S9-module M̂ generated by G in SI(8)? It is clear that there are only two
possibilities

A) M ' S(33). In such a case, M̂ = M .
B) M̂ ' S(32,2,1).

If so, Res M̂ ' S(32,2) ⊕ S(3,22,1) ⊕ S(32,12). This would provide two
independent new special identities in J(4). When computing the simplest of
these two identities, we found a massive expression. Unfortunately, it was
impossible to decide if this special identity is zero or not.

6. The Conjecture 3

Conjecture 2 is quite natural. However, the vanishing of H∗(sl2 J(D))ad does
not look very tractable. Conjecture 3 is a weaker and better version. As a
consequence of Theorem 1, it will be proved that it is nevertheless enough to
deduce Conjecture 1.

Conjecture 3. We have Hk(sl2 J(D))sl2 = 0 for any k ≥ 1.

Note that Conjecture 3 is obvious for k = 1, follows from [1] for k = 2
and was proved for k = 3 in Section 4. Let Ju(D) = K ⊕ J(D) be the free
unitary Jordan algebra over D generators. We have

sl2 J
u(D) = sl2 n sl2 J(D).

It follows easily from [12] that H∗(sl2 J
u(D)) = H∗(sl2)⊗H∗(sl2 J(D))sl2 , so

Conjecture 3 is equivalent to

Conjecture 3’. We have H∗(sl2 J
u(D)) ' H∗(sl2).

The Conjecture 3 is enough to deduce Conjecture 1, as proved in the next

Theorem 2. If Conjecture 3 holds for sl2 J(1 +D), then Conjecture 1 holds
for sl2 J(D).

38



Proof. The proof is similar to the proof of Corollary 1. Assume Conjecture
3 holds for sl2 J(1 +D).

Since H∗(sl2 J(D)) is a summand in H∗(sl2 J(1 + D))), it follows that
Hk(sl2 J(D))sl2 = 0 for any k ≥ 1. By Lemma 12, this implies that BJ(D) =
InnerJ(D). As in the proof of Corollary 1, we get that

(E1) [λ[sl2 J(D)] : L(0)] = 1
where [sl2 J(D)] denotes the class of sl2 J(D) in Man(GL(D)× PSL(2)).

Similarly ΣH∗(sl2 J(D)) it is a component of H∗(sl2 J(1+D)), and there-
fore ΣH∗(sl2 J(D))sl2 vanishes. The complex computing ΣH∗(sl2 J(D)) is
Λ sl2 J(D)⊗ Σsl2 J(D). It follows that

[(λ[sl2 J(D)].[Σ sl2 J(D)]) : L(0)] = 0.
Using that [Σ sl2 J(D)] = [ΣBJ(D)] + [ΣJ(D)].[L(2)], the previous equation
can be rewritten as:

(E2) [λ[sl2 J(D)] : L(2)][ΣJ(D)] = −[λ[sl2 J(D)] : L(0)][ΣBJ(D)].
By Theorem 1, we have [ΣBJ(D)] = [KD][ΣJ(D)] and by equation (E1) we
have [λ[sl2 J(D)] : L(0)] = 1. So the right side of (E2) can be simplified, and
this equation can be rewritten as

(E3) [λ[sl2 J(D)] : L(2)][ΣJ(D)] = −[KD][ΣJ(D)].
The ring Ran(GL(D)) is ring of formal series, see [18] or Section 1.4, and it
has no zero divisors. It follows that

(E4) [λ[sl2 J(D)] : L(2)] = −[KD].
Using that BJ(D) = InnerJ(D), Equations E1 and E4 implies that:

λ([J(D)][L(2)] + [InnerJ(D)]) : [L(0)] = 1, and
λ([J(D)][L(2)] + [InnerJ(D)]) : [L(2)] = −[KD].

So by Lemma 1, Conjecture 3 implies Conjecture 1.
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