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Multivariate risk process

Consider a vectorial risk process

Xn =

 X 1
n
...

X d
n

 ,

X k
n = gains of the kth branch of a compagny, during the nth

period, i.e. X k
n = G k

n − Lkn where G k
n is the gain and Lkn the loss.

There may be dependence: vectorial (with respect to k) and/or
temporal (with respect to n).
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Multivariate risk process

Consider a vectorial risk process

Xn =

 X 1
n
...

X d
n

 ,

X k
n = gains of the kth branch of a compagny, during the nth

period, i.e. X k
n = G k

n − Lkn where G k
n is the gain and Lkn the loss.

There may be dependence: vectorial (with respect to k) and/or
temporal (with respect to n).
u > 0: total capital of the compagny.
How to allocate u = u1 + · · ·+ ud between the d branches in an
optimal way? (uk is allocated to the kth branch).
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Solvency 2 rules

New european rules Solvency 2: insurance companies have to
better take into account dependencies in order to compute their
solvency margin.
Standard formula vs Internal models.
Once the main risk drivers for the overall company have been
identi�ed and the global solvency capital requierement has been
computed, it is necessary to split it into marginal capitals for each
line of business, avoid as far as possible that some lines of business
become insolvent too often.

⇒ Minimize a risk indicator.
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Ruin probability

Consider Y k
j =

∑j
p=1

X k
p the total gain of the kth branch on j

periods and Rk
j = uk + Y k

j . The kth branch is insolvent at time j if

Rk
j < 0.

Ruin probability widely studied in dimension 1 both for
continuous and discrete models (Cramer, Lundberg, Gerber,
De Finetti, ...):

Ψ(u) = P(∃j = 1, . . . , n |
j∑

p=1

Xp + u < 0).

In higher dimension (d), we may consider the probability that
one branch fails:

Ψ(u1, . . . , ud ) = P(∃k = 1, . . . , d ; ∃j = 1, . . . , n | Rk
j < 0),

not easy to manipulate (not convex).
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Multivariate risk indicators (1)

S. Loisel (2004) introduced the two following risk indicators
(continuous time:

Ruin cost:

A(u1, . . . , ud ) = −
d∑

k=1

E

 n∑
p=1

Rk
p 11{Rk

p<0}

 ,

Does not take into account the dependence structure.

The following indicator takes into account the dependence
structure:

B(u1, . . . , ud ) =
d∑

k=1

E

 n∑
p=1

11{Rk
p<0}11{

∑d
`=1 R

`
p>0}

 .

not convex and does not take into account the ruin cost.
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Multivariate risk indicators (2)

We consider:

I (u1, . . . , ud ) =
d∑

k=1

E

 n∑
p=1

gk(Rk
p )11{Rk

p<0}11{
∑d

`=1 R
`
p>0}

 .

gk : R → R is a C 1 convex function, with gk(0) = 0, gk(x) ≤ 0
for x ≥ 0 and gk(x) ≥ 0 for x ≤ 0, k = 1, . . . , d it is a penalty
function to the kth branch when it becomes insolvable.
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Multivariate risk indicators (2)

We consider:

I (u1, . . . , ud ) =
d∑

k=1

E

 n∑
p=1

gk(Rk
p )11{Rk

p<0}11{
∑d

`=1 R
`
p>0}

 .

gk : R → R is a C 1 convex function, with gk(0) = 0, gk(x) ≤ 0
for x ≥ 0 and gk(x) ≥ 0 for x ≤ 0, k = 1, . . . , d it is a penalty
function to the kth branch when it becomes insolvable.
Remark: gk(x) = −x is a possible choice (then we consider the ruin
amount).
I is the expected sum of penalties that each line of business would
have to pay due to its temporary potential insolvency (orange area).
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time
1 2 3

Local insolvency Global insolvency

u1

R
1

1

u2

R
2

1

R
1

1
+ R

2

1

u = u1 + u2

∑d
k=1

R
k
p

R
1

p

R
2

p

The red area has been studied by R. Biard, S. Loisel, C. Macci and
N. Veraverbeke (asymptotic properties as u →∞) for a continuous
model.
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Minimization of I

Problem: �nd the minimum u? ∈ Rd
+ with constraint

v1 + · · ·+ vd = u:

I (u?) = inf
v1+...+vd=u

I (v), v ∈ Rd
+.

Tool: a Kiefer-Wolfowitz version of the stochastic mirror
algorithm.

Avantages of the stochastic algorithms approach:

no parametric hypothesis on the law of the Xi 's,
dependence allowed over one period,
high dimension (d) allowed.
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Convexity of I

In what follows, it is assumed that for all i , k , (Y k
i , Si ) admits a

density, Si =
d∑
`=1

Y `
i : cumulated gain for the ith period.

Property

gk are di�erentiable and convex,

gk : R → R with gk(0) = 0, gk(x) ≥ 0 for x < 0,
gk(x) ≤ 0 for x > 0.

Then the risk indicator I is convex on the convex set

Uu = {(v1, . . . , vd ) ∈ (R+)d / v1 + · · ·+ vd = u}.
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Classical algorithms
Mirror descent algorithm

A deterministic version of the Robbins-Monro algorithm

xn+1 = xn − γnf (xn).

x0

x
?

x1x2

slope 1

γ0

slope 1

γ1

14 / 51



Introduction
Stochastic algorithms

Optimization of the risk indicator I
Simulations

Classical algorithms
Mirror descent algorithm

Robbins-Monro algorithm

Often, we have access only to a perturbation of f . ⇒
Robbins-Monro type algorithms:

χn+1 = χn − γn+1ξn+1,

where ξn+1 = f (χn) + εn+1, (εn)n is an centred i.i.d. sequence,
with εn+1 independent of σ(χ0, . . . , χn) = Fn.
Wide literature on this algorithm and its variants: from
Robbins-Monro (1951), Du�o, Küchner and Yin, ...

⇒ convergence of the algorithm a.e. with TCL ... under various
hypothesis.
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Classical algorithms
Mirror descent algorithm

Kiefer-Wolfowitz algorithm

Aim: Minimizing a (strictly) convex C 1 function f =⇒ zero of
∇f .
∇f is usually unknown
Example f (x) = E(F (x , ξ))
∇F is approximated by

Dcn =
F (χn + cn, ξ

1
n)− F (χn − cn, ξ

2
n)

2cn
,

with (ξ1n) and (ξ2n) two independent i.i.d. sequences of random
variables of law ξ. Dcn is seen as a perturbation of ∇f .
Kifer Wolfowitz algorithm: consider

χn+1 = χn − γn
F (χn + cn, ξ

1
n)− F (Xn − cn, ξ

2
n)

2cn
.

Under standard conditions, the algorithm converges a.e. +
TCL ...

16 / 51



Introduction
Stochastic algorithms

Optimization of the risk indicator I
Simulations

Classical algorithms
Mirror descent algorithm

Why can't we use K-W algorithm ?

Linear constraint : u1 + · · ·+ ud = u ⇒

Lagrange multipliers (= a�ne part)

=⇒ bad convergence properties.

17 / 51



Introduction
Stochastic algorithms

Optimization of the risk indicator I
Simulations

Classical algorithms
Mirror descent algorithm

Mirror algorithm

Deterministic mirror descent algorithm introduced by
Nemirovski and Yudin (1983)

Stochastic version of this algorithm proposed by C. Tauvel
(2008) in her thesis.

Optimization problem: f a C 1 convex function,

min
x∈C

f (x), C is a compact and convex set of E .

Observations: we have a noisy observation of ∇f

ψ(x) = ∇f (x) + η(x),

with a martingale di�erence hypothesis for η.
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Classical algorithms
Mirror descent algorithm

Auxiliary functions for the mirror descent algorithm

Let us �x
x0 an initial point,
δ a strongly convex function on C , which is di�erentiable on x0

Construct an auxiliary function V :

V (x) = δ(x)− δ(x0)− 〈x0 − x , δ′(x0)〉,

which will be used to push the trajectory into C . Wβ denotes
the Fenchel-Legendre transform of βV : for z ∈ E ?

Wβ(z) = sup
x∈C
{〈z , x〉 − βV (x)} .

(γn)n and (βn)n are two positive sequences, (βn)n is non
decreasing.

Important property of Wβ : ∇Wβ(ξ) ∈ C .
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Classical algorithms
Mirror descent algorithm

Description of the stochastic mirror algorithm

The algorithm constructs two random sequences:

(χn) in C

(ξn) in the dual space E ∗

Algorithm

Initialisation: ξ0 = 0 ∈ E ∗, χ0 ∈ C

Update: for n = 1 to N do

ξn = ξn−1 − γnψ(χn−1)
χn = ∇Wβn (ξn)

Ouput:

SN =

∑N
n=1

γnχn−1∑N
n=1

γn

20 / 51



Introduction
Stochastic algorithms

Optimization of the risk indicator I
Simulations

Classical algorithms
Mirror descent algorithm

Mirror descent algorithm

ξ?

C compact and convex
Wβ

mirror descent

χn

χn−1

ξn−1ξn
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Classical algorithms
Mirror descent algorithm

Convergence of the stochastic miror algorithm

Under the hypothesis

1 martingale di�erence hypothesis:

E[η(χn+1)|Fn] = 0, with Fn = σ(χ0, . . . , χn).

where ψ(x) = ∇f (x) + η(x) is observable,

2 moment of order 2: ∃σ > 0 such that for all n,

E(‖η(χn+1)‖2|Fn) < σ2

3 f admits a unique minimum x?.

C. Tauvel proved the convergence to 0 of E(f (SN))− E(f (x?)).
With an hypothesis of exponential moment on η, see gets the a.e.
convergence of f (SN)− f (x?) to 0.
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Another stochastic algorithm

The risk indicator I

Recall that we consider

I (u1, . . . , ud ) =
d∑

k=1

E

 n∑
p=1

gk(Rk
p )11{Rk

p<0}11{
∑d

`=1 R
`
p>0}

 .

We are looking for the minimum u? ∈ Rd
+ under the constrainst

v1 + · · ·+ vd = u :

I (u?) = inf
v1+...+vd=u

I (v), v ∈ Rd
+.

We shall use a Kiefer-Wolfowitz version of the mirror descent
algorithm.
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Another stochastic algorithm

The mirror descent algorithm

The set of constraint is
Uu = {v ∈ Rd / vi ≥ 0 , v1 + . . .+ vd = u}.
A possible choice for V is the entropy function

V (x) = ln d +
d∑
i=1

xi

u
ln
(xi
u

)
= ln d + δ(x).

which is a strongly convex function.

The Legendre-Fenchel transform may be computed easily:

Wβ(ξ) = β ln

(
1

d

d∑
i=1

exp

[
ξi
u

β

])
.
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Another stochastic algorithm

Approximate gradient

I (u1, . . . , ud ) = E (I(u1, . . . , ud ,Y)) where Y =

Y 1

1
· · · Y 1

n

· · · · · · · · ·
Y d
1
· · · Y d

n

 .

Denote

Ik
(
c+i ,Y

)
= I(χ1i−1, . . . , χ

k−1
i−1 , χ

k
i−1 + ci , χ

k+1

i−1 , . . . , χ
d
i−1,Y),

Ik
(
c−i ,Y

)
= I(χ1i−1, . . . , χ

k−1
i−1 , χ

k
i−1 − ci , χ

k+1

i−1 , . . . , χ
d
i−1,Y),

Consider the random vector DciI whose kth coordinate
Dk
ci
I(u1, . . . , ud ,Y) is

Ik
(
c+i ,Y

)
− Ik

(
c−i ,Y

)
2ci

.

25 / 51



Introduction
Stochastic algorithms

Optimization of the risk indicator I
Simulations

Another stochastic algorithm

Our algorithm

Algorithm

Initialisation:

{
ξ0 = 0 ∈ (Rm)?

χ0 ∈ C

Update: for i = 1, . . . ,N do{
ξi = ξi−1 − γiΨci (χi−1,Y i )
χi = ∇Wβi (ξi )

Output: SN =

∑N
i=1

γiχi−1∑N
i=1

γi

with Ψci (χi−1,Y i ) = DciI(χi−1,Y i ) and Y i independent copies of
Y.
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Another stochastic algorithm

Conditions for the convergence (1)

Condition (on I )

1 I is a convex function from Rd to R,
2 I is C 2 on Uu,
3 I has a unique minimum u? in Uu,
4 ∃σ > 0 such that for all v ∈ Uu

E
(
I(v1, . . . , vd ,Y)2|Fi−1

)
≤ σ2.

F i−1 is generated by (Y0, . . . ,Y i−1).
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Another stochastic algorithm

Conditions for the convergence (2)

Condition (on the sequences)

Let (βn)n≥0, (γn)n≥0 and (cn)n≥0 be positive sequences, (βn)n≥0 is

non decreasing and:

1 βN/
∑N

i=1
γi −−−−−→

N→+∞
0,

2
∑N

i=1
γici/

∑N
i=1

γi −−−−−→
N→+∞

0,

3
∑N

i=1

γ2
i

c2
i
βi−1

/
∑N

i=1
γi −−−−−→

N→+∞
0,

4
∑+∞

i=1

(
γi
ci

)2
<∞.
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Another stochastic algorithm

Result

Theorem

With the above conditions,

SN
L1−→ x?.

With an hypothesis of moment of order > 2 on I,

SN
a.s.−→ x?.
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Another stochastic algorithm

Idea of the proof (1)

Based on the decomposition

Ψcn(χn−1,Yn) = ∇I (χn−1) + ηcn(χn−1,Yn) + rcn(χn−1).

The condition of C. Tauvel fails because of the rcn(χn−1) term.
ηcn(χn−1,Yn) is a martingale di�erence.

ηcn(χn−1,Yn) = DcnI(χn−1,Yn)− Dcn I (χn−1),

rcn(χn−1) = Dcn I (χn−1)−∇I (χn−1).

and

Law of large numbers for martingales

Chow Lemma for martingales
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Another stochastic algorithm

Idea of the proof (2)

Let εN = I (SN)− I (x∗) ≥ 0

Lemma

(
N∑
i=1

γi

)
εN ≤ βNV (x?)−

N∑
i=1

γi
〈
ηci (χi−1,Y i ), χi−1 − x?

〉
−

N∑
i=1

γi
〈
r ci (χi−1), χi−1 − x?

〉
+

N∑
i=1

γ2i
2αβi−1

∥∥Ψci (χi−1,Y i )
∥∥2
?
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Another stochastic algorithm

Idea of the proof (3)

N∑
i=1

γi
〈
ηci (χi−1,Y i ), χi−1 − x?

〉
is a martingale

N∑
i=1

γi
〈
r ci (χi−1), χi−1 − x?

〉
controlled by the fact that r ci (χi−1)

goes to 0 a.e.

N∑
i=1

γ2i
2αβi−1

∥∥Ψci (χi−1,Y i )
∥∥2
?
has bounded expectation and

controlled a.s. by using the Chow Lemma.
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Another stochastic algorithm

Hypothesis on I

1 Unicity of u?: it is su�cient that for some k and all
u < wk < vk ,

−E
[
gk(Y k

p + vk)1{
∑d

k=1 Y
k
p >−u}

· 1{−vk<Y k
p <−wk}

]
< 0.

This is satis�ed if for some k , fSp ,Y k
p
> 0 on

]− u,∞[×]−∞,−u[.

2 In the case gk(x) = −x , the moment condition for I is
equivalent to a moment condition (of the same order) on Xn.
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Simulations

Some simulations for some simple models. We considered

Normal laws,

n = 1 observation of several periods of length 1, so that
X k
p = Y k

p ,

Xp ∈ Rd are independent and identically distributed random
vectors. Some dependencies on the coordinates of Xp are
allowed.
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Parameters

The algorithm has been performed with the following sequences
(γn)n∈N? , (cn)n∈N? and (βn)n∈N? :

γn =
1

(n + 1)α
with α = 3

4
+ 1

10
,

cn =
1

(n + 1)δ
with δ = 1

4
,

βn = 1.

Also, we have chosen u = 2 and the initialization of the algorithm
(χ0) is done at random uniformly in the simplex Uu.
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No dependence between the coordinates

d = 2, n = 1, X 1

i and X 2

i are independent and the vectors Xi are
also independent.

�rst X 1

i and X 2

i have the same normal laws,

then we consider di�erent normal laws.

36 / 51



Introduction
Stochastic algorithms

Optimization of the risk indicator I
Simulations

No dependence between the coordinates

Same normal laws: X d
i  N (0.3, 1). For N = 10000 independent

simulations we obtain : SN = (0.996; 1.004)
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No dependence between the coordinates

Same normal laws: X d
i  N (0.3, 1). For N = 10000 independent

simulations we obtain : SN = (0.996; 1.004)
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No dependence between the coordinates

Same normal laws: For 50 simulations of length N = 1000, with
the same parameters as above. The table below gives for each of
the two coordinates, the mean of the estimation (û1, û2) of the
minimum (u1, u2) and the standard error.

�rst coord. second coord.

mean 1.01 0.99
standard error 0.04 0.04
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No dependence between the coordinates

Di�erent normal laws: 50 simulations of length N = 1000, with two
independent normal laws. X 1

p  N (0.3, 1) and X 2
p  N (0.8, 1).

The table below gives for each of the two coordinates, the mean of
the estimation (û1, û2) of the minimum (u1, u2) and the standard
error.

�rst coord. second coord.

mean 1.226 0.774
standard error 0.051 0.051
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No dependence between the coordinates

Di�erent normal laws: 50 simulations of length N = 1000, with two
independent normal laws. X 1

p  N (0.3, 1) and X 2
p  N (0.3, 4).

The table below gives for each of the two coordinates, the mean of
the estimation (û1, û2) of the minimum (u1, u2) and the standard
error.

�rst coord. second coord.

mean 0.787 1.213
standard error 0.067 0.067
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Some dependence between the coordinates

Two simple models of vectorial dependence:

a comonotonic example: random vectors in R3 with

X 1
p
L
= X 2

p  N (0.3, 1) and X 3
p = 2X2,

gaussian vectors.
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Some dependence between the coordinates

Comonotonic example. 50 simulations of length N = 1000 of this
dimension 3 model. As before, we consider n = 1 (the periods are
of length 1).
The table below gives for each of the two coordinates, the mean of
the estimation (û1, û2, û3) of the minimum (u1, u2, u3) and the
standard error.

�rst coord. second coord. third coord.

mean 0.8 0.43 0.77
standard error 0.06 0.02 0.05

In this model, X2 and X3 fail simultaneously and when they fail, X3

is 2 two times worse than X2.
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Some dependence between the coordinates

Gaussian vectors. We have also performed simulations for a
Gaussian vector in R3 with covariance matrix

Σ =

 1 0 0
0 1 0.9
0 0.9 1


and expectation m = (0.3, 0.3, 0.3). As above, we have performed
50 simulations of length N = 1000, of the Gaussian vector X .
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Some dependence between the coordinates

The table below gives for each of the three coordinates, the mean
of the estimation (û1, û2, û3) of the minimum (u1, u2, u3) and the
standard error.

�rst coord. second coord. third coord.

mean 0.785 0.604 0.612
standard error 0.045 0.03 0.028
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A example with some temporal dependence

The �rst two coordinates are independant AR(1) with the same law:
Xi = 0.4Xi−1 + εi with (εi )i∈N gaussian white noise (N (0, 1)).
The third coordinate is 2 times the second one.
We have simulated 5 times 500 independent periodsof length n = 5.

�rst coord. second coord. third coord.

mean 0.85 0.39 0.76
standard error 0.035 0.012 0.025
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To do ...

A deeper study involving other laws (with heavy tail e.g.),
more realistic models and temporal dependencies.

Asymptotic theory for u −→∞.

Some dependence on the Y i (using Benveniste, Métivier,
Priouret results or methods for example).
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Thanks for your attention
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Recall the Chow Lemma

Theorem

Suppose (aN)N∈N is a bounded sequence of positive numbers ,

suppose that 1 < p ≤ 2. For N ∈ N, let AN = 1 +
N∑
k=0

ak and

A∞ = lim
N→∞

AN . Suppose that (ZN)N∈N is a positive sequence of

random variables adapted to FN and K is a constant such that

E(ZN+1|FN) ≤ K and sup
N

E(Zp
N+1
|FN) <∞

then we have the following properties almost surely :

on {A∞ <∞}
∞∑
k=1

AkZk+1 converges
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Recall the Chow Lemma

Theorem

Suppose (aN)N∈N is a bounded sequence of positive numbers ,

suppose that 1 < p ≤ 2. For N ∈ N, let AN = 1 +
N∑
k=0

ak and

A∞ = lim
N→∞

AN . Suppose that (ZN)N∈N is a positive sequence of

random variables adapted to FN and K is a constant such that

E(ZN+1|FN) ≤ K and sup
N

E(Zp
N+1
|FN) <∞

then we have the following properties almost surely :

on {A∞ =∞} A−1n−1

∞∑
k=1

AkZk+1 ≤ K .
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Recall the Chow Lemma

Theorem

Suppose (aN)N∈N is a bounded sequence of positive numbers ,

suppose that 1 < p ≤ 2. For N ∈ N, let AN = 1 +
N∑
k=0

ak and

A∞ = lim
N→∞

AN . Suppose that (ZN)N∈N is a positive sequence of

random variables adapted to FN and K is a constant such that

E(ZN+1|FN) ≤ K and sup
N

E(Zp
N+1
|FN) <∞

then we have the following properties almost surely :

Back to idea of proof.
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