Feuille d'exercices nº 1 : « Révisions »

Exercice 0. Soit $(X, \|\cdot\|_X)$ et $(Y, \|\cdot\|_Y)$ deux espaces vectoriels normés et $f: X \to Y$ une application linéaire. Montrer que les assertions suivantes sont équivalentes :

- 1. *f* est continue.
- 2. *f* est continue en 0.
- 3. Il existe $M \in \mathbf{R}$ tel que pour tout $x \in X$ on ait $||f(x)||_Y \le M||x||_X$.
- 4. *f* est lipschitzienne.

Dans la suite, on utilise la notation ||f|| pour la norme subordonée de f, définie par

$$||f|| = \sup \left\{ \frac{||f(x)||_Y}{||x||_X} : x \neq 0 \right\} = \sup \left\{ ||f(x)||_Y : ||x||_X = 1 \right\}.$$

Exercice 1.

- 1. Soit X, Y, Z trois espaces vectoriels normés, et f une application bilinéaire de $X \times Y$ dans Z. Montrer que f est continue si, et seulement si, il existe $M \ge 0$ telle que pour tout $(x,y) \in X \times Y$ on ait $||f(x,y)||_Z \le M||x||_X ||y||_Y$.
- 2. Soit $(X, \|\cdot\|)$ un espace vectoriel normé; on munit $\mathcal{L}(X, X)$ de la norme subordonnée. Montrer que $(f, g) \mapsto f \circ g$ est continue.
- 3. Soit $X = (C([0,1], \|\cdot\|_{\infty}))$. Montrer que $(f,g) \mapsto fg$ est continue.

Exercice 2. Donner un exemple d'un espace de Banach X et d'une application linéaire continue $T: X \to X$ qui est injective et non surjective. Même question avec T surjective et non injective.

Exercice 3. On note $\mathcal{L}(X,Y)$ l'espace vectoriel des applications linéaires continues de X dans Y.

- 1. Dans cette question on suppose que X est un espace de Banach. Montrer que l'ensemble Gl(X) des applications linéaires continues inversibles est ouvert dans $\mathcal{L}(X,X)$ (on pourra commencer par justifier que Id T est inversible dès lors que ||T|| < 1) et que $A \mapsto A^{-1}$ est continue sur Gl(X).
- 2. Dans cette question, on considère l'espace $E = \mathbf{R}[X]$, muni de la norme

$$\left\| \sum_{k=0}^n a_k X^k \right\| = \max\{|a_k| : 0 \le k \le n\}.$$

Pour $\lambda \in \mathbf{R}$ et $P \in E$ on définit $T_{\lambda}(P)(X) = \lambda X P(X)$. Montrer que T_{λ} est continue, et que $\mathrm{Id} - T_{\lambda}$ tend vers Id (pour la norme subordonnée) quand λ tend vers 0. L'ensemble $\mathrm{Gl}(E)$ est-il ouvert dans $\mathcal{L}(E,E)$?

- 3. Si X est de dimension finie, montrer que Gl(X) est dense dans $\mathcal{L}(X,X)$.
- 4. Dans cette question on fixe $X = \ell^1(\mathbf{N})$ et on définit $S, T: X \to X$ par

$$\forall n \in \mathbf{N} \quad S(u)(n) = u(n+1) \text{ et } T(u)(n) = \begin{cases} 0 & \text{si } n = 0 \\ u(n-1) & \text{si } n \ge 1 \end{cases}.$$

- (a) Déterminer les normes de ces applications linéaires; calculer ST.
- (b) Supposons qu'il existe $V \in Gl(X)$ telle que ||T V|| < 1. Montrer que ||Id SV|| < 1 et en déduire que S est bijective.
- (c) Conclusion?
- 5. Montrer que pour $A, B \in Gl(X)$ on a $A^{-1} B^{-1} = A^{-1}(B A)B^{-1}$.
- 6. On suppose de nouveau que X est un espace de Banach. À l'aide de la formule obtenue à la question précédente, montrer que $A \mapsto A^{-1}$ est différentiable sur Gl(X) et donner une formule explicite pour la différentielle.

Exercice 4. Soit $E = C^{\infty}([0,1], \mathbb{R})$ muni d'une norme quelconque, et $T: E \to E$ définie par T(f) = f'. Montrer que T n'est pas continue.

Exercice 5. Soit $E = \mathcal{C}([0,1], \mathbb{R})$. On fixe $g \in E$ et on pose $T_g(f) = fg$.

- 1. L'application $T_g: (E, \|\cdot\|_1) \to (E, \|\cdot\|_1)$ est-elle continue? Si oui, déterminer sa norme subordonnée.
- 2. Même question pour $T_g: (E, \|\cdot\|_2) \to (E, \|\cdot\|_1)$.
- 3. Même question pour T_g : $(E, \|\cdot\|_1) \to (E, \|\cdot\|_2)$.
- 4. Même question pour T_g : $(E, \|\cdot\|_1) \to (E, \|\cdot\|_{\infty})$.
- 5. Même question pour T_g : $(E, \|\cdot\|_{\infty}) \to (E, \|\cdot\|_1)$.

Exercice 6. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, et φ une forme linéaire.

- 1. Montrer que si φ est continue alors $\ker(\varphi)$ est fermé. On souhaite maintenant établir la réciproque de cet énoncé; on suppose que φ n'est pas continue.
- 2. Montrer qu'il existe une suite $(e_n)_{n\in\mathbb{N}}$ d'éléments de E tels que $e_n\xrightarrow[n\to+\infty]{}0$ et $\varphi(e_n)=1$ pour tout $n\in\mathbb{N}$.
- 3. Soit $x \in E$. En considérant la suite $(x \varphi(x)e_n)_{n \in \mathbb{N}}$, montrer que $\ker(\varphi)$ est dense dans E.

Exercice 7.

- 1. Soit *p* ∈ $[1, +\infty[$.
 - (a) Montrer que l'ensemble des suites réelles nulles à partir d'un certain rang est dense dans $(\ell^p(\mathbf{N}), \|\cdot\|_p)$.
 - (b) En déduire que $(\ell^p(\mathbf{N}), \|\cdot\|_p)$ est séparable.
- 2. Montrer que $(\ell^{\infty}(\mathbf{N}), \|\cdot\|_{\infty})$ n'est pas séparable. *Indication : on pourra raisonner par l'absurde et utiliser un argument diagonal.*

Exercice 8. Dans cet exercice on fixe $p \in]1, +\infty[$. On rappelle que l'exposant conjugué de p est l'unique $q \in]1, +\infty[$ tel que $\frac{1}{p} + \frac{1}{q} = 1$. Notons qu'alors p(q-1) = q et q(p-1) = p.

Pour
$$u \in \ell^p(\mathbf{N})$$
 on définit $T_u \colon \ell^q(\mathbf{N}) \to \mathbf{C}$ en posant $T_u(v) = \sum_{n=0}^{+\infty} u_n v_n$.

- 1. Montrer que T_u est bien définie, continue et que $||T_u|| \le ||u||_p$.
- 2. Soit $\varphi \in \ell_q(\mathbf{N})'$. Pour tout $n \in \mathbf{N}$ on pose $u_n = \varphi(e_n)$, où $(e_n)_{n \in \mathbf{N}} \in \ell^q(\mathbf{N})$ est telle que $e_n(i) = 1$ si n = i et $e_n(i) = 0$ si $n \neq i$.
 - (a) Pour $n \in \mathbb{N}$ on choisit λ_n tel que $|\lambda_n| = 1$ et $\lambda_n u_n = |u_n|$. On pose $\mu_n = \lambda_n |u_n|^{p-1}$. Montrer que

$$\forall N \in \mathbf{N} \quad \varphi\left(\sum_{n=0}^N \mu_n e_n\right) = \sum_{n=0}^N |u_n|^p.$$

- (b) Montrer que $(u_n)_{n \in \mathbb{N}}$ appartient à $\ell^p(\mathbb{N})$ et $||u||_p \le ||\varphi||$.
- (c) Montrer que $T_u = \varphi$ (on pourra essayer d'exploiter le fait que pour tout $n \in \mathbb{N}$ on a $T_u(e_n) = u_n = \varphi(e_n)$).
- 3. Quel lien vient-on d'établir entre $\ell^q(\mathbf{N})'$ et $\ell^p(\mathbf{N})$? Énoncer et démontrer un résultat analogue sur le dual topologique de $\ell^1(\mathbf{N})$.