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Context I.

European rules ⇒ companies have to better understand their risks
and take into account dependencies between risks / branches, ERM
setting.

Main risk drivers for the overall company have been identified,
Capital to be allocated (free or investment capital, or global
solvency capital requirement) between lines of business or
activity branches.

Avoid as far as possible that some lines of business become
insolvent too often.

⇒ Minimize a risk indicator.
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Context II.

We study the expected total “orange area” and "violet area" in the
discrete time framework inspired by Solvency II and ORSA (Own
Risk and Solvency Assessment) related issues ⇒ optimality of the
global reserve allocation may be obtained by minimizing the
expected sum of the penalties that each line of business would have
to pay due to its temporary potential insolvency.
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Multivariate risk indicator

d lines of business,
n periods,
u is the capital to be allocated, uk will be allocated to the kth
line of business,
Rk

j is the reserve of line k , at time j :

Rk
j = uk + Y k

j ,

with Y k
j the aggregate premium minus the aggregate claim

amount for the kth branch, during the jst period:

Y k
j =

j∑
i=1

(ck − X k
i ).

5 / 34



Introduction
Some quantitative analysis

Simulations
Conclusion, further work

Context
Risk indicators

Multivariate risk indicator

We look for the optimal allocation (u1, . . . , ud ) that minimizes I1
the orange area, or I the stopped orange area or J the violet area,
under the constraint that u1 + · · ·+ ud = u:

I1 =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

I =
d∑

k=1

n∧τ∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

J =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≤0}

)
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I1 =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

I =
d∑

k=1

n∧τ∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

J =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≤0}

)
Where τ is the ruin time: τ = inf

{
j ∈ N∗, R1

j + · · ·+ Rd
j < 0

}
and gk : R → R a C 1 convex function, with gk(0) = 0,
gk(x) ≥ 0. This is a penalty function to the kth branch when it
becomes insolvable.
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Multivariate risk indicator

I1 =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

I =
d∑

k=1

n∧τ∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

J =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≤0}

)
Remark: gk(x) = |x | is a possible choice (then we consider the

ruin amount). Then, the indicator is the expected sum of penalties
that each line of business would have to pay due to its temporary
potential insolvency.
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Multivariate risk indicator

I1 =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

I =
d∑

k=1

n∧τ∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≥0}

)

J =
d∑

k=1

n∑
j=1

E
(
gk(Rk

j )11{Rk
j <0}11{R1

j +···+Rd
j ≤0}

)
Time horizon n could correspond to 1 year in the Solvency II SCR

computation problem, or to 3, 5, 10 or 15 years in the ORSA
framework.
There may be dependencies: vectorial (with respect to
k = 1, . . . , d) and/or temporal (with respect to j = 1, . . . , n).
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The orange and violet areas
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Other attempt to allocate the ui ’s

Classical allocations: Variance based allocation, proportional
allocation,
Euler’s allocation (VaR based),
Decomposition of the aggregated TVaR (Cai and Li, Chiragiev
and Landsman, Bargès Cossette and Marceau),
General framework by J. Dhaene, A. Tsanakas, E.A. Valdez, S.
Vanduffel: capital allocation by using minimization principles.
Using asymptotic behavior of the ruin probabilities (Biard),
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General framework

General framework considered by J. Dhaene, A. Tsanakas, E.A.
Valdez, S. Vanduffel
Different capital allocations must in some sense correspond to
different questions that can be asked within the context of risk
management.
The indicator should be designed for a specific purpose.
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General framework

General framework considered by J. Dhaene, A. Tsanakas, E.A.
Valdez, S. Vanduffel : minimize

d∑
j=1

E
[
ξjD

(
Xj − uj

vj

)]

with Xj the loss of the jth branch. D is a deviation function,
Dhaene et al. proposed to take D(x) = x2 or D(x) = |x |.
If we take ξj = 1{S≤u} (resp. ξj = 1{S≥u}) and D(x) = x+, then
we recover our indicator orange area (resp. violet area) in the case

p = 1, with S =
d∑

j=1

Xj .
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Specific models (independent exponential).

Two lines of business (d = 2) and one-period problem (n = 1).
No impact of the premiums ck , ⇒ uk ↔ uk + ck .

X k
j independent exponential laws

X 1
1  E(µ1),

X 2
1  E(µ2).

No explicit expression for u1 and u2 but an implicit forms.
µ2 = αµ1 with α ≥ 1,
u1 = βu with 0 ≤ β ≤ 1.
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Specific models (independent exponential).

β with u1 = βu,
Orange area case:

f (α, βu, µ1) = −(α− 1)e−αµ
1u(1−β) + (1 + α)e−µ

1u(α−αβ+β)

+(α− 1)e−µ
1uβ − αe−µ1u − e−αuµ1

= 0.

Violet area case:

(α + 1)e−uµ1(α−αβ+β) − αe−uµ1 − e−αuµ1
= 0.
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Specific models (conditionally independent exponential).

Conditionally independent exponential laws: X k
j are independent

exponential laws conditionally to Θ Γ(a, b). More precisely,
X 1

1 |Θ E(Θ),
X 2

1 |Θ E(αΘ), α ≥ 1.
The X k

j are correlated gpd.
NB: model previously studied by H. Albrecher, C. Constatinescu
and S. Loisel (some explicit formulas for the ruin probability).
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Specific models (conditionally independent exponential).

Conditionally independent exponential laws: X k
j are independent

exponential laws conditionally to Θ Γ(a, b). More precisely,
X 1

1 |Θ E(Θ),
X 2

1 |Θ E(αΘ), α ≥ 1.
The X k

j are correlated gpd.
Integrating equations above =⇒ implicit expression for β: Orange
area case:

(α− 1)s(β)− αs(1) + (α + 1)s(α− αβ + β)

−(α− 1)s(α(1− β))− s(α) = 0

Violet area case:

(α + 1)s(α− αβ + β)− αs(1)− s(α) = 0

where s(x) = (1 + x u
b )−a.
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Quantitative behavior

Case independent exponential

Orange area
β ≤ α

α+1

β is increasing with
respect to α
β −→ α

α+1 as u goes to
infinity.

Violet area
β ≤ 1
β is increasing with
respect to α
β −→ 1 as u goes to
infinity.
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Quantitative behavior

Case conditionally independent exponential

Orange area
β ≤ α

α+1

β is increasing with
respect to α
β −→ β0 as u goes to
infinity, with β0 <

α
α+1

solution to:

(α− 1)β−a − α
+(α + 1)(α− αβ + β)−a

−(α− 1)(α(1− β))−a

−α−a = 0.

Violet area
β ≤ 1
β is increasing with
respect to α
β −→ β1 as u goes to
infinity, with β1 < 1
solution to:

α+α−a−(α+1)(α−αβ+β)−a = 0.
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Quantitative results.

Quantitative behavior

Case independent GPD

Orange area
No exact result
β −→ α

α+1 as u goes to
infinity.

Violet area
No exact result
β −→ 1 as u goes to
infinity.
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Comparisons

Chose parameters a and b of the CIE model in such a way that
E(µ1) = 1

20 , specifically a = 1 and b = 20.
Chose the µ1 parameter of the IE model equal to 1

20 .
α = 5 for the two models.
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Comparisons

The bold lines are for the independent exponential model, the
simple lines are for the conditionally independent.
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In dimension 2
In higher dimension
Multi-periodic setting

Simulations

We consider
independent exponential laws, conditionally independent
exponential laws, independent gpd distributions.
n = 1 observation of several periods of length 1,
for d = 2, we have compared the results given by the
stochastic algorithm with the theoretical values,
in higher dimension (d = 10), simulation study
multi-periodic simulation (n > 1).
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Simulations

Tool for the simulation study: a Kiefer-Wolfowitz version of the
stochastic mirror algorithm ⇒ efficient algorithm to find the
optimal solution.
Advantages of the stochastic algorithms approach:

no parametric hypothesis on the law of the Xi ’s,
dependence allowed over one period,
high dimension (d) allowed.
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Simulation in dimension 2

We have chosen µ1 = 1
20 . In order to get the estimation of the

minimum, we have performed 10 times the stochastic algorithm on
data of length 15 000. For α = 5, we have taken u = 50, we
compare with the theoretical value using the mean squared error
(mse).

Orange area case
α = 5

IE model CIE model GPDI model
û1 û2 û1 û2 û1 û2

mean 38.37 11.63 36.8 13.2 35.83 14.17
sd dev 0.085 0.085 0.115 0.115 0.133 0.133

th. 38.46 11.54 36.84 13.16 non available√
mse 0.121 0.121 0.119 0.119 non available
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Simulation in dimension 2

We have chosen µ1 = 1
20 . In order to get the estimation of the

minimum, we have performed 10 times the stochastic algorithm on
data of length 15 000. For α = 5, we have taken u = 50, we
compare with the theoretical value using the mean squared error
(mse).

Violet area case
α = 5

IE model CIE model GPDI model
û1 û2 û1 û2 û1 û2

mean 46.83 3.17 47.18 2.81 48.13 1.87
sd dev 0.35 0.35 0.136 0.136 0.114 0.114

th. 49.08 0.92 48.36 1.64 non available√
mse 2.28 2.28 0.92 0.92 non available
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Models in dimension 10.

A block of correlated GPD and a block of independent GDP, in
dimension 10 (Mixed Model).

X 1
1  E(Θ), X i

1  E(αΘ), i = 2, . . . , 5, where Θ Γ(a, b).
X 1

1  GPD(1
a ,

b
a ); X i

1  GPD(1
a ,

b
αa), i = 6, . . . , 10.

Conditional exponential: X 1
1  E(Θ), X i

1  E(αΘ),
i = 2, . . . , 10.
Independent GPD: X 1

1  GPD(1
a ,

b
a ); X i

1  GPD(1
a ,

b
αa),

i = 2, . . . , 10.

These three models have the same marginal laws. We have chosen
α = 5 and u = 80. We have performed our stochastic algorithm 10
times on data sets of length 20 000 for the orange area and 23 000
for the violet area.
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Models in dimension 10.

mixed model cond. expo. indep. GPD
mean sd dev. mean sd dev. mean sd dev.

u1 20.56 0.15 21.48 0.23 18.42 0.219
u2 5.78 0.043 6.49 0.123 6.88 0.138
u3 5.77 0.05 6.52 0.133 6.88 0.151
u4 5.8 0.059 6.49 0.116 6.82 0.16
u5 5.79 0.052 6.52 0.116 6.82 0.132
u6 7.25 0.059 6.5 0.11 6.81 0.113
u7 7.25 0.071 6.5 0.085 6.89 0.154
u8 7.31 0.071 6.5 0.13 6.82 0.14
u9 7.25 0.066 6.49 0.121 6.82 0.143
u10 7.26 0.078 6.49 0.121 6.83 0.153
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Models in dimension 10.

mixed model cond. expo. indep. GPD
mean sd dev. mean sd dev. mean sd dev.

u1 41.4 0.23 37.68 0.31 41.99 0.254
u2 5.2 0.07 4.68 0.068 4.19 0.044
u3 5.19 0.08 4.72 0.076 4.23 0.046
u4 5.18 0.07 4.67 0.069 4.2 0.073
u5 5.16 0.07 4.73 0.0.63 4.2 0.094
u6 3.57 0.08 4.68 0.053 4.22 0.048
u7 3.56 0.06 4.72 0.094 4.23 0.069
u8 3.58 0.05 4.69 0.046 4.24 0.07
u9 3.56 0.05 4.69 0.04 4.25 0.064
u10 3.59 0.06 4.72 0.069 4.24 0.051
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n > 1 and 5 lines of business

Simulation only for models with independence in time.
The premiums ck are taken into account (5% of the expectation of
the branch).
We have performed 10 simulations of length 15 000 for the orange
area case and 16 000 for the violet area case, for our three models
(independent GPD, conditionally exponential, mixed model), with
α = 5, u = 80, a = 3, b = 60, n = 4.
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n > 1 and 5 lines of business

Mixed Model (MM): the first 3 lines are conditionally
exponential and the last two lines are independent GPD
(parameters are the same as above).
Comparison with the correlated Pareto and independent GPD
models with the same margin.

Orange area
MM CIE IGPD

mean sd dev. mean sd dev. mean sd dev.
u1 31.33 0.36 32.68 0.28 30.1 0.31
u2 10.63 0.16 11.86 0.14 12.49 0.17
u3 10.6 0.24 11.78 0.24 12.51 0.23
u4 13.74 0.27 11.83 0.15 12.4 0.14
u5 13.7 0.27 11.85 0.12 12.5 0.2
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n > 1 and 5 lines of business

Mixed Model (MM): the first 3 lines are conditionally
exponential and the last two lines are independent GPD
(parameters are the same as above).
Comparison with the correlated Pareto and independent GPD
models with the same margin.

Violet area
MM CIE IGPD

mean sd dev. mean sd dev. mean sd dev.
u1 77.64 0.24 73.63 0.326 79.6 0.157
u2 1.11 0.11 1.62 0.119 0.1 0.041
u3 1.1 0.23 1.52 0.194 0.11 0.042
u4 0.066 0.02 1.58 0.327 0.09 0.033
u5 0.072 0.02 1.65 0.203 0.11 0.045
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Conclusion

An attempt to provide an allocation based on the minimization
of a risk indicator. The indicator should be specifically
designed for its use.
The orange area is NOT suited for allocation of SCR, which
should be done according to the risk contribution of each
branch, while the violet area is more suited for allocation of
SCR / economic capital.
Efficient algorithm to compute the allocation, even in high
dimension.
Trackable on several periods.
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Further practical work

Analysis on several periods to be done.
Rule of the penalty functions gk .
Rule of the various parameters (u, α, . . .), how to construct a
control card?
Impact of the dependency on time.
Preliminary simulations done for the stopped orange area seem
to indicate that there is no significant differences with the
orange area, unless in the mixed case. This kind of behavior
should be analyzed.
...
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