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Framework

Goal : estimating the tail of a bivariate distribution function.

Idea : a general extension of the Peaks-Over-Threshold method.

Tools :

a two-dimensional version of the Pickands-Balkema-de Haan

Theorem,

Juri & Wüthrich's and Charpentier & Juri's approach of the tail
dependence.

dependence modeled by copulas.

Asymptotic dependence as well as asymptotic independence are
considered.
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Summary of results

Construction of a two-dimensional tail estimator, study of its
asymptotic properties.

A parameter that describes the nature of the tail dependence is
introduced and estimated.

Other possible approaches

Multivariate generalized Pareto distribution developed by Falk and
Reiss and Rootzen and Tajvidi but the estimation of scaling
parameters has to be addressed �rst. Our work is an alternative
contribution to the Generalized Pareto distribution approach.

Ledford and Tawn models.

⇒ alternative model based on regularity conditions of the copula and on
the explicit description and estimation of the dependence structure in the
joint tail.
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Upper-tail dependence copula

C (u, v) is a 2-dimensional copula and C∗(u, v) is the associated survival
copula.
Let X and Y be uniformly distributed on [0, 1]. Let u be a threshold in
[0, 1) such that C∗(1− u, 1− u) > 0.
The Upper-tail dependence copula at level u ∈ [0, 1) is

Cup
u (x , y) := P[X ≤ F

−1
X , u(x),Y ≤ F

−1
Y , u(y) |X > u,Y > u ],

∀ (x , y) ∈ [0, 1]2, where FX , u, FY , u are the distribution of X and Y

conditioned on {X > u,Y > u}:

FX , u(x) := P[X ≤ x |X > u,Y > u ] = 1− C∗(1− x ∨ u, 1− u)

C∗(1− u, 1− u)
.
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Limit of the upper-tail dependence copula

Assume that

∂C∗(1− u, 1− v)

∂u
< 0 and

∂C∗(1− u, 1− v)

∂v
< 0, for all u, v ∈ [0, 1).

Assume that there is a positive function G such that

lim
u→1

C∗(x (1− u), y (1− u))

C∗(1− u, 1− u)
= G (x , y), for all x , y > 0.
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Limit of the upper-tail dependence copula

Property

Then for all (x , y) ∈ [0, 1]2

lim
u→1

Cup
u (x , y) = x+y−1+G (g−1X (1−x), g−1Y (1−y)) := C∗G (x , y), (1)

where gX (x) := G (x , 1), gY (y) := G (1, y) and there is a constant θ > 0
such that, for x > 0

G (x , y) = xθgY (
y

x
) for

y

x
∈ [0, 1], and yθgX (

x

y
) for

y

x
∈ (1,∞).

Proof: adapt a result by Charpentier and Juri (2006) - they were
concerned with the lower tail copula.
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Standing assumptions

X and Y are two continuous real valued random variables, with
marginal distributions, FX , FY , and copula C .

FX ∈ MDA(Hξ1), FY ∈ MDA(Hξ2)

C satis�es the above assumptions.

Vξ1,a1(·) (resp. Vξ2,a2(·)) is the univariate GPD distribution with
parameters ξ1 (resp. ξ2) and a1(·) (resp. a2(·)) of X (resp. Y ).
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A two dimensional Pickands- Balkema-de Haan Theorem

Theorem

Under the standing assumptions,

sup
A

∣∣∣∣P[X − u ≤ x ,Y − F−1Y (FX (u)) ≤ y
∣∣X > u,Y > F−1Y (FX (u))

]
−C∗G

(
1−gX (1−Vξ1,a1(u)(x)), 1−gY (1−Vξ2,a2(F−1

Y
(FX (u)))(y))

)∣∣∣∣−−−−→u→xFX

0,

A := {(x , y) : 0 < x ≤ xFX − u, 0 < y ≤ xFY − F−1Y (FX (u))}, with
xFX := sup{x ∈ R |FX (x) < 1}, xFY := sup{y ∈ R |FY (y) < 1}.

Proof: generalize the proof by Jury and Wüthrich in the case of a
symmetric copula (and same marginal distributions).
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Estimating the tail dependence structure
Estimating the tail

Stable tail dependence function

Assume that the bivariate distribution function F has stable tail
dependence function l :

lim
t→0

1

t
P[1− FX (X ) ≤ t x or 1− FY (Y ) ≤ t y ] := l(x , y)

or equivalently

lim
t→0

1

t
P[1− FX (X ) ≤ t x , 1− FY (Y ) ≤ t y ] := R(x , y) = x + y − l(x , y).
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Estimating the tail dependence structure
Estimating the tail

Relation with the upper tail dependence coe�cient

Recall the upper tail dependence coe�cient:

λ := lim
t→0

P[F−1X (X ) > 1− t |F−1Y (Y ) > 1− t].

Asymptotic dependence: λ > 0.
Asymptotic independence: λ = 0.

λ = R(1, 1).
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Estimators

The tail dependence function R is estimated by:

R̂(x , y) =
1

kn

n∑
i=1

1{R(Xi )>n−knx+1,R(Yi )>n−kny+1},

where kn →∞, kn/n → 0 and R(Xi ) is the rank of Xi among
(X1, . . . ,Xn), R(Yi ) is the rank of Yi among (Y1, . . . ,Yn), for
i = 1, . . . , n.
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Estimators

The functions gX , gY , G are estimated by

ĝX (x) =
R̂(x , 1)

R̂(1, 1)
, ĝY (x) =

R̂(1, y)

R̂(1, 1)
, and Ĝ (x , y) =

R̂(x , y)

R̂(1, 1)
,
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Estimators

The coe�cient θ is estimated by

θ̂ y
x
=

log(Ĝ (x , y))− log(ĝY (
y
x
))

log(x)
if
y

x
∈ [0, 1],

θ̂ y
x
=

log(Ĝ (x , y))− log(ĝX (
x
y
))

log(y)
if
y

x
∈ (1,∞).
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Estimating the tail dependence structure
Estimating the tail

Convergence results (asymptotically dependent case)

Theorem 2.2 in Einmahl et al. (2006) leads to the following consistency
result.

Property

Under our standing assumptions, for vn such that vn/
√
kn → 0, for

n→∞, and λ > 0,

vn sup
0<x,y≤1

∣∣ Ĝ (x , y)− G (x , y)
∣∣ P−−−→

n→∞
0,

vn sup
0<x≤1

∣∣ ĝX (x)− gX (x)
∣∣ P−−−→

n→∞
0, vn sup

0<y≤1

∣∣ ĝY (y)− gY (y)
∣∣ P−−−→

n→∞
0.

with kn →∞, kn/n→ 0 and kn = o
(
n

2α
1+2α

)
.
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Convergence results (asymptotically independent case)

The case λ = R(1, 1) = 0 requires second order conditions.
As in Draisma et al. (2004), we assume that:

lim
t→0

C∗(tx, ty)
C∗(t, t) − G (x , y)

q1(t)
:= Q(x , y),

for all x , y ≥ 0, x + y > 0, with

q1 is some positive function and Q is neither a constant nor a
multiple of G .

The above convergence is uniform on {x2 + y2 = 1}.
Denote q(t) := P[1− FX (X ) < t, 1− FY (Y ) < t].

15 / 31



Introduction
A two dimensional Pickands-Balkema-de Haan Theorem

Estimation
Illustation on real data
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Convergence results (asymptotically independent case)

Property

Under our standing assumptions and second order conditions, for a

sequence kn such that an := n q(kn/n)→∞

ψn sup
0<x,y≤1

∣∣ Ĝ (x , y) − G (x , y)
∣∣ P−−−→

n→∞
0,

ψn sup
0<x≤1

∣∣ĝX (x)− gX (x)
∣∣ P−−−→

n→∞
0, ψn sup

0<y≤1

∣∣ĝY (y)− gY (y)
∣∣ P−−−→

n→∞
0,

with ψn = o(
√
an).
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A new tail estimator

Main ingredients of the estimator.

A threshold u

De�ne ûY = F̂−1Y (F̂X (u)), with F̂X (u) the empirical distribution

function and F̂−1Y the empirical quantile function of Y .

k̂X , σ̂X (resp. k̂Y , σ̂Y ) the MLE based on the excesses of X (resp.
Y).

F̂X
∗
(x) (resp. F̂Y

∗
(y)) the univariate tail estimator (see McNeil

(1999)):

F̂X
∗
(x) = (1− F̂X (u))Vk̂,σ̂(x − u) + F̂X (u), for x > u.

F̂ ∗
1
(u, y) = exp{−l̂n(− log(F̂X (u)),− log(F̂Y

∗
(y)))},

and F̂ ∗
2
(x , ûY ) = exp{−l̂n(− log(F̂X

∗
(x)),− log(F̂Y (ûY )))}.
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A new tail estimator

We estimate F (x , y) by

F̂ ∗(x , y) =

(
1

n

n∑
i=1

1{Xi>u,Yi>ûY }

)(
1− ĝX (1− Vξ̂X ,σ̂X (x − u))

− ĝY (1−Vξ̂Y ,σ̂Y (y − ûY ))+ Ĝ
(
1−Vξ̂X ,σ̂X (x − u), 1−Vξ̂Y ,σ̂Y (y − ûY )

))
+ F̂ ∗

1
(u, y) + F̂ ∗

2
(x , ûY )−

1

n

n∑
i=1

1{Xi≤u,Yi≤ûY },
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A new tail estimator

In case the second threshold is known (for example if the marginal laws
are the same), we estimate F (x , y) by

F̃ ∗(x , y) =

(
1

n

n∑
i=1

1{Xi>u,Yi>uY }

)(
1− ĝX (1− Vξ̂X ,σ̂X (x − u))

− ĝY (1−Vξ̂Y ,σ̂Y (y − uY ))+ Ĝ
(
1−Vξ̂X ,σ̂X (x − u), 1−Vξ̂Y ,σ̂Y (y − uY )

))
+ F̂ ∗

1
(u, y) + F̂ ∗

2
(x , uY )−

1

n

n∑
i=1

1{Xi≤u,Yi≤uY },
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Assumptions on the marginals

The assumptions below are assumed both for FX and FY .
First order assumptions F is in the maximum domain of attraction of
Fréchet, that is ∃α > 0 such that F (x) = x−αL(x) with L a slowly

varying function.

Second order assumptions as in Smith (1987), we assume that L satis�es

SR2
L(tx)

L(x)
= 1+ k(t)φ(x) + o(φ(x)), ∀ t > 0, as x →∞

with φ positive and φ(x) −−−−−→
x→+∞

0.
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Hypothesis on the threshold

Hypothesis on the threshold: the ones used by Smith to obtain the
univariate convergence of the MLE GPD estimator and the POT

univariate estimator F̂X
∗
(x).

Let n be the sample size, let un := f (n) (threshold sequence) and
zn := f (n). We assume that f (n) −−−→

n→∞
∞, f (n) −−−→

n→∞
∞ and several

relations on the asymptotic behavior of un and zn.

22 / 31



Introduction
A two dimensional Pickands-Balkema-de Haan Theorem

Estimation
Illustation on real data

Estimating the tail dependence structure
Estimating the tail

Convergence results (asymptotically dependent case)

λ > 0, standing assumptions, �rst and second order conditions on the
marginal laws and hypothesis on the thresholds above.

Theorem

∣∣√kn(F
∗(xn, yn)− F̃ ∗(xn, yn))

∣∣ P−−−→
n→∞

0,

with xn = f 1(n)f1(n), yn = f 2(n)f2(n).

Moreover if f̂ 2(n) satis�es the thershlod conditions in probability then∣∣√kn(F
∗(xn, ŷn)− F̂ ∗(xn, ŷn))

∣∣ P−−−→
n→∞

0,

with ŷn = f̂ 2(n)f2(n).

We have kn →∞, kn/n→ 0, kn = o(n
2α

1+2α ), α > 0.
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Convergence results (asymptotically independent case)

λ = 0, standing assumptions, �rst and second order conditions on the
marginal laws, second order condition on the join distribution and Smith's
hypothesis on the thresholds.

Theorem ∣∣√an (F ∗(xn, yn)− F̃ ∗(xn, yn))
∣∣ P−−−→

n→∞
0,

where xn = f 1(n)f1(n), yn = f 2(n)f2(n). Moreover if f̂ 2(n) satis�es the
threshold conditions in probability then∣∣√an (F ∗(xn, ŷn)− F̂ ∗(xn, ŷn))

∣∣ P−−−→
n→∞

0,

with ŷn = f̂ 2(n)f2(n) and an = n q(kn/n)→∞.

kn/n→ 0,
√
an q1(q

←(an/n))→ 0 and kn = o(n
2α

1+2α ), for some α > 0.

24 / 31



Introduction
A two dimensional Pickands-Balkema-de Haan Theorem

Estimation
Illustation on real data

Real data

Figure: Logarithmic scale (left) ALAE versus Loss; (right) Wave heights versus
Water level.
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Real data

Stability of our estimation compared to the one of F̂ ∗
1
, as well as the

estimation of parameter θ of these real cases.

F̂ ∗
1
(y1, y2) = exp{−l̂(− log(F̂ ∗Y1

(y1)),− log(F̂ ∗Y2
(y2)))},

is known to produce a signi�cant bias for asymptotically independent
data.
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Loss / ALEA data: asymptotic independent case

Loss-ALAE data: Each claim consists of an indemnity payment (the loss,
X ) and an allocated loss adjustment expense (ALAE, Y ). We estimate
F (2.105, 105).

Figure: (left) θ̂0.04; (right) F̂
∗(2.105, 105) (full line), F̂ ∗

1 (2.10
5, 105) (dashed

line), with the empirical probability indicated with a horizontal line.
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Wave height vs Water level: asymptotic independent case

Wave height versus Water level data: recorded during 828 storm events
spread over 13 years in front of the Dutch coast near the town of Petten.

Figure: (left) θ̂ 0.1
0.11

= θ̂0.91; (right) F̂
∗(5.93, 1.87) (full line), F̂ ∗

1 (5.93, 1.87)

(dashed line), with the empirical probability indicated with a horizontal line.
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Summary

? a new and di�erent approach for estimating bivariate tails,

? we need neither Ledford & Tawn assumptions nor unit Fréchet margins,

? as for L & T estimate, it is particularly interesting when dealing with
asymptotic independence.
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Ideas for future developments

? get the optimal rate, a central limit theorem?

? use the bivariate tail estimator F̂ ∗(x , y) to obtain estimation of
bivariate upper-quantile curves, for high levels α.

? application to the estimation of bivariate Value-at-Risk for large α :

VaRα(F̂ ) := {(x , y) ∈ (f 1(n),+∞)× (f̂ 2(n),+∞) : F̂ ∗(x , y) = α}.
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Thanks for your attention
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