Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
	Some C	Copula's approxi	mations.	

Véronique Maume-Deschamps, université Lyon 1 - Institut Camille Jordan (ICJ),

Joint Work with Andrés Cuberos (SCOR) and Esterina Masiello (Université Lyon 1).

Dependence Modeling Conference September, 19th 2016.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Plan				

- 2 Copulas approximations
- 3 Estimation procedure
- 4 Concluding remarks
- 5 Miscellaneous

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Genera	Inroblematic			

 (X_1, \ldots, X_d) random vector of risks. Write

$$S = \sum_{i=1}^{d} X_i$$
, the aggregated risk.

Regulatory rules, Risk management purposes, Environmental risks $\dots \implies$ need to estimate / approximate (relatively) high level quantiles of S:

$$F_{S}^{-1}(\alpha) = \mathsf{VaR}_{\alpha}(S),$$

where F_S is the distribution function of S.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Examp	es			

- Insurance: X describes the distribution of the claim amonts, regulatory rules impose to insurance companies to estimate $F_X(\alpha)$ for $\alpha = 0.995$.
- Hydrology: X may describe a flood level. Computing $F_X^{-1}(\alpha)$ is required to calibrate a barrage e.g. (or a dam).
- Many other field: finance, wind electricity...

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Our pu	rpose			

 (X_1, \ldots, X_d) random vector of risks.

The X_i may be different lines of business in insurance contexts.

$$S=\sum_{i=1}^d X_i.$$

 $\implies \text{Estimation of VaR}_{\alpha}(S).$ The law of S (and thus VaR $_{\alpha}(S)$) depends on the law of (X_1, \ldots, X_d) (marginal laws and dependence structure). Context

Concluding remarks

Miscellaneous

6/43

Quantiles of aggregated risks

- High dimensional problem (d may be large),
- Marginal laws (laws of the X_i's) are usually known (or well estimated), some information on the dependence is available,
- Even if the law of (X_1, \ldots, X_d) is known, the effective computation of

 $VaR_{\alpha}(S),$

may be difficult to do,

Estimation procedure

Concluding remarks

Miscellaneous

Quantiles of aggregated risks

• Even if the law of (X_1, \ldots, X_d) is known, the effective computation of

 $\mathsf{VaR}_{\alpha}(S),$

may be difficult to do, the distribution function of S is given by:

$$F_{\mathcal{S}}(t) = \int_{\mathbb{R}^d} \mathbf{1}_{\{x_1 + \dots + x_d \leq t\}} f_X(x_1, \dots, x_d) dx_1 \dots dx_d.$$

 \implies Efficient methods are still welcome.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
One n	roposition			

Assume that the X_i 's laws are known.

Information on the dependence is available through

- a (quite small) (X_1, \ldots, X_d) sample and
- some expert opinion (e.g the dependence structure between X₁ and X₂ is completely known) and / or
- some knowledge of the join tail $(\mathbb{P}(X_1 \ge u_1, \dots, X_d \ge u_d))$ is known for some (u_1, \dots, u_d) .

We use check-erboard-min copulas to estimate $VaR_{\alpha}(S)$.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
	ranasitian			

Assume that the X_i 's laws are known.

Information on the dependence is available through

- a (quite small) (X_1, \ldots, X_d) sample and
- some expert opinion (e.g the dependence structure between X₁ and X₂ is completely known) and / or
- some knowledge of the join tail $(\mathbb{P}(X_1 \ge u_1, \dots, X_d \ge u_d))$ is known for some (u_1, \dots, u_d) .

We use check-erboard-min copulas to estimate $VaR_{\alpha}(S)$.

We assume that X has continuous marginals and we shall denote by C the copula associated to X.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Plan				

Copulas approximations The check-erboard-min coupla

- 3 Estimation procedure
- 4 Concluding remarks

5 Miscellaneous

	\mathbf{a}	n			~	
-	U		u	c	~	

Copulas approximations ●○○ Estimation procedure

Concluding remarks

Miscellaneous

The check-erboard-min coupla

The checkerboard copula: definition

The cherckerboard copula, introduced in dimension 2 by Li *et al.* (1998) and Mikusinski and Taylor (2010) is an approximation of a copula *C*. Durante *et al.* (2015) also consider related approximations known as patchwork copulas. μ is the probability measure associated to *C* on $[0, 1]^d$:

$$\mu([0,x]) = C(x), x = (x_1, \ldots, x_d) \in [0,1]^d, \ [0,x] = \prod_{i=1}^d [0,x_i].$$

Consider $(I_{i,m})_{i \in \{1,...,m\}^d}$ the partition (modulo a 0 measure set) of $[0,1]^d$ given by the m^d squares:

$$I_{i,m} = \prod_{j=1}^{d} \left[\frac{i_j - 1}{m}, \frac{i_j}{m} \right], \quad i = (i_1, \dots, i_d).$$

11 / 43

Context

Copulas approximations

Estimation procedure

Concluding remarks

Miscellaneous

The check-erboard-min coupla

The checkerboard copula: definition

 λ denotes the Lebesgue measure.

The checkerboard copula of order m is defined on $[0,1]^d$ by:

$$C_m^*(x) = \sum_i m^d \mu(I_{i,m}) \lambda([0,x] \cap I_{i,m}).$$

12/43

Context Copulas approximations E • • • •

Estimation procedure

Concluding remarks

Miscellaneous

The check-erboard-min coupla

The checkerboard copula: definition

 λ denotes the Lebesgue measure.

The checkerboard copula of order m is defined on $[0, 1]^d$ by:

$$C_m^*(x) = \sum_i m^d \mu(I_{i,m}) \lambda([0,x] \cap I_{i,m}).$$

From a probabilistic point of view,

$$C_m^*(x) = \sum_i \mu(I_{i,m}) \mathbb{P}(U \le x | U \in I_{i,m}).$$

with U a random vector of \mathbb{R}^d of i.i.d. uniform laws on [0, 1].

In the previous construction, replace the independent copula by the comonotonic copula.

In other words, replace U on $I_{i,m}$ by $U_{i,m}^*$ with

$$(U_{i,m}^*)_1 \rightsquigarrow \mathcal{U}([rac{i_1-1}{m},rac{i_1}{m}]) ext{ and } (U_{i,m}^*)_j = (U_{i,m}^*)_1 - rac{i_1}{m} + rac{i_j}{m}.$$
 $C_m^{\dagger}(x) = \sum_i m \mu(l_{i,m}) \min(x_j - rac{i_j-1}{m}, rac{1}{m}).$

イロト イポト イヨト イヨト 二日

14 / 43

Context

Copulas approximations

Estimation procedure

Concluding remarks

Miscellaneous

The check-erboard-min coupla

Proposition

Approximation by the check-erboard-min copula

In what follows, C_m^o is either C_m^* or C_m^{\dagger} .

 C_m^o is a copula which approximates C:

$$\sup_{x\in[0,1]^d}|C_m^o(x)-C(x)|\leq \frac{d}{2m}$$

Gives a more precise bound on the approximation of C by C_m^o by a factor 2, than the one presented in dimension 2 in Li *et al.* (1998).

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Plan				

1 Context

2 Copulas approximations

3 Estimation procedure

- Algorithm
- Two test models
- Simulations

4 Concluding remarks

5 Miscellaneous

Context	Copulas approximations	Estimation procedure ●000000	Concluding remarks	Miscellaneous
Algorithm				
An est	imation procedu	ire		

Assume the marginal laws are known, a (quite small sample) of ${\sf X}$ is available.

- **2** Simulate a sample of size N from the copula \widehat{C}_m^*

$$\widehat{C}_m^*(x) = \sum_i m^d \widehat{\mu}(I_{i,m}) \lambda([0,x] \cap I_{i,m}).$$

$$(u_1^{(1)},\ldots,u_d^{(1)}),\ldots,(u_1^{(N)},\ldots,u_d^{(N)})$$

(日) (周) (日) (日) (日)

17 / 43

Context	Copulas approximations	Estimation procedure ●○○○○○○	Concluding remarks	Miscellaneous
Algorithm				
An estir	mation procedure	2		

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Algorithm				

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is available.

- **(**) Estimate μ by $\hat{\mu}$ using the empirical copula. Empirical copula.
- **2** Simulate a sample of size N from the copula \widehat{C}_m^*

$$\widehat{C}^*_m(x) = \sum_i m^d \widehat{\mu}(I_{i,m}) \lambda([0,x] \cap I_{i,m}).$$

$$(u_1^{(1)}, \ldots, u_d^{(1)}), \ldots, (u_1^{(N)}, \ldots, u_d^{(N)})$$

\bigcirc Get a sample of S using the marginals transform:

$$\sum_{i=1}^{d} F_i^{-1}(u_i^{(1)}), \ldots, \sum_{i=1}^{d} F_i^{-1}(u_i^{(N)}).$$

• Estimate the distribution function F_S of S empirically using the sample above $\Rightarrow \widehat{F}_S$.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Algorithm				
An estir	mation procedure	9		

Similar construction for the checkmin copula $\implies \widehat{C}_m^o$.

Context

Copulas approximations

Estimation procedure

Concluding remarks

Miscellaneous

Algorithm

Convergence results for \widehat{C}_m^o .

Proposition

Let m divide n, we have:

$$\sup_{t\in[0,1]}|\widehat{C}_m^o(t)-C(t)|\leq O_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right)+\frac{d}{2\,m}.$$

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Algorithm				

Convergence results to F_S .

Estimate $F_S(t)$ by

$$\mathbb{P}\left(\sum_{i=1}^n (T^-(U^o_m))_i \leq t\right) = F^o_m(t)$$

where $U_m^o \rightsquigarrow \widehat{C}_m^o$ and $T^-(u_1, \ldots, u_d) = (F_1^{-1}(u_1), \ldots, F_d^{-1}(u_d))$. With a regularity condition due to Mainik, we obtain the convergence of F_m^o to F_S .

Proposition

Under the regularity assumption, if m divides n,

$$\sup_{t\in\mathbb{R}}|F_{\mathcal{S}}(t)-F_{m}^{o}(t)|=O_{\mathbb{P}}(\frac{1}{\sqrt{n}})+O(\frac{1}{m}).$$

- Pareto marginal distributions (parameters a, b).
- Survival Clayton copula (parameter $\frac{1}{a}$).

Exact formula for $VaR_{\alpha}(S)$ using the so-called Beta prime distribution (see Dubey (1970)).

Context	Copulas approximations	Estimation procedure ○○○○●○○	Concluding remarks	Miscellaneous 00000
Two test mo	dels			
Gaussi	an example			

- Lognormal marginal distributions.
- Gaussian copula.

Context	Copulas approximations	Estimation procedure ○○○○●○	Concluding remarks	Miscellaneous
Simulations				
Pareto-	Clayton model			

RMSE in % of the exact value for the Pareto-Clayton model of parameters 3 and 1, in dimension 25, for a sample size n = 80, 100 runs.

	90%	95%	99%	99.5%	99.9%
Exact value	23.08	31.28	59.10	76.41	135.89
ECBC, $m = 5$	4%	14%	40%	48%	63%
ECBC, <i>m</i> = 20	9%	9%	21%	31%	52%
ECBC, <i>m</i> = 40	9%	11%	18%	26%	48%
ECBC, <i>m</i> = 80	9%	12%	23%	25%	44%
ECBC, median	5%	8%	31%	41%	59%
ECMC, $m = 5$	3%	4%	6%	7%	13%
ECMC, <i>m</i> = 20	5%	6%	14%	17%	23%
ECMC, <i>m</i> = 40	6%	7%	15%	19%	27%
ECMC, <i>m</i> = 80	7%	10%	16%	21%	32%
ECMC, median	3%	4%	9%	11%	15%
Gaussian cop.	3%	10%	27%	34%	48%
Surv. Clayt.	2%	3%	5%	6%	12%
Clayton copula	10%	23%	46%	54%	66%
Empirical cop.	9%	12%	23%	* " 31%	56%

: ৩৭.০ 25 / 43

Context	Copulas approximations	Estimation procedure ○○○○○○●	Concluding remarks	Miscellaneous
Simulations				

Gaussian lognormal example

RMSE in % of the exact value for the Gaussian lognormal model with $\rho = 0.1$, dimension 25, for a sample size n = 80, 100 runs.

	90%	95%	99%	99.5%	99.9%
Near exact value	111.65	129.81	176.99	200.82	270.14
ECBC, $m = 5$	4%	6%	10%	11%	13%
ECBC, <i>m</i> = 20	3%	4%	8%	9%	11%
ECBC, <i>m</i> = 40	4%	4%	9%	9%	11%
ECBC, <i>m</i> = 80	4%	5%	10%	11%	12%
ECBC, median	3%	5%	9%	10%	11%
ECMC, <i>m</i> = 5	3%	11%	33%	44%	72%
ECMC, <i>m</i> = 20	3%	3%	7%	10%	22%
ECMC, <i>m</i> = 40	3%	4%	7%	8%	15%
ECMC, <i>m</i> = 80	4%	5%	8%	10%	13%
ECMC, median	2%	4%	17%	24%	41%
Gaussian copula	2%	2%	3%	4%	6%
Survival Clayton	2%	3%	9%	12%	20%
Clayton copula	7%	9%	13%	14%	14%
Empirical cop.	6%	9%	16%	22%	35%

: ৩৭. 26 / 43

)					
	0	n	÷.	\sim	٠
	U		v		

Copulas approximations

Estimation procedure

Concluding remarks

Miscellaneous

Simulations

Gaussian lognormal example

More simulations. RMSE in % of the exact value for the Gaussian lognormal model with $\rho = 0.1$, dimension 25, for a sample size n = 80, 100 runs.

	90%	95%	99%	99.5%	99.9%
Near exact value	111.65	129.81	176.99	200.82	270.14
ECBC, <i>m</i> = 5	4%	6%	10%	11%	13%
ECBC, <i>m</i> = 20	3%	4%	8%	9%	11%
ECBC, <i>m</i> = 40	4%	4%	9%	9%	11%
ECBC, <i>m</i> = 80	4%	5%	10%	11%	12%
ECBC, median	3%	5%	9%	10%	11%
ECMC, <i>m</i> = 5	3%	11%	33%	44%	72%
ECMC, <i>m</i> = 20	3%	3%	7%	10%	22%
ECMC, <i>m</i> = 40	3%	4%	7%	8%	15%
ECMC, <i>m</i> = 80	4%	5%	8%	10%	13%
ECMC, median	2%	4%	17%	24%	41%
Gaussian copula	2%	2%	3%	4%	6%
Survival Clayton	2%	3%	9%	12%	20%
Clayton copula	7%	9%	13%	14%	14%
Empirical cop.	6%	9%	16%	22%	35%

হে / 43

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous 00000
Plan				

Context

- 2 Copulas approximations
- 3 Estimation procedure
- 4 Concluding remarks

5 Miscellaneous

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
C I				
Concli	usion			

- Efficient methods to estimate the aggregated VaR.
- Efficient even in (relatively) high dimension with (relatively) small samples.
- Additional information / expert opinion may be taken into account: dependence structure on a sub-vector or on the tail.
- ToDo Determine optimally *m*.
- ToDo Quantify the information gain.
- ToDo Develop efficient procedures to simulate a sample from the checkerboard copula with partial information (tail or copula of a sub-vector).
- ToDo Estimation of the Kendall distribution and application to multivariate return time.

Context Cop	oulas approximations	occoccoccoccoccoccoccoccoccoccoccoccocc	Concluding remarks	Miscellaneous
References	s I			

Piotr Mikusinski and Michael D Taylor.

Some approximations of n-copulas. *Metrika*, 72(3):385–414, 2010.

Satya D Dubey.

Compound gamma, beta and F distributions. *Metrika*, 16(1):27–31, 1970.

Fabrizio Durante, Juan Fernández-Sánchez, José Juan Quesada-Molina, and Ùbeda-Flores Manuel.

Convergence results for patchwork copulas.

European Journal of Operational Research, 247:525–531, 2015.

Xin Li, P Mikusiński, and Michael D Taylor. Strong approximation of copulas.

Journal of Mathematical Analysis and Applications, 225(2):608-623, 1998.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous

References II

Georg Mainik.

Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions.

Journal of Multivariate Analysis, 141:197–216, 2015.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous 00000

Thank you for your attention

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous
Plan				

Context

- 2 Copulas approximations
- 3 Estimation procedure
- 4 Concluding remarks

6 Miscellaneous

- Empirical Copula
- Additional information
- Simulations

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ●○○○○
Empirical C	opula			
Empir	rical Copula			

Deheuvels (1979) defined the empirical copula.

Definition

Let $X^{(1)}, \ldots X^{(n)}$ be *n* independent copies of **X** and $R_i^{(1)}, \ldots, R_i^{(n)}$, $i = 1, \ldots, d$ their marginals ranks, i.e.,

$$R_i^{(j)} = \sum_{k=1}^n \mathbb{1}\{X_i^{(j)} \ge X_i^{(k)}\}, \ i = 1, \dots, d, \ j = 1, \dots, n.$$

The empirical copula C_n of $X^{(1)}, \ldots X^{(n)}$ is defined as

$$C_n(u) = \frac{1}{n} \sum_{k=1}^n 1\left\{\frac{1}{n} R_1^{(k)} \le u_1, \dots, \frac{1}{n} R_d^{(k)} \le u_d\right\}$$

(日) (四) (王) (王)

Context	Co 00	pulas ap o	oproximations	Estin 0000	nation pro	ocedure	C	onclu	ding rer	narks	Misce ○●○○	llaneous ○
Additional in	nformat	ion										
					I	1.11.1			c			

The checkerboard copula with additional information

We may include some kind of information in the checkerboard copula, mainly:

The copula of a subvector \mathbf{X}^J , $J \subset \{1, \dots, d\}$, C^J is known, |J| = k < d.

Context Co	pulas approximations	Estimation procedure	Concluding remarks
00			

Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard copula, mainly:

The copula of a subvector \mathbf{X}^J , $J \subset \{1, \ldots, d\}$, C^J is known, |J| = k < d.

Let μ^J be the probability measure on $[0,1]^k$ associated to C^J . For $i = (i_1, \ldots, i_d)$, let $x = (x_1, \ldots, x_d) \in [0,1]^d$, $x^J = (x_j)_{j \in J}$, $x^{-J} = (x_j)_{j \notin J}$ and

$$I_{i,m}^{J} = \left\{ x \in [0,1]^{k} / x_{j} \in \left[\frac{i_{j}-1}{m}, \frac{i_{j}}{m}\right], \ j \in J \right\},$$
$$I_{i,m}^{-J} = \left\{ x \in [0,1]^{d-k} / x_{j} \in \left[\frac{i_{j}-1}{m}, \frac{i_{j}}{m}\right], \ j \notin J \right\}.$$

Miscellaneous

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ○○●○○
Additional info	ormation			

Check-erboard-min with information on a sub-vector

Define

$$\mu_m^J([0,x]) = \sum_{i \in \{1,\dots,m\}^d} \frac{1}{\mu^J(I_{i,m}^J)} \mu(I_{i,m}) \frac{\mu^o([0,x^{-J}] \cap I_{i,m}^{-J})}{\mu^o(I_{i,m}^{-J})} \mu^J([0,x^J] \cap I_{i,m}^J)$$

Let $C_m^J(x) = \mu_m^J([0, x])$. Where μ^o is either the Lebesgue or the comonotonic measure on $I_{i,m}^{-J}$. From a probabilistic point of view,

$$C_m^J(x) = \sum_i \mu(I_{i,m}) \mathbb{P}(U^{-J} \leq x^{-J}, \ U^J \leq x^J | U \in I_{i,m}).$$

with U a random vector of \mathbb{R}^d , with U^{-J} and U^J independent, U^{-J} is a random vector of \mathbb{R}^{d-k} either of i.i.d. uniform laws on [0, 1] or of comonotonic margins conditionnally to $I_{i,m}$ and U^J distributed as C^J .

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ○○●○○
Additional infor				

Check-erboard-min with information on a sub-vector

Define

$$\mu_m^J([0,x]) = \sum_{i \in \{1,\dots,m\}^d} \frac{1}{\mu^J(I_{i,m}^J)} \mu(I_{i,m}) \frac{\mu^o([0,x^{-J}] \cap I_{i,m}^{-J})}{\mu^o(I_{i,m}^{-J})} \mu^J([0,x^J] \cap I_{i,m}^J)$$

Let
$$C_m^J(x) = \mu_m^J([0, x]).$$

Proposition

 C_m^J is a copula, it approximates C: $\sup_{x \in [0,1]^d} |C_m^J(x) - C(x)| \le \frac{d}{2m}$. If X^J and X^{-J} are independent then,

$$\sup_{x\in[0,1]^d}|C_m^J(x)-C(x)|\leq \frac{d-k}{2m}.$$

38 / 43

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ○○○●○
Additional in	nformation			
Inform	nation on the tai			

We may also add information on the tail.

Definition

Let $t \in]0,1[$ and $E = \left(\prod_{i=1}^{d} [0,t]^{d}\right)^{c}$, assume that $\mu_{C}(E)$ is known (information on the tail). The checkerboard copula with extra information on the tail is defined by:

$$C_m^{\mathcal{E}}(x) = \mu_C(E^c)C_m^o(x/t)\mathbf{1}_{E^c}(x) + \frac{\mu_C(E)}{\lambda(E)}\lambda([0,x]\cap E),$$

where C_m^o is the check-erboard-min copula with partition: $J_{i,m} = t \cdot I_{i,m}$.

 $C_m^{\mathcal{E}}$ is a copula, it approximates C.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ○○○○●
Simulations				
More s	imulations			

Pareto-Clayton model with parameters 2 and 1, in dimension 100, n = 400.

Boxplots for the 0.999 quantile

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ○○○○●
Simulations				
More s	imulations			

Gaussian-lognormal model, correlations 0.25, 0.5, 0.75, dimension 100, n = 400.

Boxplots for the 0.995 quantile

Boxplots for the 0.999 quantile

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで 41 / 43

Back.

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ○○○○●
Simulations				

More simulations

Pareto-Clayton model in dimension 2, with $\beta = 1$ and $\alpha = 2$, n = 30The information on the tail is introduced on \mathcal{E}_p , for p = 0.95, 0.99.

	90%	95%	99%	99.5%	99.9%
Empirical	31%	39%	72%	70%	78%
ECBC (m=6)					
No tail information	8%	6%	8%	11%	15%
Information on \mathcal{E}_p p=0.99	8%	5%	11%	3%	8%
Information on \mathcal{E}_p p=0.95	5%	4%	3%	6%	13%
ECBC (m=15)					
No tail information	13%	11%	9%	10%	14%
Information on $\mathcal{E}_p p=0.99$	12%	12%	11%	3%	8%
Information on \mathcal{E}_p p=0.95	10%	4%	3%	6%	13%
ECBC (m=30)					
No tail information	15%	17%	13%	12%	14%
Information on \mathcal{E}_p p=0.99	16%	16%	11%	3%	8%
Information on \mathcal{E}_p p=0.95	11%	4%	3%	6%	13%

Context	Copulas approximations	Estimation procedure	Concluding remarks	Miscellaneous ○○○○●
Simulations				
More	simulations			

 $\mathbf{X} = (X_1, X_2, X_3)$ whith $X_1 = X_2 = Y/2$, $X_3 \sim Y$ where Y is Pareto distributed with $\alpha = 2$, and (Y, X_3) is a Pareto-Clayton model $\implies X_1$ and X_2 are comonotonic (or fully dependent) and the dependence between X_1 and X_3 is given by a survival Clayton of parameter 1/2.

	90%	95%	99%	99.5%	99.9%
ECBC (m=6)					
No information	13%	7%	13%	18%	24%
Information on (X_1, X_2)	8%	6%	8%	11%	15%
ECBC (m=10)					
No information	13%	12%	11%	15%	23%
Information on (X_1, X_2)	9%	9%	8%	10%	15%
ECBC (m=30)					
No information	16%	19%	14%	14%	21%
Information on (X_1, X_2)	16%	17%	13%	13%	14%

