Feuille d'exercices nº 1 : Compléments

Exercice 1. Applications linéaires positives.

On désigne par C([0,1]) l'espace des fonctions continues de [0,1] dans \mathbf{R} et par $C_0(\mathbf{R})$ l'espace des fonctions continues de \mathbf{R} dans \mathbf{R} , tendant vers 0 en $+\infty$ et $-\infty$. Ces deux espaces sont munis de la norme du supremum.

Soit $T: C([0,1]) \to C([0,1])$ une application linéaire ayant la propriété suivante : $f \ge 0$ implique $(Tf) \ge 0$. Montrer que T est continue. Même question avec $T: C_0(\mathbf{R}) \to C_0(\mathbf{R})$.

Exercice 2. Théorème de Mazur-Ulam.

On souhaite démontrer le résultat suivant : soit X un \mathbf{R} -espace vectoriel normé et $f: X \to X$ une isométrie bijective telle que f(0) = 0. Alors f est linéaire.

On suppose que f satisfait les conditions ci-dessus.

1. Montrer que, pour obtenir le résultat, il suffit d'établir que

$$\forall x, y \in X \quad f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}.$$

2. On fixe maintenant $x, y \in E$, et on note

$$M = \left\{ z \in X : \|z - x\| = \|z - y\| = \frac{\|x - y\|}{2} \right\}.$$

- (a) Montrer que M est borné. On définit par récurrence $M_0 = M$ et $M_{n+1} = \left\{ a \in M_n : \forall b \in M_n \ \|a b\| \leqslant \frac{\operatorname{diam}(M_n)}{2} \right\}$.
- (b) Montrer que $(M_n)_{n \in \mathbb{N}}$ est une suite décroissante de fermés, et que diam $(M_{n+1}) \leq \frac{1}{2} \operatorname{diam}(M_n)$ pour tout n.
- (c) Soit $n \in \mathbb{N}$. Montrer que si $a \in M_n$ alors $x + y a \in M_n$.
- (d) Prouver que $\frac{x+y}{2} \in M_n$ pour tout $n \in \mathbb{N}$.
- 3. Conclure.
- 4. Quid du cas des espaces vectoriels sur C?
- 5. Donner un exemple de $f : \mathbf{R} \to \mathbf{R}^2$ telle que f(0) = 0, $||f(x)||_{\infty} = |x|$ pour tout $x \in \mathbf{R}$ mais f n'est pas linéaire.

Exercice 3. Un Banach de dimension infinie ne peut avoir de base (algébrique) dénombrable.

On suppose que X est un espace de Banach qui n'est pas de dimension finie, c'est-à-dire qu'il existe une suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de X telle que $\{u_n:n\in\mathbb{N}\}$ soit une famille libre.

- 1. Montrer que, pour tout n, $F_n = \text{Vect}(u_0, \dots, u_n)$ est fermé dans X.
- 2. Construire une suite de réels strictement positifs $(\alpha_n)_{n \ge 0}$ tels que

$$\forall n \in \mathbf{N}^* \quad \alpha_{n+1} \|u_{n+1}\| \leqslant \frac{1}{3} d(\alpha_n u_n, F_{n-1}) .$$

- 3. Montrer que $x = \sum_{k=0}^{+\infty} \alpha_k u_k$ est bien défini, et que pour tout $n \in \mathbb{N}$ on a $x \notin F_n$.
- 4. Montrer que *X* n'admet pas de base dénombrable.

Exercice 4. Théorème de Banach-Steinhaus.

Soit X, Y deux espaces vectoriels normés; on suppose que X est un espace de Banach. On souhaite démontrer le résultat suivant : soit $(T_n)_{n\in\mathbb{N}}$ une suite d'applications linéaires continues de X vers Y, telle que pour tout $x\in X$, la suite $(T_n(x))_{n\in\mathbb{N}}$ soit bornée dans Y. Alors la suite des normes $(\|T_n\|)_{n\in\mathbb{N}}$ est bornée.

On se place sous les hypothèses du théorème.

- 1. *Préliminaire*. Soit $T: X \to Y$ une application linéaire continue.
 - (a) Soit $x, u \in X$. Montrer que $||T(u)|| \le \max(||T(u+x)||, ||T(u-x)||)$.
 - (b) En déduire que pour tout $x \in X$ et tout r > 0 on a

$$r \cdot ||T|| \le \sup\{||T(y)|| : y \in B(x,r)\}.$$

- 2. *Preuve du théorème*. On raisonne par l'absurde et on suppose que $(||T_n||)_{n \in \mathbb{N}}$ n'est pas bornée.
 - (a) Montrer qu'il existe $\varphi \colon \mathbf{N} \to \mathbf{N}$ strictement croissante et telle que $||T_{\varphi(n)}|| \ge 4^n$ pour tout $n \in \mathbf{N}$. Pour simplifier la notation dans la suite, on suppose $||T_n|| \ge 4^n$ pour tout $n \in \mathbf{N}$.
 - (b) À l'aide du résultat de (1b), montrer qu'on peut construire une suite $(x_n)_{n \in \mathbb{N}}$ telle que $x_0 = 0$ et

$$\forall n \geqslant 1 \quad ||x_n - x_{n-1}|| \leqslant 3^{-n} \text{ et } ||T_n(x_n)|| \geqslant \frac{2}{3} 3^{-n} ||T_n||.$$

- (c) Prouver qu'il existe $x \in X$ tel que $||T_n(x)||$ tend vers $+\infty$.
- (d) Conclure.
- 3. La conclusion du théorème de Banach–Steinhaus reste-t-elle valide si on ne suppose pas que *X* est complet?

Les résultats des deux exercices précédents sont le plus souvent démontrés à l'aide du théorème de Baire (cf. le cours d'Analyse Fonctionnelle du second semestre).