Some Copula's approximations.

Véronique Maume-Deschamps, université Lyon 1 - Institut Camille Jordan (ICJ),

Joint Work with Andrés Cuberos (SCOR) and Esterina Masiello (Université Lyon 1).

Dependence Modeling Conference September, 19th 2016.

Plan

(1) Context
(2) Copulas approximations
(3) Estimation procedure

4 Concluding remarks
(5) Miscellaneous

General problematic

$\left(X_{1}, \ldots, X_{d}\right)$ random vector of risks. Write

$$
S=\sum_{i=1}^{d} X_{i}, \text { the aggregated risk. }
$$

Regulatory rules, Risk management purposes, Environmental risks
$\ldots \Longrightarrow$ need to estimate / approximate (relatively) high level quantiles of S :

$$
F_{S}^{-1}(\alpha)=\operatorname{VaR}_{\alpha}(S),
$$

where F_{S} is the distribution function of S.

Examples

- Insurance: X describes the distribution of the claim amonts, regulatory rules impose to insurance companies to estimate $F_{X}(\alpha)$ for $\alpha=0.995$.
- Hydrology: X may describe a flood level. Computing $F_{X}^{-1}(\alpha)$ is required to calibrate a barrage e.g. (or a dam).
- Many other field: finance, wind electricity...

Our purpose

$\left(X_{1}, \ldots, X_{d}\right)$ random vector of risks.
The X_{i} may be different lines of business in insurance contexts.

$$
S=\sum_{i=1}^{d} X_{i}
$$

\Longrightarrow Estimation of $\mathrm{VaR}_{\alpha}(S)$.
The law of S (and thus $\mathrm{VaR}_{\alpha}(S)$) depends on the law of $\left(X_{1}, \ldots, X_{d}\right)$ (marginal laws and dependence structure).

Quantiles of aggregated risks

- High dimensional problem (d may be large),
- Marginal laws (laws of the X_{i} 's) are usually known (or well estimated), some information on the dependence is available,
- Even if the law of $\left(X_{1}, \ldots, X_{d}\right)$ is known, the effective computation of

$$
\operatorname{VaR}_{\alpha}(S)
$$

may be difficult to do,

Quantiles of aggregated risks

- Even if the law of $\left(X_{1}, \ldots, X_{d}\right)$ is known, the effective computation of

$$
\operatorname{VaR}_{\alpha}(S)
$$

may be difficult to do, the distribution function of S is given by:

$$
F_{S}(t)=\int_{\mathbb{R}^{d}} 1_{\left\{x_{1}+\cdots+x_{d} \leq t\right\}} f_{X}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

\Longrightarrow Efficient methods are still welcome.

One proposition

Assume that the X_{i} 's laws are known.
Information on the dependence is available through

- a (quite small) $\left(X_{1}, \ldots, X_{d}\right)$ sample and
- some expert opinion (e.g the dependence structure between X_{1} and X_{2} is completely known) and / or
- some knowledge of the join tail $\left(\mathbb{P}\left(X_{1} \geq u_{1}, \ldots, X_{d} \geq u_{d}\right)\right.$ is known for some ($\left.u_{1}, \ldots, u_{d}\right)$).
We use check-erboard-min copulas to estimate $\operatorname{VaR}_{\alpha}(S)$.

One proposition

Assume that the X_{i} 's laws are known.
Information on the dependence is available through

- a (quite small) $\left(X_{1}, \ldots, X_{d}\right)$ sample and
- some expert opinion (e.g the dependence structure between X_{1} and X_{2} is completely known) and / or
- some knowledge of the join tail $\left(\mathbb{P}\left(X_{1} \geq u_{1}, \ldots, X_{d} \geq u_{d}\right)\right.$ is known for some ($\left.u_{1}, \ldots, u_{d}\right)$).
We use check-erboard-min copulas to estimate $\mathrm{VaR}_{\alpha}(S)$.
We assume that X has continuous marginals and we shall denote by C the copula associated to X.
(1) Context
(2) Copulas approximations
- The check-erboard-min coupla

(3) Estimation procedure

4 Concluding remarks
(5) Miscellaneous

The checkerboard copula: definition

The cherckerboard copula, introduced in dimension 2 by Li et al. (1998) and Mikusinski and Taylor (2010) is an approximation of a copula C. Durante et al. (2015) also consider related approximations known as patchwork copulas. μ is the probability measure associated to C on $[0,1]^{d}$:

$$
\mu([0, x])=C(x), x=\left(x_{1}, \ldots, x_{d}\right) \in[0,1]^{d}, \quad[0, x]=\prod_{i=1}^{d}\left[0, x_{i}\right] .
$$

Consider $\left(I_{i, m}\right)_{i \in\{1, \ldots m\}^{d}}$ the partition (modulo a 0 measure set) of $[0,1]^{d}$ given by the m^{d} squares:

$$
I_{i, m}=\prod_{j=1}^{d}\left[\frac{i_{j}-1}{m}, \frac{i_{j}}{m}\right], i=\left(i_{1}, \ldots, i_{d}\right)
$$

The check-erboard-min coupla

The checkerboard copula: definition

λ denotes the Lebesgue measure.
The checkerboard copula of order m is defined on $[0,1]^{d}$ by:

$$
C_{m}^{*}(x)=\sum_{i} m^{d} \mu\left(I_{i, m}\right) \lambda\left([0, x] \cap I_{i, m}\right) .
$$

The checkerboard copula: definition

λ denotes the Lebesgue measure.
The checkerboard copula of order m is defined on $[0,1]^{d}$ by:

$$
C_{m}^{*}(x)=\sum_{i} m^{d} \mu\left(I_{i, m}\right) \lambda\left([0, x] \cap I_{i, m}\right) .
$$

From a probabilistic point of view,

$$
C_{m}^{*}(x)=\sum_{i} \mu\left(I_{i, m}\right) \mathbb{P}\left(U \leq x \mid U \in I_{i, m}\right)
$$

with U a random vector of \mathbb{R}^{d} of i.i.d. uniform laws on $[0,1]$.

The check-erboard-min coupla

The checkmin copula

In the previous construction, replace the independent copula by the comonotonic copula. In other words, replace U on $I_{i, m}$ by $U_{i, m}^{*}$ with

$$
\begin{gathered}
\left(U_{i, m}^{*}\right)_{1} \rightsquigarrow \mathcal{U}\left(\left[\frac{i_{1}-1}{m}, \frac{i_{1}}{m}\right]\right) \text { and }\left(U_{i, m}^{*}\right)_{j}=\left(U_{i, m}^{*}\right)_{1}-\frac{i_{1}}{m}+\frac{i_{j}}{m} . \\
C_{m}^{\dagger}(x)=\sum_{i} m \mu\left(I_{i, m}\right) \min \left(x_{j}-\frac{i_{j}-1}{m}, \frac{1}{m}\right) .
\end{gathered}
$$

Approximation by the check-erboard-min copula

In what follows, C_{m}^{o} is either C_{m}^{*} or C_{m}^{\dagger}.

Proposition

C_{m}^{o} is a copula which approximates C :

$$
\sup _{x \in[0,1]^{d}}\left|C_{m}^{o}(x)-C(x)\right| \leq \frac{d}{2 m} .
$$

Gives a more precise bound on the approximation of C by C_{m}^{o} by a factor 2, than the one presented in dimension 2 in Li et al. (1998).
(1) Context
(2) Copulas approximations
(3) Estimation procedure

- Algorithm
- Two test models
- Simulations

4 Concluding remarks
(5) Miscellaneous

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of \mathbf{X} is available.
(1) Estimate μ by $\widehat{\mu}$ using the empirical copula. Empirical copula.
(2) Simulate a sample of size N from the copula \widehat{C}_{m}^{*}

$$
\widehat{C}_{m}^{*}(x)=\sum_{i} m^{d} \widehat{\mu}\left(I_{i, m}\right) \lambda\left([0, x] \cap I_{i, m}\right) .
$$

$$
\left(u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right), \ldots,\left(u_{1}^{(N)}, \ldots, u_{d}^{(N)}\right)
$$

©

Algorithm

An estimation procedure

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is available.
(1) Estimate μ by $\widehat{\mu}$ using the empirical copula. Empirical copula.
(2) Simulate a sample of size N from the copula \widehat{C}_{m}^{*}

$$
\begin{gathered}
\widehat{C}_{m}^{*}(x)=\sum_{i} m^{d} \widehat{\mu}\left(I_{i, m}\right) \lambda\left([0, x] \cap I_{i, m}\right) . \\
\left(u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right), \ldots,\left(u_{1}^{(N)}, \ldots, u_{d}^{(N)}\right)
\end{gathered}
$$

(3) Get a sample of S using the marginals transform:

$$
\sum_{i=1}^{d} F_{i}^{-1}\left(u_{i}^{(1)}\right), \ldots, \sum_{i=1}^{d} F_{i}^{-1}\left(u_{i}^{(N)}\right) .
$$

(9) Estimate the distribution function F_{S} of S empirically using the sample above $\Rightarrow \widehat{F}_{S}$.

Algorithm

An estimation procedure

Similar construction for the checkmin copula $\Longrightarrow \widehat{C}_{m}^{o}$.

Algorithm

Convergence results for \widehat{C}_{m}^{o}

Proposition

Let m divide n, we have:

$$
\sup _{t \in[0,1]}\left|\widehat{C}_{m}^{o}(t)-C(t)\right| \leq O_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right)+\frac{d}{2 m} .
$$

Algorithm

Convergence results to F_{S}.

Estimate $F_{S}(t)$ by

$$
\mathbb{P}\left(\sum_{i=1}^{n}\left(T^{-}\left(U_{m}^{o}\right)\right)_{i} \leq t\right)=F_{m}^{o}(t)
$$

where $U_{m}^{o} \rightsquigarrow \widehat{C}_{m}^{o}$ and $T^{-}\left(u_{1}, \ldots, u_{d}\right)=\left(F_{1}^{-1}\left(u_{1}\right), \ldots, F_{d}^{-1}\left(u_{d}\right)\right)$.
With a regularity condition due to Mainik, we obtain the convergence of F_{m}^{o} to F_{S}.

Proposition

Under the regularity assumption, if m divides n,

$$
\sup _{t \in \mathbb{R}}\left|F_{S}(t)-F_{m}^{o}(t)\right|=O_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right)+O\left(\frac{1}{m}\right) .
$$

The Pareto - Clayon model

- Pareto marginal distributions (parameters a, b).
- Survival Clayton copula (parameter $\frac{1}{a}$).

Exact formula for $\operatorname{VaR}_{\alpha}(S)$ using the so-called Beta prime distribution (see Dubey (1970)).

Gaussian example

- Lognormal marginal distributions.
- Gaussian copula.

Pareto-Clayton model

RMSE in \% of the exact value for the Pareto-Clayton model of parameters 3 and 1 , in dimension 25 , for a sample size $n=80,100$ runs.

	90%	95%	99%	99.5%	99.9%
Exact value	23.08	31.28	59.10	76.41	135.89
ECBC, $m=5$	4%	14%	40%	48%	63%
ECBC, $m=20$	9%	9%	21%	31%	52%
ECBC, $m=40$	9%	11%	18%	26%	48%
ECBC, $m=80$	9%	12%	23%	25%	44%
ECBC, median	5%	8%	31%	41%	59%
ECMC, $m=5$	3%	4%	6%	7%	13%
ECMC, $m=20$	5%	6%	14%	17%	23%
ECMC, $m=40$	6%	7%	15%	19%	27%
ECMC, $m=80$	7%	10%	16%	21%	32%
ECMC, median	3%	4%	9%	11%	15%
Gaussian cop.	3%	10%	27%	34%	48%
Surv. Clayt.	2%	3%	5%	6%	12%
Clayton copula	10%	23%	46%	54%	66%
Empirical cop.	9%	12%	23%	31%	56%

Gaussian lognormal example

RMSE in \% of the exact value for the Gaussian lognormal model with $\rho=0.1$, dimension 25 , for a sample size $n=80,100$ runs.

	90%	95%	99%	99.5%	99.9%
Near exact value	111.65	129.81	176.99	200.82	270.14
ECBC, $m=5$	4%	6%	10%	11%	13%
ECBC, $m=20$	3%	4%	8%	9%	11%
ECBC, $m=40$	4%	4%	9%	9%	11%
ECBC, $m=80$	4%	5%	10%	11%	12%
ECBC, median	3%	5%	9%	10%	11%
ECMC, $m=5$	3%	11%	33%	44%	72%
ECMC, $m=20$	3%	3%	7%	10%	22%
ECMC, $m=40$	3%	4%	7%	8%	15%
ECMC, $m=80$	4%	5%	8%	10%	13%
ECMC, median	2%	4%	17%	24%	41%
Gaussian copula	2%	2%	3%	4%	6%
Survival Clayton	2%	3%	9%	12%	20%
Clayton copula	7%	9%	13%	14%	14%
Empirical cop.	6%	9%	16%	22%	35%

Gaussian lognormal example

More simulations. RMSE in \% of the exact value for the Gaussian lognormal model with $\rho=0.1$, dimension 25 , for a sample size $n=80,100$ runs.

	90%	95%	99%	99.5%	99.9%
Near exact value	111.65	129.81	176.99	200.82	270.14
ECBC, $m=5$	4%	6%	10%	11%	13%
ECBC, $m=20$	3%	4%	8%	9%	11%
ECBC, $m=40$	4%	4%	9%	9%	11%
ECBC, $m=80$	4%	5%	10%	11%	12%
ECBC, median	3%	5%	9%	10%	11%
ECMC, $m=5$	3%	11%	33%	44%	72%
ECMC, $m=20$	3%	3%	7%	10%	22%
ECMC, $m=40$	3%	4%	7%	8%	15%
ECMC, $m=80$	4%	5%	8%	10%	13%
ECMC, median	2%	4%	17%	24%	41%
Gaussian copula	2%	2%	3%	4%	6%
Survival Clayton	2%	3%	9%	12%	20%
Clayton copula	7%	9%	13%	14%	14%
Empirical cop.	6%	9%	16%	22%	35%

Plan

(1) Context

(2) Copulas approximations
(3) Estimation procedure

4 Concluding remarks
(5) Miscellaneous

Conclusion

- Efficient methods to estimate the aggregated VaR.
- Efficient even in (relatively) high dimension with (relatively) small samples.
- Additional information / expert opinion may be taken into account: dependence structure on a sub-vector or on the tail.
ToDo Determine optimally m.
ToDo Quantify the information gain.
ToDo Develop efficient procedures to simulate a sample from the checkerboard copula with partial information (tail or copula of a sub-vector).
ToDo Estimation of the Kendall distribution and application to multivariate return time.

References I

Piotr Mikusinski and Michael D Taylor.
Some approximations of n-copulas.
Metrika, 72(3):385-414, 2010.Satya D Dubey.
Compound gamma, beta and F distributions.
Metrika, 16(1):27-31, 1970.
Fabrizio Durante, Juan Fernández-Sánchez, José Juan Quesada-Molina, and Übeda-Flores Manuel.
Convergence results for patchwork copulas.
European Journal of Operational Research, 247:525-531, 2015.
Xin Li, P Mikusiński, and Michael D Taylor.
Strong approximation of copulas.
Journal of Mathematical Analysis and Applications, 225(2):608-623, 1998.

References II

Georg Mainik.
Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions.
Journal of Multivariate Analysis, 141:197-216, 2015.

Thank you for your attention

(1) Context
(2) Copulas approximations
(3) Estimation procedure
(4) Concluding remarks
(5) Miscellaneous

- Empirical Copula
- Additional information
- Simulations

Empirical Copula

Empirical Copula

Deheuvels (1979) defined the empirical copula.

Definition

Let $X^{(1)}, \ldots X^{(n)}$ be n independent copies of \mathbf{X} and $R_{i}^{(1)}, \ldots, R_{i}^{(n)}$, $i=1, \ldots, d$ their marginals ranks, i.e.,

$$
R_{i}^{(j)}=\sum_{k=1}^{n} 1\left\{X_{i}^{(j)} \geq X_{i}^{(k)}\right\}, i=1, \ldots, d, j=1, \ldots, n .
$$

The empirical copula C_{n} of $X^{(1)}, \ldots X^{(n)}$ is defined as

$$
C_{n}(u)=\frac{1}{n} \sum_{k=1}^{n} 1\left\{\frac{1}{n} R_{1}^{(k)} \leq u_{1}, \ldots, \frac{1}{n} R_{d}^{(k)} \leq u_{d}\right\}
$$

The checkerboard copula with additional information

We may include some kind of information in the checkerboard copula, mainly:

The copula of a subvector $\mathbf{X}^{J}, J \subset\{1, \ldots, d\}, C^{J}$ is known, $|J|=k<d$.

Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard copula, mainly:

$$
\begin{aligned}
& \text { The copula of a subvector } X^{J}, J \subset\{1, \ldots, d\}, C^{J} \text { is known, } \\
& \qquad|J|=k<d .
\end{aligned}
$$

Let μ^{J} be the probability measure on $[0,1]^{k}$ associated to C^{J}. For $i=\left(i_{1}, \ldots, i_{d}\right)$, let $x=\left(x_{1}, \ldots, x_{d}\right) \in[0,1]^{d}, x^{J}=\left(x_{j}\right)_{j \in J}$, $x^{-J}=\left(x_{j}\right)_{j \notin J}$ and

$$
\begin{aligned}
& I_{i, m}^{J}=\left\{x \in[0,1]^{k} / x_{j} \in\left[\frac{i_{j}-1}{m}, \frac{i_{j}}{m}\right], j \in J\right\}, \\
& I_{i, m}^{-J}=\left\{x \in[0,1]^{d-k} / x_{j} \in\left[\frac{i_{j}-1}{m}, \frac{i_{j}}{m}\right], j \notin J\right\} .
\end{aligned}
$$

Additional information

Check-erboard-min with information on a sub-vector

Define

$$
\mu_{m}^{J}([0, x])=\sum_{i \subset\{1, \ldots, m\}^{d}} \frac{1}{\mu^{J}\left(I_{i, m}^{J}\right)} \mu\left(I_{i, m}\right) \frac{\mu^{o}\left(\left[0, x^{-J}\right] \cap I_{i, m}^{-J}\right)}{\mu^{o}\left(I_{i, m}^{-J}\right)} \mu^{J}\left(\left[0, x^{J}\right] \cap I_{i, m}^{J}\right)
$$

$$
\text { Let } C_{m}^{J}(x)=\mu_{m}^{J}([0, x])
$$

Where μ^{o} is either the Lebesgue or the comonotonic measure on $l_{i, m}^{-J}$. From a probabilistic point of view,

$$
C_{m}^{J}(x)=\sum_{i} \mu\left(I_{i, m}\right) \mathbb{P}\left(U^{-J} \leq x^{-J}, U^{J} \leq x^{J} \mid U \in I_{i, m}\right)
$$

with U a random vector of \mathbb{R}^{d}, with U^{-J} and U^{J} independent, U^{-J} is a random vector of \mathbb{R}^{d-k} either of i.i.d. uniform laws on $[0,1]$ or of comonotonic margins conditionnally to $I_{i, m}$ and U^{J} distributed as C^{J}.

Additional information

Check-erboard-min with information on a sub-vector

Define

$$
\mu_{m}^{J}([0, x])=\sum_{i \subset\{1, \ldots, m\}^{d}} \frac{1}{\mu^{J}\left(I_{i, m}^{J}\right)} \mu\left(I_{i, m}\right) \frac{\mu^{o}\left(\left[0, x^{-J}\right] \cap I_{i, m}^{-J}\right)}{\mu^{o}\left(I_{i, m}^{-J}\right)} \mu^{J}\left(\left[0, x^{J}\right] \cap I_{i, m}^{J}\right)
$$

$$
\text { Let } C_{m}^{J}(x)=\mu_{m}^{J}([0, x])
$$

Proposition

C_{m}^{J} is a copula, it approximates C : $\sup _{x \in[0,1]^{d}}\left|C_{m}^{J}(x)-C(x)\right| \leq \frac{d}{2 m}$. If X^{J} and X^{-J} are independent then,

$$
\sup _{x \in[0,1]^{d}}\left|C_{m}^{J}(x)-C(x)\right| \leq \frac{d-k}{2 m}
$$

Additional information

Information on the tail

We may also add information on the tail.

Definition

Let $t \in] 0,1\left[\right.$ and $E=\left(\prod_{i=1}^{d}[0, t]^{d}\right)^{c}$, assume that $\mu_{C}(E)$ is known (information on the tail).
The checkerboard copula with extra information on the tail is defined by:

$$
C_{m}^{\mathcal{E}}(x)=\mu_{C}\left(E^{c}\right) C_{m}^{o}(x / t) 1_{E^{c}}(x)+\frac{\mu_{C}(E)}{\lambda(E)} \lambda([0, x] \cap E)
$$

where C_{m}^{o} is the check-erboard-min copula with partition:
$J_{i, m}=t \cdot I_{i, m}$.
$C_{m}^{\mathcal{E}}$ is a copula, it approximates C.

Simulations

More simulations

Pareto-Clayton model with parameters 2 and 1 , in dimension 100, $n=400$.
Boxplots for the 0.995 quantile

Boxplots for the 0.999 quantile

Simulations

More simulations

Gaussian-lognormal model, correlations $0.25,0.5,0.75$, dimension 100, $n=400$.

Boxplots for the 0.999 quantile

Simulations

More simulations

Pareto-Clayton model in dimension 2 , with $\beta=1$ and $\alpha=2$, $n=30$
The information on the tail is introduced on \mathcal{E}_{p}, for $p=0.95,0.99$.

	90%	95%	99%	99.5%	99.9%
Empirical	31%	39%	72%	70%	78%
$\mathrm{ECBC}(\mathrm{m}=6)$					
No tail information	8%	6%	8%	11%	15%
Information on $\mathcal{E}_{p} \mathrm{p}=0.99$	8%	5%	11%	3%	8%
Information on $\mathcal{E}_{p} \mathrm{p}=0.95$	5%	4%	3%	6%	13%
$\mathrm{ECBC}(\mathrm{m}=15)$					
No tail information	13%	11%	9%	10%	14%
Information on $\mathcal{E}_{p} \mathrm{p}=0.99$	12%	12%	11%	3%	8%
Information on $\mathcal{E}_{p} \mathrm{p}=0.95$	10%	4%	3%	6%	13%
$\mathrm{ECBC}(\mathrm{m}=30)$					
No tail information	15%	17%	13%	12%	14%
Information on $\mathcal{E}_{p} \mathrm{p}=0.99$	16%	16%	11%	3%	8%
Information on $\mathcal{E}_{p} \mathrm{p}=0.95$	11%	4%	3%	6%	13%

Simulations

More simulations

$X=\left(X_{1}, X_{2}, X_{3}\right)$ whith $X_{1}=X_{2}=Y / 2, X_{3} \sim Y$ where Y is Pareto distributed with $\alpha=2$, and $\left(Y, X_{3}\right)$ is a Pareto-Clayton model $\Longrightarrow X_{1}$ and X_{2} are comonotonic (or fully dependent) and the dependence between X_{1} and X_{3} is given by a survival Clayton of parameter $1 / 2$.

	90%	95%	99%	99.5%	99.9%
ECBC (m=6)					
No information	13%	7%	13%	18%	24%
Information on $\left(X_{1}, X_{2}\right)$	8%	6%	8%	11%	15%
ECBC $(m=10)$					
No information	13%	12%	11%	15%	23%
Information on $\left(X_{1}, X_{2}\right)$	9%	9%	8%	10%	15%
ECBC (m=30)					
No information	16%	19%	14%	14%	21%
Information on $\left(X_{1}, X_{2}\right)$	16%	17%	13%	13%	14%

