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General problematic

(X1, . . . ,Xd) random vector of risks. Write

S =
d∑

i=1

Xi , the aggregated risk.

Regulatory rules, Risk management purposes, Environmental risks
... =⇒ need to estimate / approximate (relatively) high level
quantiles of S :

F−1
S (α) = VaRα(S),

where FS is the distribution function of S .
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Examples

Insurance: X describes the distribution of the claim amonts,
regulatory rules impose to insurance companies to estimate
FX (α) for α = 0.995.
Hydrology: X may describe a flood level. Computing F−1

X (α)
is required to calibrate a barrage e.g. (or a dam).
Many other field: finance, wind electricity...
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Our purpose

(X1, . . . ,Xd) random vector of risks.
The Xi may be different lines of business in insurance contexts.

S =
d∑

i=1

Xi .

=⇒ Estimation of VaRα(S).
The law of S (and thus VaRα(S)) depends on the law of
(X1, . . . ,Xd) (marginal laws and dependence structure).
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Quantiles of aggregated risks

High dimensional problem (d may be large),
Marginal laws (laws of the Xi ’s) are usually known (or well
estimated), some information on the dependence is available,
Even if the law of (X1, . . . ,Xd) is known, the effective
computation of

VaRα(S),

may be difficult to do,
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Quantiles of aggregated risks

High dimensional problem (d may be large),
Marginal laws (laws of the Xi ’s) are usually known (or well
estimated), some information on the dependence is available,

Even if the law of (X1, . . . ,Xd) is known, the effective
computation of

VaRα(S),

may be difficult to do,
the distribution function of S is given by:

FS(t) =

∫
Rd

1{x1+···+xd≤t}fX (x1, . . . , xd)dx1 . . . dxd .

=⇒ Efficient methods are still welcome.
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One proposition

Assume that the Xi ’s laws are known.
Information on the dependence is available through

a (quite small) (X1, . . . ,Xd) sample and
some expert opinion (e.g the dependence structure between X1
and X2 is completely known) and / or
some knowledge of the join tail (P(X1 ≥ u1, . . . ,Xd ≥ ud) is
known for some (u1, . . . , ud)).

We use check-erboard-min copulas to estimate VaRα(S).

We assume that X has continuous marginals and we shall denote
by C the copula associated to X .
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The check-erboard-min coupla

The checkerboard copula: definition

The cherckerboard copula, introduced in dimension 2 by Li et al.
(1998) and Mikusinski and Taylor (2010) is an approximation of a
copula C . Durante et al. (2015) also consider related
approximations known as patchwork copulas.
µ is the probability measure associated to C on [0, 1]d :

µ([0, x ]) = C (x), x = (x1, . . . , xd) ∈ [0, 1]d , [0, x ] =
d∏

i=1

[0, xi ].

Consider (Ii ,m)i∈{1,...m}d the partition (modulo a 0 measure set) of
[0, 1]d given by the md squares:

Ii ,m =
d∏

j=1

[
ij − 1
m

,
ij
m

]
, i = (i1, . . . , id).
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The check-erboard-min coupla

The checkerboard copula: definition

λ denotes the Lebesgue measure.
The checkerboard copula of order m is defined on [0, 1]d by:

C ∗m(x) =
∑
i

mdµ(Ii ,m)λ([0, x ] ∩ Ii ,m).

Im,i , for i = (4, 4).
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The check-erboard-min coupla

The checkerboard copula: definition

λ denotes the Lebesgue measure.
The checkerboard copula of order m is defined on [0, 1]d by:

C ∗m(x) =
∑
i

mdµ(Ii ,m)λ([0, x ] ∩ Ii ,m).

From a probabilistic point of view,

C ∗m(x) =
∑
i

µ(Ii ,m)P(U ≤ x |U ∈ Ii ,m).

with U a random vector of Rd of i.i.d. uniform laws on [0, 1].
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The check-erboard-min coupla

The checkmin copula

In the previous construction, replace the independent copula by the
comonotonic copula.
In other words, replace U on Ii ,m by U∗i ,m with

(U∗i ,m)1  U([
i1 − 1
m

,
i1
m
]) and (U∗i ,m)j = (U∗i ,m)1 −

i1
m

+
ij
m
.

C †m(x) =
∑
i

mµ(Ii ,m)min(xj −
ij − 1
m

,
1
m
).
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The check-erboard-min coupla

Approximation by the check-erboard-min copula

In what follows, C o
m is either C ∗m or C †m.

Proposition
C o
m is a copula which approximates C :

sup
x∈[0,1]d

|C o
m(x)− C (x)| ≤ d

2m
.

Gives a more precise bound on the approximation of C by C o
m by a

factor 2, than the one presented in dimension 2 in Li et al. (1998).
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Algorithm

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is
available.

1 Estimate µ by µ̂ using the empirical copula. Empirical copula.

2 Simulate a sample of size N from the copula Ĉ ∗m

Ĉ ∗m(x) =
∑
i

md µ̂(Ii ,m)λ([0, x ] ∩ Ii ,m).

(u
(1)
1 , . . . , u

(1)
d ), . . . , (u

(N)
1 , . . . , u

(N)
d )

3
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Algorithm

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is
available.

1 Estimate µ by µ̂ using the empirical copula. Empirical copula.

2 Simulate a sample of size N from the copula Ĉ ∗m

Ĉ ∗m(x) =
∑
i

md µ̂(Ii ,m)λ([0, x ] ∩ Ii ,m).

(u
(1)
1 , . . . , u

(1)
d ), . . . , (u

(N)
1 , . . . , u

(N)
d )

3 Get a sample of S using the marginals transform:
d∑

i=1

F−1
i (u

(1)
i ), . . . ,

d∑
i=1

F−1
i (u

(N)
i ).

4 Estimate the distribution function FS of S empirically using
the sample above ⇒ F̂S .
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Algorithm

An estimation procedure

Similar construction for the checkmin copula =⇒ Ĉ o
m.
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Algorithm

Convergence results for Ĉ o
m.

Proposition
Let m divide n, we have:

sup
t∈[0,1]

|Ĉ o
m(t)− C (t)| ≤ OP

(
1√
n

)
+

d

2m
.
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Algorithm

Convergence results to FS .

Estimate FS(t) by

P

(
n∑

i=1

(T−(Uo
m))i ≤ t

)
= F o

m(t)

where Uo
m  Ĉ o

m and T−(u1, . . . , ud) = (F−1
1 (u1), . . . ,F

−1
d (ud)).

With a regularity condition due to Mainik, we obtain the
convergence of F o

m to FS .

Proposition
Under the regularity assumption, if m divides n,

sup
t∈R
|FS(t)− F o

m(t)| = OP(
1√
n
) + O(

1
m
).
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Two test models

The Pareto - Clayon model

Pareto marginal distributions (parameters a, b).
Survival Clayton copula (parameter 1

a ).

Exact formula for VaRα(S) using the so-called Beta prime
distribution (see Dubey (1970)).
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Two test models

Gaussian example

Lognormal marginal distributions.
Gaussian copula.
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Simulations

Pareto-Clayton model

RMSE in % of the exact value for the Pareto-Clayton model of parameters 3
and 1, in dimension 25, for a sample size n = 80, 100 runs.

90% 95% 99% 99.5% 99.9%
Exact value 23.08 31.28 59.10 76.41 135.89
ECBC, m = 5 4% 14% 40% 48% 63%
ECBC, m = 20 9% 9% 21% 31% 52%
ECBC, m = 40 9% 11% 18% 26% 48%
ECBC, m = 80 9% 12% 23% 25% 44%
ECBC, median 5% 8% 31% 41% 59%
ECMC, m = 5 3% 4% 6% 7% 13%
ECMC, m = 20 5% 6% 14% 17% 23%
ECMC, m = 40 6% 7% 15% 19% 27%
ECMC, m = 80 7% 10% 16% 21% 32%
ECMC, median 3% 4% 9% 11% 15%
Gaussian cop. 3% 10% 27% 34% 48%
Surv. Clayt. 2% 3% 5% 6% 12%
Clayton copula 10% 23% 46% 54% 66%
Empirical cop. 9% 12% 23% 31% 56%
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Simulations

Gaussian lognormal example

RMSE in % of the exact value for the Gaussian lognormal model with ρ = 0.1,
dimension 25, for a sample size n = 80, 100 runs.

90% 95% 99% 99.5% 99.9%
Near exact value 111.65 129.81 176.99 200.82 270.14

ECBC, m = 5 4% 6% 10% 11% 13%
ECBC, m = 20 3% 4% 8% 9% 11%
ECBC, m = 40 4% 4% 9% 9% 11%
ECBC, m = 80 4% 5% 10% 11% 12%
ECBC, median 3% 5% 9% 10% 11%
ECMC, m = 5 3% 11% 33% 44% 72%

ECMC, m = 20 3% 3% 7% 10% 22%
ECMC, m = 40 3% 4% 7% 8% 15%
ECMC, m = 80 4% 5% 8% 10% 13%
ECMC, median 2% 4% 17% 24% 41%
Gaussian copula 2% 2% 3% 4% 6%
Survival Clayton 2% 3% 9% 12% 20%
Clayton copula 7% 9% 13% 14% 14%
Empirical cop. 6% 9% 16% 22% 35%
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Simulations

Gaussian lognormal example

More simulations. RMSE in % of the exact value for the Gaussian lognormal
model with ρ = 0.1, dimension 25, for a sample size n = 80, 100 runs.

90% 95% 99% 99.5% 99.9%
Near exact value 111.65 129.81 176.99 200.82 270.14

ECBC, m = 5 4% 6% 10% 11% 13%
ECBC, m = 20 3% 4% 8% 9% 11%
ECBC, m = 40 4% 4% 9% 9% 11%
ECBC, m = 80 4% 5% 10% 11% 12%
ECBC, median 3% 5% 9% 10% 11%
ECMC, m = 5 3% 11% 33% 44% 72%

ECMC, m = 20 3% 3% 7% 10% 22%
ECMC, m = 40 3% 4% 7% 8% 15%
ECMC, m = 80 4% 5% 8% 10% 13%
ECMC, median 2% 4% 17% 24% 41%
Gaussian copula 2% 2% 3% 4% 6%
Survival Clayton 2% 3% 9% 12% 20%
Clayton copula 7% 9% 13% 14% 14%
Empirical cop. 6% 9% 16% 22% 35%
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Conclusion

Efficient methods to estimate the aggregated VaR.
Efficient even in (relatively) high dimension with (relatively)
small samples.
Additional information / expert opinion may be taken into
account: dependence structure on a sub-vector or on the tail.

ToDo Determine optimally m.
ToDo Quantify the information gain.
ToDo Develop efficient procedures to simulate a sample from the

checkerboard copula with partial information (tail or copula of
a sub-vector).

ToDo Estimation of the Kendall distribution and application to
multivariate return time.
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Thank you for your attention
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Empirical Copula

Empirical Copula

Deheuvels (1979) defined the empirical copula.

Definition

Let X (1), . . .X (n) be n independent copies of X and R
(1)
i , . . . ,R

(n)
i ,

i = 1, . . . , d their marginals ranks, i.e.,

R
(j)
i =

n∑
k=1

1{X (j)
i ≥ X

(k)
i }, i = 1, . . . , d , j = 1, . . . , n.

The empirical copula Cn of X (1), . . .X (n) is defined as

Cn(u) =
1
n

n∑
k=1

1
{
1
n
R
(k)
1 ≤ u1, . . . ,

1
n
R
(k)
d ≤ ud

}
.
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Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:

The copula of a subvector XJ , J ⊂ {1, . . . , d}, C J is known,
|J| = k < d .
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Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:

The copula of a subvector XJ , J ⊂ {1, . . . , d}, C J is known,
|J| = k < d .

Let µJ be the probability measure on [0, 1]k associated to C J .
For i = (i1, . . . , id), let x = (x1, . . . , xd) ∈ [0, 1]d , xJ = (xj)j∈J ,
x−J = (xj)j 6∈J and

I Ji ,m =

{
x ∈ [0, 1]k / xj ∈

[
ij − 1
m

,
ij
m

]
, j ∈ J

}
,

I−Ji ,m =

{
x ∈ [0, 1]d−k / xj ∈

[
ij − 1
m

,
ij
m

]
, j 6∈ J

}
.
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Additional information

Check-erboard-min with information on a sub-vector

Define

µJm([0, x ]) =
∑

i⊂{1,...,m}d

1
µJ(I Ji ,m)

µ(Ii ,m)
µo([0, x−J ] ∩ I−Ji ,m )

µo(I−Ji ,m )
µJ([0, xJ ] ∩ I Ji ,m).

Let C J
m(x) = µJm([0, x ]).

Where µo is either the Lebesgue or the comonotonic measure on
I−Ji ,m . From a probabilistic point of view,

C J
m(x) =

∑
i

µ(Ii ,m)P(U−J ≤ x−J , UJ ≤ xJ |U ∈ Ii ,m).

with U a random vector of Rd , with U−J and UJ independent,
U−J is a random vector of Rd−k either of i.i.d. uniform laws on
[0, 1] or of comonotonic margins conditionnally to Ii ,m and UJ

distributed as C J .
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Additional information

Check-erboard-min with information on a sub-vector

Define

µJm([0, x ]) =
∑

i⊂{1,...,m}d

1
µJ(I Ji ,m)

µ(Ii ,m)
µo([0, x−J ] ∩ I−Ji ,m )

µo(I−Ji ,m )
µJ([0, xJ ] ∩ I Ji ,m).

Let C J
m(x) = µJm([0, x ]).

Proposition

C J
m is a copula, it approximates C : sup

x∈[0,1]d
|C J

m(x)− C (x)| ≤ d

2m
.

If X J and X−J are independent then,

sup
x∈[0,1]d

|C J
m(x)− C (x)| ≤ d − k

2m
.
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Additional information

Information on the tail

We may also add information on the tail.

Definition

Let t ∈]0, 1[ and E =
(∏d

i=1[0, t]
d
)c

, assume that µC (E ) is
known (information on the tail).
The checkerboard copula with extra information on the tail is
defined by:

CEm (x) = µC (E
c)C o

m(x/t)1E c (x) +
µC (E )

λ(E )
λ([0, x ] ∩ E ),

where C o
m is the check-erboard-min copula with partition:

Ji ,m = t · Ii ,m.

CEm is a copula, it approximates C .
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Simulations

More simulations

Pareto-Clayton model with parameters 2 and 1, in dimension 100, n = 400.
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Simulations

More simulations

Gaussian-lognormal model, correlations 0.25, 0.5, 0.75, dimension 100, n = 400.

Back.
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Simulations

More simulations

Pareto-Clayton model in dimension 2, with β = 1 and α = 2,
n = 30
The information on the tail is introduced on Ep, for p = 0.95, 0.99.

90% 95% 99% 99.5% 99.9%
Empirical 31% 39% 72% 70% 78%

ECBC (m=6)
No tail information 8% 6% 8% 11% 15%

Information on Ep p=0.99 8% 5% 11% 3% 8%
Information on Ep p=0.95 5% 4% 3% 6% 13%

ECBC (m=15)
No tail information 13% 11% 9% 10% 14%

Information on Epp=0.99 12% 12% 11% 3% 8%
Information on Ep p=0.95 10% 4% 3% 6% 13%

ECBC (m=30)
No tail information 15% 17% 13% 12% 14%

Information on Ep p=0.99 16% 16% 11% 3% 8%
Information on Ep p=0.95 11% 4% 3% 6% 13%
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Simulations

More simulations

X = (X1,X2,X3) whith X1 = X2 = Y /2, X3 ∼ Y where Y is
Pareto distributed with α = 2, and (Y ,X3) is a Pareto-Clayton
model =⇒ X1 and X2 are comonotonic (or fully dependent) and
the dependence between X1 and X3 is given by a survival Clayton
of parameter 1/2.

90% 95% 99% 99.5% 99.9%
ECBC (m=6)

No information 13% 7% 13% 18% 24%
Information on (X1,X2) 8% 6% 8% 11% 15%

ECBC (m=10)
No information 13% 12% 11% 15% 23%

Information on (X1,X2) 9% 9% 8% 10% 15%
ECBC (m=30)
No information 16% 19% 14% 14% 21%

Information on (X1,X2) 16% 17% 13% 13% 14%

Back.
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