
NOETHERIAN ENVELOPING ALGEBRAS OF SIMPLE

GRADED LIE ALGEBRAS

NICOLÁS ANDRUSKIEWITSCH AND OLIVIER MATHIEU

Abstract. It is shown that the universal enveloping algebra of an
in�nite-dimensional simple Zn-graded Lie algebra is not Noetherian..

1. Introduction

Let K be a �eld of characteristic 0. If a Lie algebra is �nite dimensional,
then its enveloping algebra is Noetherian. Whether the converse is true has
been asked by many authors, among them R. Amayo and I. Stewart, see [1,
Question 27], K. A. Brown, see [2, Question B], J. Dixmier, and V. Latyshev.
Besides its intrinsic interest, this is an unavoidable question in the problem
of the classi�cation of Noetherian Hopf algebras. S. Sierra and C. Walton
stated this question as a Conjecture.

Conjecture 1.1. [10] The universal enveloping algebra of an in�nite-dimen-
sional Lie algebra is not Noetherian.

Intuitively, since `large' Lie algebras satisfy the Conjecture, e.g. the en-
veloping algebra of a free Lie algebra in two generators is not Noetherian,
one expects that a counterexample to the Conjecture, if any, should be in
some sense 'small'. In this direction, a breakthrough result was obtained in
2013 by Sierra and Walton. Recall that theWitt algebra isW (1) := DerK[t].

Theorem 1.2. [10, 0.5] The enveloping algebra of W (1) is not Noetherian.

This result allows to conclude that the enveloping algebra of an in�nite
dimensional simple Z-graded Lie algebra of �nite growth is not Noetherian,
by going over the classi�cation of such Lie algebras obtained in [9].

However there are neither classi�cation results for simple Z-graded Lie
algebras of arbitrary growth, nor for simple Zn-graded Lie algebras for n ≥ 2.
Nevertheless, the following result will be established in the present paper.

Theorem 1.3. The universal enveloping algebra of an in�nite-dimensional
simple Zn-graded Lie algebra is not Noetherian.
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See below for our conventions on Zn-graded Lie algebras. The proof uses
the Theorem of Sierra and Walton, and some classi�cation results of the
second author, namely the Theorem 4 and the results of Section 8 of [9].

2. Conventions and Preliminaries

2.1. Conventions about graded vector spaces.

In the whole paper, we will adopt the following convention. A vector space
M endowed with a decompositionM = ⊕m∈ZnMm will be called a Zn-graded
vector space only if all homogeneous components Mm are �nite dimensional.

A Lie algebra L endowed with a Zn-grading is called a Zn-graded Lie
algebra if we have

[Ln,Lm] ⊂ Ln+m for any n,m ∈ Zn.

A Zn-graded Lie algebra L of dimension ≥ 2 without nontrivial proper
Zn-graded ideals is called a simple Zn-graded Lie algebra. For example,
sl(2) ⊗ K[t, t−1] is a simple Z-graded Lie algebra, but it is not simple as a
Lie algebra. The de�nitions of a Zn-graded L-module and a simple Zn-
graded L-module are similar.

2.2. Criteria for noetherianity of enveloping algebras.

A section of a Lie algebra L is a Lie algebra s isomorphic to q/m for some
Lie subalgebra q ⊂ L and some ideal m of q.

The following standard observations are useful, see [10, 1.7] and [4, 2.1].

Lemma 2.1. Let L be a Lie algebra such that U(L) is Noetherian.

(a) L satis�es the ascending chain condition on Lie subalgebras.

(b) L is �nitely presented and Hk(L) is �nite dimensional for any k ≥ 0.

(c) If s is a section of L, then U(s) is also Noetherian.

(d) If s is an abelian section of L, then dim s < ∞.

(e) If L is a Lie subalgebra of �nite codimension of some Lie algebra L′,
then U(L′) is also Noetherian. □

2.3. Examples of enveloping algebras that are not Noetherian.

Lemma 2.1 allows to deduce that many Lie algebras satisfy Conjecture 1.1
from Lie algebras that are already known to ful�ll it, for instance:

(i) The free Lie algebra Free(Z) on a vector space Z of dimension ≥ 2.
Indeed U(Free(Z)) ≃ T (Z) is not Noetherian.

(ii) [10, 0.5] The positive Witt algebra W+. By Lemma 2.1(e), this result
is equivalent to the result stated in the introduction.

See [10, 4] for a list of Lie algebras whose enveloping algebras are not
Noetherian by the remarks above. By Lemma 2.1.(c), another example is a
Kac�Moody algebra of inde�nite type, cf. [6, Corollary 9.12].
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3. Growth of modules over Z-graded Lie algebras

In this section and in the next three, we investigate the noetherianity con-
dition for Z-graded Lie algebras. The present section involves the questions
of �nite generation and growth.

Given a Z-graded vector space M and an integer n ∈ Z, we set
M≥n := ⊕k≥nMk.

The subspaces M>n, M≤n and M<n are similarly de�ned.

3.1. Finite generation.

Let L be a Z-graded Lie algebra. We set

L+ = L>0 and L− = L<0.

Lemma 3.1. Assume that the Lie algebra L is �nitely generated. Then L+

and L− are �nitely generated subalgebras.
Moreover let M be a �nitely generated Z-graded L-module. Then the L+-

module M≥0 and the L−-module M≤0 are �nitely generated.

Proof. By hypothesis, there is an integer d > 0 such that ⊕−d≤k≤d Lk gen-
erates L. By Lemma 18 of [8], ⊕1≤k≤d Lk generates L+ and ⊕−d≤k≤−1 Lk

generates L−, which proves the �rst assertion.
Let S be a �nite set of generators of M . There is an integer e such that S

lies in M≤e. Since M≤e is a L≤0-module, we have M = U(L+) ·M≤e. Since
in addition L+ is generated by ⊕1≤k≤d Lk, we have

Mn =
∑

1≤k≤d

Lk ·Mn−k,

for any n > e. It follows easily that M≥0 is �nitely generated. The proof of
the �nite generation of the L−-module M≤0 is similar. □

3.2. Finite and intermediate growth.

A Z-graded vector space M is called of �nite growth if the function

n 7→ dim Mn

is bounded by a polynomial. It is called of intermediate growth if both limits

lim sup
log+(dimMn)

n
and lim sup

log+(dimM−n)

n

are zero, where the function log+ is de�ned by log+(x) = log(x) if x ≥ 1 and
log+(x) = 0 otherwise. The formal series

χ±
M (z) :=

∑
n≥0

dim M±n z
n

are called the two generating series of M . Equivalently, M has intermediate
growth i� both series χ+

M (z) and χ−
M (z) are convergent for |z| < 1.
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Assume now that M = ⊕n≥1Mn is a positively graded vector space. Then
the symmetric algebra S(M) is a nonnegatively graded vector space. The
following lemma is well-known.

Lemma 3.2. Assume that the positively graded vector space M has inter-
mediate growth. Then S(M) also have intermediate growth.

Proof. For any integer n ≥ 1, set an = dim Mn. We have

χ+
M (z) =

∑
n≥1

anz
n, χ+

S(M)(z) =
∏
n≥1

1

(1− zn)an
.

If M is �nite dimensional, S(M) has �nite growth. Otherwise, the lemma
follows because these series have the same radius of convergence. □

3.3. Growth of Z-graded L-modules.

Let L be a Z-graded algebra and let M be a Z-graded L-module. For any n,
let M int

n the subspace of all m ∈ Mn such that U(L+) ·m has intermediate
growth. Set M int = ⊕n∈ZM

int
n .

Lemma 3.3. The subspace M int is a L-submodule.

Proof. Since M int is clearly a L+-module, it is enough to show that for any
homogeneous elements u ∈ L of degree d ≤ 0 and v ∈ M int, u · v belongs to
M int. First note that

U(L+)u ⊂ U(L+)L≥d = L≥dU(L+) = U(L+)⊕⊕d≤k≤0 LkU(L+).

Therefore we have

U(L+)u.v ⊂ U(L+).v +
∑

n≤k≤0

LkU(L+).v.

Thus U(L+)u.v has intermediate growth, i.e. u · v belongs to M int. □

Lemma 3.4. Let L be �nitely generated Z-graded Lie algebra and let M be
a simple Z-graded module. Assume that, for some homogeneous v ∈ M \ 0,
the vector space L · v has intermediate growth. Then M has intermediate
growth.

Proof. Let K+ = {x ∈ L+ | x.v = 0}. As a graded space, the L+-module

IndL
+

K+ Kv is isomorphic to S(L+/K+). By Lemma 3.2, IndL
+

K+ Kv has in-

termediate growth. Thus U(L+) · v, a quotient of IndL
+

K+ , has intermediate
growth too.

Since M is simple, from Lemma 3.3 we infer that any cyclic U(L+)-sub-
module of M has intermediate growth. Now the L+-module M≥0 is �nitely
generated by Lemma 3.1, hence M≥0 has intermediate growth. Similarly
M≤0 has intermediate growth; therefore M has intermediate growth. □
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4. Rank one Lie algebras of class V

We de�ne �rst the general notions of roots and rank of a Z-graded Lie algebra
L. Then we split the proof that U(L) is not Noetherian into three cases: Lie
algebras of class V are treated in this section; the next section 5 is devoted
to class S . The last section 6 deals with Lie algebras of rank ≥ 2.

4.1. Roots and rank.

Let L = ⊕n∈Z be a Z-graded Lie algebra. We �x, once and for all, a Cartan
subalgebra h of L0, i.e., h is a nilpotent self-normalizing subalgebra of L0

[3]. For any α ∈ h∗ and any n ∈ Z, we set

Lα
n = {x ∈ Ln | (ad(h)− α(h))N (x) = 0 ∀h ∈ h and N >> 0}.

Also, Lα̃ := Lα
n for α̃ = (α, n) ∈ h∗ × Z. The set of roots of L is the set

∆ := {α̃ | Lα̃ ̸= 0} (with our nonstandard de�nition, 0 is a root). Therefore

L = ⊕α̃∈∆ Lα̃

is the generalized root space decomposition of L.
A root α̃ = (α, n) is called real if α ̸= 0 and imaginary otherwise. Let

∆re, respectively ∆im, be the set of real, respectively imaginary, roots.

The root lattice is the subgroup Q ⊂ h∗×Z generated by ∆. By de�nition
the rank of L is the rank of Q.

4.2. Rank one Lie algebras.

Let L = ⊕n∈Z be a Z-graded Lie algebra of rank one. Therefore there exists
α̃ = (α, 1) such that ∆ lies in Z.α̃. We keep the terminology of [9]. When
α = 0 or, equivalently, when the set of real roots is void, we say that L
belongs to the class V . Otherwise, we say that L belongs to the class S .
Here the letter S stands for string, because, roughly speaking, all real roots
are on a �string�.

4.3. Rank one Lie algebras of class V .

This case follows easily from the next result.

Lemma 4.1. [7, Lemma 22] Let L be a Z-graded Lie algebra of class V . If
L = [L,L], then L is not �nitely generated. □

Corollary 4.2. Let L be a simple Z-graded Lie algebra of class V . Then
U(L) is not Noetherian.

Proof. Immediate from Lemmas 2.1(c) and 4.1. □
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5. Rank one Lie algebras of class S

The case of Lie algebras of class S is more di�cult than the previous one.
Recall that a Z-graded Lie algebra L belongs to S if there exists a nonzero
α ∈ h∗ such that Ln = Lnα

n for any n ∈ Z.
The main step is Theorem 5.6, which is implicit in [9]. Navigating through

chapters 7 and 8 of loc. cit. is not easy. Thus for the sake of the reader, we
rewrite parts of those in a convenient way.

We need the following de�nition. For n ̸= 0, let L{n} be the Lie algebra
L endowed with a grading rescaled by a factor of n, i.e. we have

L{n}nk = Lk, k ∈ Z, L{n}m = 0 if n ̸ |m.

The Z-graded Lie algebra L{n}, again in class S , is called a rescaling of L.

5.1. Local Lie algebras.

Let P be the set of pairs of integers (i, j) with i, j, i+j ∈ {−1, 0, 1}. Following
[5], see [6, Exercise 1.8, p. 13], a local Lie algebra is a graded vector space

G = G−1 ⊕G0 ⊕G1

endowed with a degree preserving bracket [ , ] which is de�ned only on
∪(i,j)∈P Gi × Gj and which satis�es the Jacobi identity whenever it makes
sense. Equivalently, this means that G0 is a Lie algebra, G1 and G−1 are
G0-modules and the bracket [, ] : G−1 ×G1 → G0 is G0-equivariant.

The notions of morphisms between local Lie algebras, local Lie subalgebras
and local ideals are de�ned in an evident way. Analogously a local Lie
algebra S is a called a section of G if S is isomorphic to H/K for some local
subalgebra H ⊂ G and some local ideal K of H.

Given a Z-graded Lie algebra L, its local part
Lloc := L−1 ⊕ L0 ⊕ L1

is evidently a local Lie algebra. Conversely, given a local Lie algebra G there
are Lie algebras whose local part is G. One of them, denoted by Lmax(G),
is de�ned as follows. As a vector space we have

Lmax(G) = Free(G−1)⊕G0 ⊕ Free(G1)

where Free(G±1) denotes the free Lie algebra on the vector space G±1. Then
the local Lie bracket and the Z-grading extend uniquely to Lmax(G) [5]. Now
the functor G → Lmax(G) is the left adjoint of the functor L → Lloc [8]. Let
I be the largest graded ideal of Lmax(G) such that I ∩G = 0 and set

Lmin(G) = Lmax(G)/I.
Notice that, if L is a Lie Z-graded Lie algebra which is generated by its local
part G, then there are natural epimorphisms

Lmax(G) ↠ L and L ↠ Lmin(G),

so L is between the Lie algebras Lmax(G) and Lmin(G). We conclude:
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Lemma 5.1. Let G be a local Lie algebra and let L be a Z-graded Lie algebra.
If G is a section of Lloc, then Lmin(G) is a section of L. □

5.2. Examples of simple Lie algebras of class S .

We start recalling the de�nitions of some Lie algebras of class S .

◦ The centerless Virasoro algebra is W = DerK[t, t−1]. It has a natural
grading, relative to which the element tn+1 d

dt is homogeneous of degree n.

We have W0 = h = K.t d
dt ; clearly W is in class S .

◦ The Witt algebra is W (1) = DerK[t]; it is a graded subalgebra of W and
also belongs to S .

◦ The contragredient Lie algebra G(2 22 2). It is generated by �ve elements
h, e1, e2, f1, f2 and de�ned by the following relations

[h, ei] = 2ei, [h, fi] = −2fi, [ei, fj ] = δi,j h, (1)

for any i, j ∈ {1, 2}, where, as usual, δi,j is the Kronecker symbol.

It has a Z-grading relative to which the ei's have degree one, h has degree
zero and the fi's have degree −1. Let G be the local part of the Lie algebra
G(2 22 2). Since G(2 22 2) is generated by its local part and is de�ned by local
relations, we have

G(2 22 2) = Lmax(G).

Lemma 5.2. We have G(2 22 2) = Lmin(G).

Proof. This follows because the Lie algebra G(2 22 2) is simple [5]. □

5.3. A simple criterion for a section isomorphic to G(2 22 2).

Let L be a Z-graded Lie algebra of class S with α ∈ h∗ as above. In this
subsection and in the next one, we do not assume that L is simple as a
Z-graded algebra. We will describe criteria for the existence of a section of
L isomorphic to G(2 22 2).

For n ̸= 0, let Bn : L−n × Ln → K be the bilinear map

Bn : (x, y) ∈ L−n × Ln 7→ α([x, y]).

Let Kn and K−n be its right kernel and its left kernel. Also set K0 = Kerα.

Lemma 5.3. Assume that H0(K0,Ln/Kn) has dimension ≥ 2 for some
n > 0. Then, up to a rescaling, G(2 22 2) is a section of L.

Proof. We can assume that n = 1. The bilinear form B1 provides a nonde-
generate pairing of L−1/K−1 and L1/K1. Thus dimH0(K0,L−1/K−1) ≥ 2.
Hence there is a L0-module L′

−1 with K−1 ⊂ L′
−1 ⊂ L−1 such that

dimL′
−1/K−1 = 2 and [K0,L′

−1] ⊂ K−1.

Let K′
1 be the orthogonal in L1 of L′

−1. Then

dimL1/K′
1 = 2 and [K0,L1] ⊂ K′

1.
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Therefore, I := K−1 ⊕ K0 ⊕ K′
1 is a local ideal of the local Lie algebra

G := L′
−1⊕L0⊕L1 and clearly G/I is isomorphic to the local part of G(2 22 2).

It follows from Lemmas 5.1 and 5.2 that G(2 22 2) is a section of L. □

5.4. An improved criterion for a section isomorphic to G(2 22 2).

Using the notation of the previous section, we show the same criterion with
a weaker hypothesis.

Lemma 5.4. Assume that Ln/Kn has dimension ≥ 2 for some integer n.
Then, up to a rescaling, G(2 22 2) is a section of L.

Proof. We can assume that n = 1 and that L is generated by its local part.
This implies that L+ is generated by L1.

By Lemma 7.9 of [9], the function n 7→ rk Bn has in�nite growth. The
maximal dimension of cyclic modules in L⊗n

1 growths polynomially, so the
same property holds into its quotient Ln/Kn. It follows that the function
n 7→ dim H0(K0,Ln/Kn), which measures the minimal number of generators
of the K0-module Ln/Kn, has an in�nite growth. Therefore, for some n, we
have

dim H0(K0,Ln/Kn) ≥ 2.

Thus by Lemma 5.3, G(2 22 2) is a section of L. □

5.5. The dichotomy for the class S .

Let L be a simple Z-graded Lie algebra of class S . It is implicitely proved
in [9, Chapter 8] that L is isomorphic to W or W (1), under the hypothesis

all bilinear forms Bn have rank ≤ 1.(H1)

Unfortunately, the explicit hypothesis used in [9, Chapter 8] is

the Lie algebra L has intermediate growth.(H2)

It would be long to go into the details of loc. cit. to explain why (H1) can
be used instead of (H2). Here we can assume that L is �nitely generated.
Under this additional hypothesis, the next lemma gives an easy explanation.

Lemma 5.5. If L is �nitely generated, then (H1) implies (H2).

Proof. Let M := ⊕n∈Z L∗
n be the graded dual of the adjoint module. The

hypothesis (H1) means that the Z-graded space L · α has homogenous com-
ponents of dimension ≤ 1. By Lemma 3.4, we see that M has intermediate
growth, i.e. (H2) holds. □

The following result is implicitely proved in [9], even without the hypoth-
esis of �nite generation.

Theorem 5.6. Let L be a simple Z-graded Lie algebra of class S . Assume
that L is �nitely generated. Then

(i) either L is isomorphic to sl(2), W (1) or W ,
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(ii) or L contains a nonabelian free Lie algebra.

Proof. (i) First assume that the bilinear Bn has rank ≤ 1 for any n. By
Lemma 5.5, L has intermediate growth. Thus it follows from Proposition
8.9 of [9] that L is isomorphic to sl(2), W (1) or W .

(ii) Otherwise, the bilinear form has rank ≥ 2 for some n. By Lemma 5.4
the Lie algebra G(2 22 2) is a section of L. By Lemma 5.2, the Lie algebra G(2 22 2)
contains a nonabelian free Lie algebra, namely the subalgebra generated by
e1 and e2. Hence L contains a nonabelian free algebra. □

Corollary 5.7. Let L be a simple Z-graded Lie algebra of class S . Then
U(L) is not Noetherian, except if L is isomorphic to sl(2).

Proof. Assume that L is in�nite dimensional. By Theorem 5.6, L contains
a subalgebra isomorphic to the Witt algebra W (1) or a nonabelian free sub-
algebra. In the �rst case, Theorem 1.2 implies that U(L) is not Noetherian.
In the second case, we already observed that a nonabelian free Lie algebra
is not Noetherian, so neither is U(L). □

6. Z-graded Lie algebras of rank ≥ 2

In this section we investigate the noetherianity condition for Z-graded Lie
algebras of rank ≥ 2.

We will encounter Lie algebras M with a decomposition M = ⊕Mn

satisfying [Mn,Mm] ⊂ Mn+m where the homogeneous components could
be of in�nite dimension; we shall call them weakly Z-graded Lie algebras.

6.1. The hypothesis (H).

Let L be a Z-graded Lie algebra. Consider the following hypothesis

There exist α̃, β̃ ∈ Q, β̃ /∈ Q.α̃, such that (β̃ + Z.α̃) ∩∆ is in�nite.(H)

Lemma 6.1. If L satis�es the hypothesis (H), then U(L) is not Noetherian.

Proof. For any integer k ≥ 1, set ∆(k) = (k.β̃ + Z.α̃) ∩∆ and

Mk = ⊕γ̃∈∆(k) Lγ̃ .

Since we have [Mk,Ml] ⊂ Mk+l for any k, l ≥ 1, the vector space

M := ⊕k≥1Mk

is a weakly positively graded Lie algebra. The natural map

M1 → H1(M) = M/[M,M]

is one to-to-one, therefore H1(M) is in�nite dimensional. Since β̃ is not in
Q.α̃, the sets ∆(k) are pairwise disjoint. Hence M is a Lie subalgebra of L.
By Lemma 2.1 (b), U(L) is not Noetherian. □
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6.2. Constructions of ideals in Lie algebras.

The next two lemmas show that certain subspaces of a Lie algebra are indeed
ideals. Results of this kind are useful in the study of simple Lie algebras.

Let L be a Lie algebra.

Lemma 6.2. [7, Lemma 6] Let A and B be linear subspaces of L such that
L = A+ B and [A,B] ⊂ B. Then B + [B,B] is an ideal of L. □

Let L be a linear subspace of L. We say that L is locally L-nilpotent if,
for any x ∈ L, we have Ad(L)1+n(x) = 0 for some integer n = n(x) ≥ 0.

Lemma 6.3. Let L be a linear subspace such that L is locally L-nilpotent.
Then the following subspace is an ideal of L:

I := ∩N≥0Ad(L)
N (L).

Proof. Let x ∈ L. For any y ∈ L and any N > 0, we have

[x,Ad(L)N (y)] ⊂
∑

0≤k≤N

Ad(L)N−k([Ad(L)k(x), y]).

Assume now that Ad(L)n+1(x) = 0. Thus for any N ≥ n, we have

[x,Ad(L)N (L)] ⊂ Ad(L)N−n(L)
and therefore [x, I] ⊂ I. □

6.3. A dichotomy for the Z-graded Lie algebras of rank ≥ 2.

Let L be a simple Z-graded Lie algebra of rank ≥ 2. We now de�ne two
hypothetical properties, and show that any such L satis�es one of them. By
the end of the section it will be clear that these properties are mutually
exclusive.

To start with, we de�ne the notion of a string. Let α̃ ∈ Q and β̃ ∈ ∆.
There are a, b ∈ Z ∪ {±∞} with a < 0 < b such that

(i) β̃ + kα̃ belongs to ∆ for any k ∈]a, b[, but

(ii) neither β̃ + aα̃ nor β̃ + bα̃ belongs to ∆.

The set {β̃ + kα̃ | k ∈]a, b[} is called the α̃-string through β̃.

The �rst hypothetical property (Hre) is the following:

There exist α̃ ∈ ∆re, β̃ ∈ ∆, β̃ /∈ Q.α̃, such that

the α̃-string through β̃ is in�nite.
(Hre)

The hypothesis (Hre) is obviously stronger than (H).

The second hypothetical property is the notion of weak integrability. Fol-
lowing [9], we say that L is weakly integrable if, for any α̃ ∈ ∆re, we have⋂

n≥0

Ad(Lα̃)n(L) = 0.
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Lemma 6.4. Let L be a simple Z-graded algebra of rank ≥ 2. Then either

(a) L satis�es the hypothesis (Hre), or
(b) L is weakly integrable.

Proof. Assuming that L does not satisfy (Hre), we will prove that L is weakly
integrable. Let α̃ ∈ ∆re. Set

A = ⊕
β̃∈Q·α̃ L

β̃ and B =
⊕

β̃ /∈Q·α̃

Lβ̃.

By hypothesis any α̃-string through any root β̃ /∈ Qα̃ is �nite. Hence

(i) The restriction of Ad(Lα̃) to B is locally nilpotent, and
(ii) ∩n≥0Ad(Lα̃)n(L) ⊂ A.

Since L has rank ≥ 2, B ≠ 0. By Lemma 6.2, the simplicity of L implies
that L = B + [B,B]. Hence L is Ad(Lα̃)-locally nilpotent.

By Lemma 6.3, we see that I := ∩n≥0Ad(Lα̃)n(L) is an ideal. Since
we have I ⊂ A, we conclude that I = 0. In other words, L is weakly
integrable. □

6.4. Non-noetherianity for Z-graded Lie algebras of rank ≥ 2.

Corollary 6.5. Let L be a simple Z-graded algebra of rank ≥ 2. If U(L) is
Noetherian, then L is �nite dimensional.

Proof. By Lemma 6.4, L satis�es the hypothesis (Hre) or L is weakly inte-
grable. In the �rst case, U(L) is not Noetherian by Lemma 6.1.

In the latter case, L is isomorphic to an a�ne Lie algebra or it has �nite
dimension by [9, Theorem 4]. But if L is an a�ne Lie algebra, then it has an
in�nite dimensional abelian subalgebra, hence U(L) is not Noetherian. □

7. Proof of the main result

7.1. Simple weakly Z-graded Lie algebras.

Lemma 7.1. Let L = ⊕n∈Z Ln be a simple weakly Z-graded Lie algebra such
that L ≠ L0. If U(L) is Noetherian, then dimLn is �nite for any n ∈ Z.

Proof. Recall that L+ = L>0 and L− = L<0.

Step 1. We claim that all homogeneous components of L+ are �nite dimen-
sional and there is an ideal K+ of L0 such that

[K+,L+] = 0 and dim L0/K+ < ∞.

By Lemma 2.1, U(L+) is Noetherian, hence L+ is �nitely generated. Thus

(i) dimLn < ∞ for all n ≥ 1, and
(ii) there exists d ∈ N such that L+ = ⟨L1 ⊕ · · · ⊕ Ld⟩.
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Set K+ = {x ∈ L0 | ad(x)(Lk) = 0 for any k = 1, . . . , d}. It is clear that
K+ satis�es the required conditions, hence the claim is proved.

Step 2. Similarly, all homogeneous components of L− are �nite dimensional
and there is an ideal K− of L0 such that

[K−,L−] = 0 and dim L0/K− < ∞

Step 3. It remains to prove that L0 is also �nite dimensional. Set K =
K+ ∩K−. By the previous points, K is an ideal of L. By the simplicity of L
and the fact that L ≠ L0, we conclude that K = 0, hence dimL0 < ∞. □

7.2. The endomorphisms of simple Zn-graded modules.

Let L be a Zn-graded Lie algebra and let M be a simple Zn-graded module.

Lemma 7.2. If M is not simple (as a non-graded module), then there exists
θ ∈ EndL(M) invertible, which is homogeneous of degree p ∈ Zn\0.

Proof. Any v ∈ M decomposes as v =
∑

m vm where vm ∈ Mm. By de�ni-
tion the support of v is the set

supp(v) := {n ∈ Zn | vn ̸= 0}.

Assume that M is not simple. Let v ∈ M \ 0 be the generator of a proper
submodule with a support of minimal cardinal. Since M is graded simple,
supp(v) contains distinct elements m,n; otherwise U(L)·v = U(L)·vn = M .

We claim that there exists θ ∈ EndL(M) mapping vn 7→ vm.

Set θ(u · vn) = u · vm, u ∈ U(L). We have to show that θ is well de�ned.
Let Ud ⊂ U(L) be the subspace of elements of degree d ∈ Zn. Let u ∈ Ud

with u · vn = 0. The support of u · v lies in (d + supp(v)) \ {d + n}, hence
u ·v = 0 and a fortiori u ·vm = 0. Thus θ is well-de�ned, implying the claim.

Clearly, θ is homogeneous of degree p = m−n ∈ Zn. Since Ker θ and Im θ
are graded submodules, Ker θ = 0 and Im θ = M , hence θ is invertible. □

7.3. Simple Zn-graded Lie algebras which are not simple.

Let L be a Zn-graded Lie algebra. The algebra of endomorphisms of the
adjoint module is called the centroid of L.

Lemma 7.3. If the simple Zn-graded Lie algebra L is not simple as a Lie
algebra, then it contains an in�nite dimensional abelian subalgebra.

Proof. By Lemma 7.2, there is an element θ ̸= 0 in the centroid which is
homogeneous of degree m ∈ Zn \ 0. Let 0 ̸= x ∈ L be an homogeneous
element. Let m be the linear span of {θp(x) : p ∈ Z}. For p, q ∈ Z, we have

[θp(x), θp(x)] = θp+q([x, x]) = 0,

hence m is a abelian subalgebra. Moreover the elements θp(x) are nonzero
elements of di�erent degrees, hence m is in�nite dimensional. □
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Corollary 7.4. Assume that the simple Zn-graded Lie algebra L is not sim-
ple as a Lie algebra. Then U(L) is not Noetherian.

Proof. This is a consequence of Lemmas 7.3 and 2.1 (d). □

7.4. Proof of the main result.

An equivalent formulation of the main Theorem is the following

Theorem 1.3. Let L be a simple Zn-graded Lie algebra of in�nite dimension.
Its enveloping algebra U(L) is not Noetherian.

Proof. We can assume that L is simple as a Lie algebra, otherwise U(L) is
not Noetherian by Corollary 7.4.

There exists m = (m1, . . . ,mn) ̸= 0 such that Lm ̸= 0. Without loss
of generality, we can assume that m1 ̸= 0. De�ne the weakly Z-graded Lie
algebra L′ (which is L as Lie algebra) by the requirement that

L′
m =

⊕
(m2,...,mn)∈Zn−1

L(m,m2,...,mn).

We can assume that all homogeneous components of L′ are �nite dimen-
sional, otherwise U(L) is not Noetherian by Lemma 7.1.

Therefore L′ is a simple Z-graded Lie algebra. If L′ has rank one, U(L)
is not Noetherian by corollaries 4.2 and 5.7. Otherwise L′ has rank ≥ 2 and
U(L) is not Noetherian by corollary 6.5. □

Remark 7.5. Let L be a Zn-graded Lie algebra. If L has a simple in�-
nite dimensional graded section, then Theorem 1.3 implies that U(L) is not
Noetherian. In other words, if U(L) is Noetherian, then any simple graded
section has �nite dimension, in particular any maximal graded ideal has �nite
codimension.
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