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A ternary relation |̂ between subsets of the big model of a complete first-order theory
T is called an independence relation if it satisfies a certain set of axioms. The primary
example is forking in a simple theory, but o-minimal theories are also known to have an
interesting independence relation. Our approach in this paper is to treat independence
relations as mathematical objects worth studying. The main application is a better
understanding of thorn-forking, which turns out to be closely related to modular pairs
in the lattice of algebraically closed sets.
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Introduction
This paper is based on the first chapter of my thesis under the supervision of Martin Ziegler [1].
The exposition has been adapted to the new medium, and some easy proofs have been omitted.

Saharon Shelah defined forking to study stable theories [2]. Later Byunghan Kim showed
that even in the larger class of simple theories forking is very well-behaved in the sense that
it defines what we will call an independence relation [3]. O-minimal theories, which are never
simple, satisfy the exchange principle for algebraic closure [4]. Therefore they also have a nice
independence relation. Alf Onshuus introduced thorn-forking, which generalises both forking in
simple theories (with elimination of hyperimaginaries) and the natural independence relation in
o-minimal theories [5, 6].

Here we will treat independence relations as mathematical objects. We will develop forking
and thorn-forking from scratch and as much in parallel as possible. We will restrict ourselves
to arguments of a very simple, general, geometric flavour, reaching some fundamental results on
forking and thorn-forking very quickly. But some seem unattainable in this way.

There are good reasons why geometric stability theory is usually based on a combinatorial
foundation. In a sequel to this paper we will see how the usual combinatorial approach can be
adapted to give sharper results on forking and thorn-forking, again in a completely uniform way
for both notions [7].

In Section 1 we introduce the axioms for independence relations and some additional properties
that a relation |̂ may satisfy. We also meet the first important example of an independence
relation, the relation |̂a (sometimes called ‘algebraic independence’) in a theory in which the
lattice of algebraically closed sets is modular. In Section 2 we use Morley sequences in order to
prove that every independence relation is symmetric. In Section 3 we show that, in a certain sense,
the extension axiom comes free. We use these results in Sections 4 and 5, where we define forking
and thorn-forking, the two primary examples of independence relation. They can be characterised
by dual universal properties. Section 6 finishes with a number of contrived examples of relations
that are not independence relations.
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2 Hans Adler

We use the standard notations and conventions of stability theory such as working in a big
saturated model. Tuples of elements (ā, b̄, c̄, . . . ) or of variables (x̄, ȳ, z̄, . . . ) are allowed to be
infinite unless mentioned otherwise. When a formula is written ϕ(x̄) it means that each of its
free variables appears in the (possibly infinite) tuple x̄. S∗(B) denotes the class of complete types
over B in arbitrarily long sequences of distinct formal variables. AB is short for A ∪ B, and for
any tuple ā = (a0, a1, . . . , ) we will abuse notation by writing ā for the set {a0, a1, . . . , } as well.
A ≡B A′ means that there is an automorphism of the big model that fixes B pointwise and maps
the set A to the set A′. ā ≡B ā′ means that there is an automorphism fixing B pointwise and
mapping the tuple ā to the tuple ā′. (A,B) ≡C (A′, B′) means that there is an automorphism
fixing C pointwise that maps A to A′ and B to B′.

1 Abstract Independence Relations

We will call a ternary relation |̂ between (small) subsets of the big model an independence
relation if it satisfies the following axioms for independence relations.
(invariance)

If A |̂
C

B and (A′, B′, C ′)≡(A,B, C), then A′ |̂
C′ B′.

(monotonicity)
If A |̂

C
B, A′ ⊆ A and B′ ⊆ B, then A′ |̂

C
B′.

(base monotonicity)
Suppose D ⊆ C ⊆ B. If A |̂

D
B, then A |̂

C
B.

(transitivity)
Suppose D ⊆ C ⊆ B. If B |̂

C
A and C |̂

D
A, then B |̂

D
A.

(normality)
A |̂

C
B implies AC |̂

C
B.

(extension)
If A |̂

C
B and B̂ ⊇ B, then there is A′≡BC A such that A′ |̂

C
B̂.

(finite character)
If A0 |̂

C
B for all finite A0 ⊆ A, then A |̂

C
B.

(local character)
For every A there is a cardinal κ(A) such that for any set B there is a subset C ⊆ B of

cardinality |C| < κ(A) such that A |̂
C

B.

By invariance, in the extension axiom it would have been equivalent to require that there is
B̂′≡BC B̂ such that A |̂

C
B̂′. ‘By transitivity’ will often refer to the following stronger property.

Remark 1.1. Let |̂ be a relation satisfying monotonicity, transitivity and normality. Then
B |̂

CD
A and C |̂

D
A together imply BC |̂

D
A.

Proof. If B |̂
CD

A and C |̂
D

A, then BCD |̂
CD

A and CD |̂
D

A by normality. Hence we
have BCD |̂

D
A by transitivity, so BC |̂

D
A by monotonicity.

As a first example, we can take the trivial relation that holds for all triples. We say that a
relation |̂ is stronger than |̂′ , and |̂′ weaker than |̂ , if A |̂

C
B implies A |̂′

C
B. So the

trivial relation is always the weakest independence relation. In fact, it is too weak to be useful,
and so we will say that an independence relation is strict if it also satisfies the following condition.
(anti-reflexivity)

a |̂
B

a implies a ∈ acl B.
The trivial relation is, of course, never strict. We will also be interested in the following additional
properties which a relation |̂ may have.
(full existence)

For any A, B and C there is A′≡C A such that A′ |̂
C

B.
(symmetry)

A |̂
C

B ⇐⇒ B |̂
C

A.
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Remark 1.2. (1) Any relation that satisfies invariance, extension and symmetry also satisfies
normality.

(2) Any relation that satisfies invariance, extension and local character also satisfies full exis-
tence.

(3) Any relation that satisfies invariance, monotonicity, transitivity, normality, full existence
and symmetry also satisfies extension.

Remark 1.3. (1) Suppose the relation |̂ satisfies invariance and the full existence condition.
Let κ(A) = (|T | + |A|)+. For any sets A and B there is C1 ⊆ B such that A |̂

C1
B and also a

set C2 such that |C2| ≤ κ(A) and A |̂
C2

B.
(2) Suppose |̂ is an independence relation. Let A be a set of finite subsets of the big model

such that for every finite subset A of the big model there is A′ ∈ A such that A ≡ A′. Let
κ = supA∈A κ(A). Then for any sets A and B there is C ⊆ B such that |C| < (κ + |A|)+ and
A |̂

C
B.

The reader may want to prove these easy remarks, in order to get a feeling for the axioms.
Our first real example is a well-known stable theory in which forking has a nice graph theoretical
interpretation [8].

Example 1.4. (Everywhere infinite forest)
Let T be the theory, in a signature with one binary relation E, of a non-empty undirected tree
that branches infinitely in every node. Then T is complete, and the models of T are precisely the
non-empty forests that branch infinitely in every node. In this theory, acl A is the set of all nodes
that lie on a path between two elements of A. Consider the following relation.

A |̂
C

B ⇐⇒ every path from A to B meets acl C.

It is easy to see that A |̂
C

B implies AC |̂
C

B and acl A |̂
C

B. Using this, it is not hard to
check that |̂ is a strict independence relation.

Proposition 1.5. Consider the following relation.

A |̂a
C

B ⇐⇒ acl(AC) ∩ acl(BC) = aclC.

(1) The relation |̂a satisfies the full existence condition.
(2) The relation |̂a satisfies all axioms for strict independence relations except base mono-

tonicity.
(3) The relation |̂a satisfies base monotonicity (and is a strict independence relation) iff the

lattice of algebraically closed subsets of the big model is modular, i. e., whenever A,B, C are
algebraically closed sets such that B ⊇ C, the equation B ∩ acl(AC) = acl((B ∩A)C) holds.

(4) An independence relation is called perfectly trivial if A |̂
C

B implies A |̂
C′ B for all

C ′ ⊇ C. Suppose |̂a is an independence relation. Then |̂a is a perfectly trivial independence
relation if and only if the lattice of algebraically closed sets is distributive, i. e., acl((A ∩B)C) =
acl((A ∩ C)(B ∩ C)) holds for all algebraically closed sets A, B and C.

Proof. (1) For completeness we include a proof of this well-known fact. It is sufficient to show: If
A, B and C = aclC are such that A∩C = B∩C = ∅, then there is A′ ≡C A such that A′∩B = ∅.
If this were false, then by compactness there would be a counter-example with A and B finite.
Towards a contradiction let A, B and C = aclC be such that A ∩C = B ∩C = ∅, A′ ∩B 6= ∅ for
all A′ ≡C A, B finite and |A| minimal for these properties. Let A∗ ⊆ A be a maximal subset of A
such that {A′ | A′ ≡C A and A∗ ⊆ A′} is infinite. By minimality of |A| there is A′

∗ ≡C A∗ such
that A′

∗ ∩B = ∅. We may assume A′
∗ = A∗, so A∗ ∩B = ∅. For every b ∈ B, by maximality of A∗

there are only finitely many A′ ≡C A such that A∗ ∪ b ⊆ A′. Hence there are only finitely many
A′ ≡C A such that A∗ ⊆ A′ and A′ ∩B 6= ∅. Since {A′ | A′ ≡C A and A∗ ⊆ A′} is infinite, there
is A′ ≡C A such that A∗ ⊆ A and A′ ∩B = ∅, a contradiction.
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(2) Invariance, monotonicity and normality are obvious. Finite character: Suppose d ∈
acl(AC) ∩ acl(BC) \ acl C. Then d is already algebraic over a finite tuple āc̄ with ā ∈ A and
c̄ ∈ C, and also over a finite tuple b̄c̄′ with b̄ ∈ B and c̄′ ∈ C. Hence d ∈ acl(Cā)∩ acl(Cb̄) \ acl C.
Transitivity: Suppose D ⊆ C ⊆ B. If acl B ∩ acl(AC) ⊆ acl C and acl C ∩ acl(AD) ⊆ acl D, then
acl B ∩ acl(AD) ⊆ acl C ∩ acl(AD) ⊆ acl D. Extension: Using (3) of Remark 1.2 this follows from
(1), symmetry and the other axioms already shown to hold. Local character: Given sets A and
B, construct sets Ci ⊆ B and Di (i < ω) as follows: C0 = D0 = ∅. Di+1 = acl(ACi) ∩ acl B.
For every d ∈ Di+1 let c̄d ∈ B be a finite tuple such that d ∈ acl c̄d. Let Ci+1 be the union over
all tuples c̄d. Let C =

⋃
i<ω Ci. It is easy to see that C ⊆ B and |C| ≤ |T | + |A|. Moreover,

if d ∈ acl(AC) ∩ acl(BC), then already d ∈ acl(ACi) ∩ acl(BC) ⊆ Di+1 for some i < ω, hence
d ∈ acl Ci+1 ⊆ acl C.

(3) Let A and B ⊇ C be algebraically closed sets. First note that B∩acl(AC) ⊇ acl((B∩A)C)
holds without any further assumptions. Now suppose |̂a satisfies the base monotonicity axiom.
Then A |̂a

A∩B
B implies A |̂a

(A∩B)C
B. Hence B∩acl(AC) ⊆ acl((B∩A)C). Conversely, suppose

the modular law holds, A |̂a
C

B and C ⊆ C ′ ⊆ B. Then acl B ∩ acl(AC ′) ⊆ acl((acl B ∩ acl A)C ′)
by modularity and C ′ ⊆ B. Note that acl B∩acl A ⊆ C ⊆ C ′, so acl B∩acl(AC ′) ⊆ acl C ′. Hence
A |̂a

C′ B.
(4) Let A, B, C be algebraically closed sets. First note that acl((A∩B)C) ⊆ acl(AC)∩acl(BC)

holds without any further assumptions. Now suppose |̂a is perfectly trivial. Since A |̂
A∩B

B it
follows that A |̂

(A∩B)C
B as well, hence AC |̂

(A∩B)C
BC (by base monotonicity, which can be

applied on both sides due to symmetry), hence acl(AC) ∩ acl(BC) ⊆ acl((A ∩B)C). Conversely,
suppose the lattice is distributive, A |̂

C
B and C ′ ⊇ C. Then acl(AC ′)∩ acl(BC ′) = acl((aclA∩

acl B)C ′) ⊆ acl(CC ′) = aclC ′, hence A |̂
C′ B.

Proposition 1.5 is from my diploma thesis [9]. It was inspired by Lee Fong Low’s thesis [10],
but its roots are much older. In fact, if we apply John von Neumann’s definition of A ⊥ B in his
1930s work on lattice theory to the lattice of algebraically closed sets it means A |̂a ∅ B [11]. The
original context was a very special type of lattices which were, in particular, modular. Similarities
between von Neumann’s reconstruction of a ring from its lattice of ideals and Hrushovski’s model
theoretical group constructions were also noted by Ivan Tomašić [12].

Example 1.6. (Theories with many strict independence relations)
For any cardinal κ consider the free theory of κ equivalence relations Ei (i < κ). Then for any
S ⊆ κ the following relation is a strict independence relation.

A |̂S
C

B ⇐⇒ A/Ei ∩B/Ei ⊆ C/Ei for all i ∈ S.

So this theory admits at least 2κ different strict independence relations.

On the other hand, we will soon encounter a theory with no strict independence relations at
all.

Question 1.7. Is there a complete theory T such that T eq has more than one strict independence
relation?

Notes on the choice of axioms

Using Theorem 2.5 below it is easy to see that an independence relation is the same thing as
a notion of independence in the sense of Kim and Pillay [13]. It follows that if we add the
independence theorem over models to the axioms, they characterise forking independence in simple
theories.

The single most important point about these axioms is the fact that transitivity is stated
on the left-hand side and not, as usual, on the right-hand side, where it can be combined with
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monotonicity and base monotonicity into an axiom that is sometimes called ‘full transitivity’. A
variant of transitivity on the left-hand side is sometimes called the ‘pairs lemma’.

Moreover, it is important to distinguish extension and full existence. In early axiomatisations
the term ‘extension’ sometimes referred to a single axiom which combined extension with full
existence. Kim and Pillay call ‘extension’ what we call full existence [13]. But most people seem
to agree with our use of the term ‘extension’, using the term ‘existence’ for the axiom saying
A |̂

B
B for all A,B.

Local character has been revised to make it useful without finite character. Note that Itay
Ben-Yaacov uses yet another, more robust, version of local character, which is more suitable for
certain generalisation [14].

2 Morley Sequences and Symmetry
We now prove that every independence relation is symmetric. But we need some preparations.

Remark 2.1. Let |̂ be an independence relation.
If A |̂

D
BC and B |̂

D
C, then AB |̂

D
C.

Actually, it is sufficient that |̂ satisfies the first five axioms.

Proof. A |̂
D

BC implies A |̂
D

BCD by extension and invariance, hence A |̂
BD

BCD by base
monotonicity, hence A |̂

BD
C by monotonicity. Combining this with B |̂

D
C, we get AB |̂

D
C

by transitivity.

If we know that |̂ is an independence relation, and that |̂ is symmetric, then it is clear how
to generalise the notion of a Morley sequence for |̂ . The following definition for the more general
case is useful in this paper, but I do not claim that it is appropriate in different contexts.

Let |̂ be a ternary relation. A |̂ -Morley sequence in a type p(x̄) ∈ S∗(B) over a set C ⊆ B
is a sequence of B-indiscernibles (āi)i<ω such that (āi)i<n |̂

C
ān for every n < ω, and every āi

realises p(x̄). A |̂ -Morley sequence for a complete type p(x̄) ∈ S∗(B) is a |̂ -Morley sequence in
p(x̄) over B.

Recall our convention that tuples may be infinite. In most cases just a convenience, this is
crucial in this section and the next one. The following consequence of the Erdős-Rado theorem is
due to Saharon Shelah [15].

Fact 2.2. (Extracting a sequence of indiscernibles) Let B be a set of parameters and κ
a cardinal. Then for any sequence (āi)i<i

(2|T |+|B|+κ)+
consisting of sequences of length |āi| = κ

there is a B-indiscernible sequence (ā′j)j<ω with the following property: For every k < ω there are
i0 < i1 < . . . < ik < κ such that āi0 , āi1 , . . . , āik

≡B ā′0, ā
′
1, . . . , ā

′
k.

Proposition 2.3. Suppose |̂ is an independence relation and ā |̂
C

B. Then there is a Morley
sequence in tp(ā/BC) over C.
Actually, it is sufficient that |̂ satisfies the first five axioms and extension.

Proof. Let ā0 = ā. We choose a very big cardinal κ and use extension and transfinite induction to
construct a sequence (āi)i<κ satisfying āα≡BC ā0 and āα |̂

C
(āi)i<α for all α < κ. If κ has been

chosen sufficiently big, we can extract a sequence of BC-indiscernibles (ā′i)i<ω such that for every
n < ω there are indices α0, . . . , αn such that ā′0 . . . ā′n≡BC āα0 . . . āαn . Note that ā′n |̂

C
(ā′i)i<n

by monotonicity and invariance.
By compactness we can ‘invert’ the sequence (ā′i)i<ω, i. e., find a new sequence (ā′′i )i<ω such

that ā′′0 . . . ā′′n≡BC ā′n . . . ā′0 holds for every n < ω. In particular, the new sequence is also
indiscernible over BC. This new sequence satisfies ā′′0 |̂

C
(ā′′i )0<i<n for all n < ω. Hence

(ā′′i )i<n |̂
C

ā′′n for all n < ω by repeated use of Remark 2.1.
Thus (ā′′i )i<ω is a Morley sequence in tp(ā/BC) over C.

The trick used to prove the following proposition is due to Byunghan Kim, from whose proof
of forking symmetry in simple theories this section was derived [3].



6 Hans Adler

Proposition 2.4. Suppose |̂ is an independence relation and there is a Morley sequence in
tp(ā/BC) over C. Then B |̂

C
ā.

Actually, it is sufficient that |̂ satisfies the first five axioms, finite character and local character.

Proof. Let (āi)i<ω be a Morley sequence in tp(ā/BC) over C.
Let κ be a regular cardinal number that is greater than or equal to κ(B) as in the local character

axiom. By compactness we can extend the sequence (āi)i<ω to obtain a BC-indiscernible sequence
(āi)i<κ. Using finite character, we see that (āi)i<α |̂

C
āα for each α < κ.

By local character there is a set D ⊆ C(āi)i<κ of cardinality |D| < κ such that B |̂
D

C(āi)i<κ.
By regularity of κ there is an index α < κ such that already D ⊆ C(āi)i<α. Thus, by base
monotonicity and monotonicity, B |̂

C(āi)i<α
āα.

Combining the results of the last two paragraphs using transitivity (actually, Remark 1.1 and
monotonicity), we get B |̂

C
āα. Since āα≡BC ā this implies B |̂

C
ā by invariance.

For later use I have noted carefully which axioms were actually needed to prove Propositions 2.3
and 2.4. For our immediate use it would not have been necessary.

Theorem 2.5. Every independence relation |̂ is symmetric.

Proof. If ā |̂
C

B, then there is a Morley sequence in tp(ā/BC) over C by Proposition 2.3. Hence
B |̂

C
ā by Proposition 2.4.

For this theorem it seems to be crucial that we postulated transitivity on the left-hand side.
The usual practice is to postulate it on the right-hand side and combine it with monotonicity and
base monotonicity into an axiom called ‘full transitivity’. Left-hand side transitivity is sometimes
called the ‘pairs lemma’.

Example 2.6. (A theory with no strict independence relation)
Consider the following theory T0: T0 has two sorts P and E, the elements of which are called
‘points’ and ‘equivalence relations’, and a single ternary relation ∼ ⊆ P ×P ×E written as p ∼e q.
The axioms of T0 say that ∼e is an equivalence relation on the points for every e ∈ E.

Clearly every substructure of a model of T0 is again a model of T0. The signature of T0 is finite
and relational. Moreover, the class of finite models of T0 satisfies the joint embedding property
and the amalgamation property. So T0 has a Fraïssé limit T ∗ which is ω-categorical, has quantifier
elimination, and whose finite submodels are precisely the finite models of T ∗

0 .
Since acl A = A for all sets, A |̂

C
B ⇐⇒ A ∩ B ⊆ C defines a strict independence relation

for T . But there is no strict independence relation for T eq:
Suppose |̂ is an independence relation for T eq. Let a0 ∈ P be a single point, and let (ai)i<ω

be a Morley sequence for tp(a0/∅). Let e ∈ E be an equivalence relation such that ai ∼e aj for
any i, j < ω. Then (ai)i<ω is indiscernible over e.

Note that (a2ia2i+1)i<ω is a Morley sequence for tp(a0a1/∅) and is also indiscernible over e. By
Proposition 2.4, e |̂ ∅ a0a1 holds, so by base monotonicity, e |̂

a0
a1. On the other hand, a0 |̂ ∅ a1

also holds. Applying transitivity we get a0e |̂ ∅ a1. Using symmetry and base monotonicity, we
get a0 |̂

e
a1.

But the equivalence class c of a0 and a1 under ∼e is (an element of T eq and) definable both over
a0e and over a1e. So c |̂

e
c. Since c is clearly not algebraic over e this contradicts anti-reflexivity.

So |̂ is not a strict independence relation for T eq.

This example is essentially Shelah’s theory T ∗
feq from [16].

3 Forcing the Extension Axiom

We now show that, in a certain sense, the extension axiom comes free. The idea is really due to
Saharon Shelah, since we merely treat an arbitrary relation |̂ as if it was dividing independence
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and then do the step of passing to forking independence. For any relation |̂ we define a new
relation |̂∗ as follows.

A |̂∗
C

B ⇐⇒
(

for all B̂ ⊇ B there is A′ ≡
BC

A s.t. A′ |̂
C

B̂
)
.

Note that A |̂∗
C

B implies A |̂
C

B. Also, |̂ = |̂∗ iff |̂ satisfies the extension axiom. In analogy
to the classical situation one might call |̂∗ the notion of forking derived from the abstract notion
of dividing given by |̂ . If |̂ already satisfies some of the axioms for independence relations,
then there cannot be much harm (possibly losing finite character and local character) in passing
from |̂ to |̂∗ , but we get extension free.

Lemma 3.1.
If |̂ is a relation satisfying invariance and montonicity, then |̂∗ satisfies invariance, monotonicity
and extension. If, moreover, |̂ satisfies one of the following axioms and properties, then |̂∗ also
satisfies it: base monotonicity, transitivity, normality, anti-reflexivity, full existence.

Proof. Invariance of |̂∗ is obvious. Monotonicity: Suppose A |̂∗
C

B, A0 ⊆ A and B0 ⊆ B. Then
for all B̂ ⊇ B there is A′≡BC A such that A′ |̂

C
B̂C. Let A′

0 ⊆ A′ correspond to A0 ⊆ A. Then
clearly A′

0≡B0C A0 and A′
0 |̂

C
B̂. Thus A0 |̂∗

C
B0 holds. Extension: Suppose ā |̂∗

C
B, where

ā is a possibly infinite tuple, and let B̂ ⊇ B be any superset of B. We first claim that there is
a type p(x̄) ∈ S∗(B̂C), extending tp(ā/BC), such that for all cardinals κ there is a κ-saturated
model M ⊇ B̂C and ā′ |= p(x̄) such that ā′ |̂

C
M . If not, then for each p(x̄) ∈ S∗(B̂C) extending

tp(ā/BC) there is a cardinal κ(p) such that for no κ(p)-saturated model M ⊇ B̂C is there a tuple
ā′ |= p satisfying ā′ |̂

C
M . Let κ be the supremum of the cardinals κ(p), and let M ⊇ B̂C be

κ-saturated. Then there is no ā′≡BC ā such that ā′ |̂
C

M . So we have found a contradiction
to the definition of |̂∗ and thereby proved our claim. Now choose ā′ |= p(x̄), where p(x̄) is as
in the claim. Then clearly ā′≡BC ā, and ā′ |̂∗

C
B̂ by monotonicity of |̂ . Base monotonicity:

Suppose A |̂∗
C

B and C ⊆ C ′ ⊆ B. So for any B̂ ⊇ B there is A′≡BC A such that A′ |̂
C

B̂C.
Base monotonicity of |̂ yields A′ |̂

C′ B̂C, so A′ |̂
C′ B̂ by monotonicity of |̂ . Thus A |̂∗

C′ B.
Transitivity: Here we work with an alternative definition of |̂∗ , which is equivalent to our definition
by invariance of |̂ :

A |̂∗
C

B ⇐⇒
(

for all B̂ ⊇ B there is B̂′ ≡
BC

B̂ s.t. A |̂
C

B̂′).
So suppose D ⊆ C ⊆ B, B |̂∗

C
A and C |̂∗

D
A hold, and Â ⊇ A. We need to show that

B |̂
D

Â∗ for some Â∗≡AD Â. Let Â′≡AD Â be such that C |̂
D

Â′, and let Â∗≡AC Â′ be such
that B |̂

C
Â∗. Note that Â∗≡AD Â and C |̂

D
Â∗. By transitivity of |̂ we get B |̂

D
Â∗.

Normality: Suppose A |̂∗
C

B and B̂ ⊇ B. Let A′ ≡BC A be such that A′ |̂
C

B̂. Then also
A′C |̂

C
B̂ by normality of |̂ . Anti-reflexivity: Trivial, since A |̂∗

C
B implies A |̂

C
B. Full

existence: Suppose we are given A,B, C. Since |̂ satisfies full existence by assumption, we have
A |̂∗

C
∅. Since |̂∗ satisfies extension there is A′ ≡C A such that A′ |̂∗

C
B.

Theorem 3.2. Suppose |̂ satisfies the first five axioms for independence relations and also has
finite character. Suppose the derived relation |̂∗ has local character. Then |̂∗ is an independence
relation.

Proof. It follows from Lemma 3.1 that |̂∗ satisfies the first five axioms and extension. As local
character holds by assumption, we need only prove that |̂∗ satisfies finite character. We will prove
some other facts on our way.

First note that A |̂∗
C

B implies B |̂
C

A: If ā |̂∗
C

B, there is a |̂∗ -Morley sequence in
tp(ā/BC) over C by Proposition 2.3 (applied to |̂∗ ). This sequence is also a |̂ -Morley sequence
in tp(ā/BC) over C, hence B |̂

C
ā by Proposition 2.4 (applied to |̂ ).



8 Hans Adler

sacl(AC)

sacl(AC ′)

s acl C

sacl(ABC)

s acl C ′

s acl(BC)�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

Figure 1: An illustration for the definition of |̂M in the lattice of algebraically closed sets. We have a map
acl C′ 7→ acl(AC′) from the sublattice between acl C and acl(BC) to the sublattice between acl(AC) and acl(ABC).
A |̂M

C
B says that the map D 7→ D ∩ acl(BC) takes D = acl(AC′) back to acl C′.

It follows that A |̂∗
C

B implies B |̂∗
C

A: Suppose A |̂∗
C

B and Â ⊇ A. Since Â |̂∗
AC

AC

by local character and base monotonicity, we can use extension to find Â′ ≡AC Â such that
Â′ |̂∗

AC
ABC, hence Â′ |̂∗

AC
B by monotonicity. Combining this with A |̂∗

C
B, we get Â′ |̂∗

C
B

by transitivity. This implies B |̂
C

Â. Thus B |̂∗
C

A.
Now we can prove that |̂∗ has finite character. Suppose ā |̂∗

C
B holds for all finite ā ∈ A.

We need to show that A |̂∗
C

B. So suppose B̂ ⊇ B. Since A |̂∗
BC

BC by local character
and base monotonicity, we can obtain A′ ≡BC A such that A′ |̂∗

BC
B̂ using full existence and

monotonicity. By invariance, there is also B̂′ ≡BC B̂ such that A |̂∗
BC

B̂′. It suffices to show that
A |̂

C
B̂′. For every finite ā ∈ A we have ā |̂∗

C
B by assumption, and ā |̂∗

BC
B̂′ by A |̂∗

BC
B̂′

and monotonicity. Since |̂∗ is symmetric we can combine these results using transitivity on the
right-hand side. Thus we get ā |̂∗

C
B̂′ for all finite ā ∈ A. Hence ā |̂

C
B̂′ for all finite ā ∈ A.

Since |̂ has finite character, this implies A |̂
C

B̂′.

Although it does not seem to happen in natural examples, we can lose local character when
passing from |̂ to |̂∗ , and indeed Example 6.4 below shows that it is not sufficient in Theorem 3.2
to assume local character of |̂ . But losing finite character, of all things, seems weird, and the way
we recovered it using local character is a bit contrived. The reader might be happy to hear that
a stronger version of finite character (which says roughly that dependence is caused by a ‘forking’
formula) is actually preserved when passing from |̂ to |̂∗ [7].

Question 3.3. Can there really be a relation |̂ satisfying invariance, monotonicity and finite
character, for which |̂∗ does not have finite character?

4 Thorn-Forking and Rosy Theories

In Proposition 1.5 we have examined the relation |̂a , which turned out to satisfy all axioms for
independence relations with the possible exception of base monotonicity. After our success with
forcing the extension axiom, the obvious thing to do is to try forcing base monotonicity. To take
all suspense out of this section: The only axioms that can break are local character and extension,
and the result is known as thorn-forking.

The relation |̂M (M-dividing independence) is defined by

A |̂M
C

B ⇐⇒
(

for any C ′ s. t. C ⊆ C ′ ⊆ acl(BC):
acl(AC ′) ∩ acl(BC ′) = aclC ′

)
.
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We define the relation |̂þ (thorn-forking independence) by |̂þ = |̂M∗, i.e.:

A |̂þ
C

B ⇐⇒
(

for all B̂ ⊇ B there is A′ ≡
BC

A s.t. A′ |̂M
C

B̂
)
.

We say that a complete first-order theory T is rosy if |̂þ is an independence relation for T eq.
For example if the lattice of algebraically closed sets in T eq is modular, then |̂a is already an

independence relation, and therefore |̂a = |̂M = |̂þ and the theory is rosy. Like |̂a , the relation
|̂M was already defined in my diploma thesis [9], and like |̂a it has roots that are indeed much

older. Towards a generalisation of John von Neumann’s work to certain non-modular lattices,
Lee Roy Wilcox defined the notion of modular pairs. If we apply his definition for the notation
(A,B) ⊥ to the lattice of algebraically closed sets it means A |̂M∅ B [17]. There is more to be said
on this connection, but not here [7].

Remark 4.1. If |̂ is any strict independence relation, then A |̂
C

B implies A |̂þ
C

B.

Proof. Suppose |̂ is a strict independence relation, A |̂
C

B, and B̂ ⊇ B. We need to show that
there is A′≡BC A such that A′ |̂M

C
B̂. So choose A′≡BC A such that A′ |̂

C
acl(B̂C). For any

D satisfying C ⊆ D ⊆ acl(B̂C) we get A′ |̂
D

acl(B̂C) by base monotonicity of |̂ . By extension
and symmetry of |̂ there is a set H ≡A′D acl(A′D) that satisfies H |̂

D
acl(B̂C). Clearly H =

acl(A′D), so acl(A′D) |̂
D

acl(B̂C). Now by anti-reflexivity of |̂ , acl(A′D)∩ acl(B̂CD) ⊆ acl D,
so acl(A′D) ∩ acl(B̂CD) = aclD.

Lemma 4.2. The relation |̂M of M-dividing independence always satisfies the first five axioms for
independence relations and finite character. It also satisfies anti-reflexivity.

Proof. Invariance, monotonicity, normality and anti-reflexivity are obvious. Base monotonicity :
Suppose A |̂M

C
B and C ⊆ D ⊆ B. Then for any D′ satisfying D ⊆ D′ ⊆ acl(BD) we also

have C ⊆ D′ ⊆ acl(BC). So A |̂M
C

B implies acl(AD′) ∩ acl(BD′) = aclD′. Hence A |̂M
D′ B.

Transitivity: Suppose D ⊆ C ⊆ B, B |̂M
C

A and C |̂M
D

A. Then for any D′ such that D ⊆ D′ ⊆
acl(AD) we can compute:

acl(BD′) ∩ acl(AD′) = acl(BD′) ∩ acl(ACD′) ∩ acl(AD′)

= acl(CD′) ∩ acl(AD′)
(
by B |̂M

C
A

)
= aclD′,

(
by C |̂M

D
A

)
so B |̂M

D
A holds. Finite character: Suppose A 6 |̂M

C
B. Let C ′ be such that C ⊆ C ′ ⊆ acl(BC)

and acl(AC ′) ∩ acl(BC ′) 6⊆ acl C ′. Let d ∈ (acl(AC ′) ∩ acl(BC ′)) \ acl C ′. Let ā ∈ A, finite, be
such that d ∈ acl(āC ′). Then clearly ā 6 |̂M

C
B.

Theorem 4.3. The relation |̂þ of thorn-forking independence is a strict independence relation if
and only if it has local character, if and only if there is any strict independence relation at all. If
|̂þ is a strict independence relation, then it is the weakest.

Proof. To get the first equivalence, apply Theorem 3.2 to |̂M. If |̂ is any strict independence
relation, then, since |̂ satisfies the local character axiom, so does |̂þ by Remark 4.1. If |̂þ is a
strict independence relation, then it is the weakest, again by Remark 4.1.

Note that the conditions of Theorem 4.3 do not imply |̂M = |̂þ .

Example 4.4. (Everywhere infinite forest, continued from Example 1.4)
It follows from Theorem 4.3 that |̂þ is also a strict independence relation, and that A |̂

C
B =⇒

A |̂þ
C

B. It is straightforward to check that the converse is also true, so |̂ = |̂þ . But it is not
hard to see that |̂M does not satisfy extension, so |̂M 6= |̂þ : Let a and b be neighbours. Then
a |̂M b. However, there is no c ≡b a such that a |̂M bc: Either c = a, or b lies between a and c. In the
first case, a = c ∈ (acl a∩acl(bc))\acl ∅, so a 6 |̂Mbc. In the second case, b ∈ (acl(ac)∩acl(bc))\acl c,
so also a 6 |̂Mbc. Thus |̂M does not satisfy the extension axiom.
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In some cases (most notably strongly minimal and o-minimal theories), þ-forking as defined
on the real elements of T is an important tool for understanding the structure of models of T . In
these cases þ-forking on T agrees with the restriction to T of þ-forking in T eq. This is not the
case in general, and the existence of a strict independence relation on the real elements of T per
se does not imply any ‘structure’ that is more than superficial:

Example 4.5. (Thorn-forking must be computed in T eq in general)
Let T be any complete consistent theory in a relational language. Consider the following theory T ′:
The language of T ′ is the language of T together with a new binary relation. The axioms of T ′

are the axioms of T , but with equality replaced by the new relation, together with axioms saying
that the new relation is an equivalence relation with infinite classes. Then T ′ is a complete
consistent theory satisfying acl A = A for every set A of real elements. Hence the lattice of
algebraically closed sets is just the (distributive) lattice of subsets of the big model, and so the
relation A |̂

C
B ⇐⇒ A ∩B ⊆ C is a strict independence relation for T (and agrees with |̂þ ).

If T is rosy, then T ′ shows that in general |̂þ as defined on T is not the restriction to T of
|̂þ as defined on T eq, even though it must be an independence relation and in this case it is even

strict.

The original definition of thorn-forking

We finish this section by relating |̂þ to the original definition of thorn-forking, due to Alf On-
shuus [5]. We will be glossing over some difficulties. Let ϕ(x̄, ȳ) be a formula without parameters,
let b̄ be a tuple, and let C be a set. The formula ϕ(x̄, b̄) strongly divides over C if tp(b̄/C) is
not algebraic and

{
ϕ(x̄, b̄′)

∣∣ b̄′ |= tp(b̄/C)
}

is k-inconsistent for some natural number k < ω. The
formula ϕ(x̄, b̄) þ-divides over C if there is a tuple c̄ such that ϕ(x̄, b̄) strongly divides over Cc̄.
The formula ϕ(x̄, b̄) þ-forks over C if it implies a (finite) disjunction of formulas (with arbitrary
parameters), each of which þ-divides over C.

Remark 4.6. If p(x̄) ∈ S∗(B) does not thorn-fork over C ⊆ B, then for every set B̂ ⊇ B there is
an extension p̂ of p to B̂, p(x̄) ⊆ p̂(x̄) ∈ S∗(B̂), such that p̂ also does not thorn-fork over C.

Proof. The type p is consistent with the partial global type consisting of all negations of formulas
that thorn-fork over C, and so it has a global extension that does not thorn-fork over C.

Proposition 4.7. For sets A,C and a (|T |+ |M |)+-saturated model M ⊇ C the following condi-
tions are equivalent.

(1) A |̂þ
C

M .
(2) A |̂M

C
M .

(3) For all sets C ′ such that C ⊆ C ′ ⊆ M we have acl(AC ′) ∩M = aclC ′ ∩M .
(4) For all tuples ā ∈ A and all formulas ϕ(x̄) over M such that |= ϕ(ā) the following holds.

ϕ(x̄) does not strongly divide over any set C ′ such that C ⊆ C ′ ⊆ M .
(5) For all tuples ā ∈ A and all formulas ϕ(x̄) over M such that |= ϕ(ā) the following holds.

ϕ(x̄) does not thorn-divide over C.
(6) For all tuples ā ∈ A and all formulas ϕ(x̄) over M such that |= ϕ(ā) the following holds.

ϕ(x̄) does not thorn-fork over C.

Proof. (1) ⇒ (2) ⇔ (3): trivial. (3) ⇒ (4): Suppose ā ∈ A, ϕ(x̄, b̄) (b̄ ∈ M) and C ′ (C ⊆
C ′ ⊆ M) are a counterexample to (4), i.e., |= ϕ(ā, b̄) and ϕ(x̄, b̄) strongly divides over C ′. Then
b̄ ∈ acl(āC ′) \ acl C ′. (4) ⇒ (5) ⇒ (6): By saturation of M . (6) ⇒ (1): By the last Remark and
the definition of |̂M it suffices to prove (2) from (6). Towards a contradiction, suppose (2) does not
hold. Then there is a set C ′, C ⊆ C ′ ⊆ M and an element b ∈ acl(AC ′) ∩M \ acl C ′. Let ā ∈ A,
c̄ ∈ C ′, ϕ(x̄, y, z̄) and k < ω be such that |= ϕ(ā, b, c̄) and |= ∃≤ky′ϕ(ā, y, c̄). Define ϕ(x̄, y, z̄)
as ϕ(x̄, y, z̄) ∧ ∃≤ky′ϕ(x̄, y′, z̄). Then |= ϕ′(ā, b, c̄), and ϕ′(x̄, b, c̄) strongly divides over Cc̄. Hence
ϕ′(x̄, b, c̄) thorn-forks over C.
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Corollary 4.8. If we write A |̂m
C

B if acl(ACB0) ∩ acl(BC) = acl(CB0) for all B0 ⊆ B, and
A |̂þ-d

C
B if for all ā ∈ A the type tp(ā/BC) does not thorn-fork over C, then |̂m∗= |̂þ-d∗= |̂þ .

The following remark says that we could just as well have based our treatment of thorn-forking
on |̂m or |̂þ-d. We omit the proof because it is straightforward and we are not using this here.

Remark 4.9. The relations |̂m and |̂þ-d always satisfy the first five axioms for independence
relations and finite character.

5 Shelah’s Forking and Simple Theories
The relation |̂d (dividing independence) is defined by

A |̂d
C

B ⇐⇒
(

for any sequence of C-indiscernibles (b̄i)i<ω s. t. b̄0 ∈ BC:
∃ A′≡BC A s. t. the sequence is A′C-indiscernible

)
.

The relation |̂f (forking independence) is defined by |̂f = |̂d∗, i.e.:

A |̂f
C

B ⇐⇒
(

for all B̂ ⊇ B there is A′ ≡
BC

A s.t. A′ |̂d
C

B̂
)
.

These definitions are equivalent to dividing and forking as they were originally defined by Saharon
Shelah to study stable theories (see Remark 5.5 below). Here, however, we are re-inventing the
theory, so we motivate the definition of |̂d with the following easy remark (due to Kim and
Pillay [13]).

Remark 5.1. If |̂ is any independence relation, then A |̂d
C

B implies A |̂
C

B.

Proof. Suppose A |̂d
C

b̄. Let (b̄i)i<ω be a |̂ -Morley sequence for tp(b̄/C). This exists by Propo-
sition 2.3, since b̄ |̂

C
C. We may assume that b̄0 = b̄. Since A |̂d

C
b̄ there is A′ ≡b̄C A such that

the sequence (b̄i)i<ω is A′C-indiscernible. By Proposition 2.4, it now follows that A |̂
C

b̄.

Of course this remark implies that |̂d = |̂f whenever |̂f is an independence relation. But we
still need |̂f for technical reasons.

We will call a complete first-order theory T simple if |̂f is an independence relation for T .
The greatest part of the following lemma can be found in Shelah’s book [2]. Transitivity of |̂d in
the general case is implicit in Kim’s thesis [3],

Lemma 5.2. The relation |̂d of dividing independence always satisfies the first five axioms for
independence relations and finite character. It also satisfies anti-reflexivity.

Proof. Invariance and monotonicity are obvious. Base monotonicity: Suppose A |̂d
C

B and C ⊆
C ′ ⊆ B. Let (b̄i)i<ω be a sequence of C ′-indiscernibles with b̄0 ∈ B = BC. Let c̄′ be an
enumeration of C ′. Then also b̄0c̄

′ ∈ BC, and the sequence (b̄ic̄
′)i<ω is also C-indiscernible. Hence

there is A′≡b̄0c̄′ A such that (b̄ic̄
′)i<ω is A′C-indiscernible. Thus (b̄i)i<ω is A′C ′-indiscernible.

Transitivity: Suppose D ⊆ C ⊆ B, B |̂d
C

A and C |̂d
D

A. Let (āi)i<ω be any sequence of D-
indiscernibles with ā0 ∈ AD. By C |̂d

D
A there is C ′≡AD C such that the sequence (āi)i<ω is

indiscernible over C ′. Choose any set B′ such that (B′, C ′)≡AD(B,C). Then B′ |̂d
C′ A holds

by invariance. Hence there is B′′≡AC′ B′ such that the sequence is B′′-indiscernible. And really,
B′′≡AD B. Normality: Suppose A |̂d

C
B. Let (b̄i)i<ω be a sequence of C-indiscernibles such that

b̄0 ∈ BC. By definition there is A′ ≡BC A such that the sequence is A′C-indiscernible. But then
also A′C ≡BC AC. Finite character: Let ā be a possibly infinite tuple such that ā 6 |̂d

C
B. Let

p(x̄) = tp(ā/BC). Then there is a sequence (b̄i)i<ω with b̄0 ∈ BC such that the type extending
p(x̄) and the theory of the big model with constants for BC(b̄i)i<ω and expressing that (b̄i)i<ω is
āC-indiscernible is inconsistent. By compactness, a finite sub-tuple ā0 of ā is sufficient for this, so
ā0 6 |̂dC

B. For anti-reflexivity suppose a 6∈ acl B. Then there is a B-indiscernible sequence (ai)i<ω

of distinct elements, with a0 = a. This sequence witnesses that a 6 |̂d
B

a.
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Theorem 5.3. A theory T is simple if and only if |̂f has local character. If T is simple, |̂f = |̂d ,
and this is the strongest independence relation for T .

Proof. For the equivalence, just apply Theorem 3.2 to |̂d . Now suppose T is simple. While
A |̂f

C
B always implies A |̂d

C
B, the converse is true by Remark 5.1. Hence |̂f = |̂d . Since |̂f

is an independence relation and |̂d is stronger than every independence relation by Remark 5.1,
|̂f = |̂d is the strongest.

By comparing Remarks 4.1 and 5.1 one easily sees that A |̂f
C

B implies A |̂þ
C

B, provided
that a strict independence relation exists. The following remark shows that even without this
assumption a stronger statement is true: A |̂d

C
B always implies A |̂M

C
B, hence A |̂f

C
B always

implies A |̂þ
C

B.

Remark 5.4. (1) Every sequence of B-indiscernibles is also indiscernible over acl B.
(2) A |̂d

C
B implies acl(AC) ∩B ⊆ acl C.

(3) A |̂d
C

B implies A |̂d
C

acl(BC). So |̂d always satisfies a weak variant of the extension
axiom.

(4) If A |̂d
C

B and C ⊆ C ′ ⊆ acl(BC), then acl(AC ′) ∩ acl(BC) = aclC ′. Hence A |̂d
C

B
implies A |̂M

C
B.

This was a quick and cheap introduction to forking in simple theories, but some things are
missing. For example, we would like to know that T is simple if and only if T eq is simple. Or that
simplicity is equivalent to |̂d having local character, or to not having the tree property. To get
these results we need to get our hands dirty with formulas, and this is what we will do in the next
episode [7]. As a first step in this direction, the reader might want to prove the following remark
using only the results of this section.

Remark 5.5. A formula ϕ(x̄; b̄) divides over a set C if there is a finite number k < ω and a
sequence (b̄i)i<ω such that b̄i ≡C b̄ holds for all i < ω and {ϕ(x̄; b̄i) | i < ω} is k-inconsistent. A
formula forks over C if it implies a finite disjunction of formulas that divide over C [2].

(1) ā |̂d
C

B iff there is a formula ϕ(x̄; b̄) ∈ tp(ā/BC) which divides over C.
(2) ā |̂f

C
B iff there is a formula ϕ(x̄; b̄) ∈ tp(ā/BC) which forks over C.

(3) For simple T , a formula ϕ(x̄; b̄) forks over a set C iff ϕ(x̄; b̄) divides over C.

If there is any strict independence relation for T eq, then T is rosy. If we accept the (as yet
unproved) fact that T is simple if and only if T eq is simple, it follows that every simple theory is
rosy. Thus if T is simple, |̂þ is the weakest strict independence relation on T eq while |̂f is the
strongest. It should be mentioned that in simple theories with elimination of hyperimaginaries we
have |̂f = |̂þ (by an unpublished result of Clifton Ealy), so this is the only strict independence
relation in such a theory.

6 Some Relations that are Not Independence Relations

Let us call the first five axioms for independence relations and finite character the basic axioms for
independence relations because they are satisfied by |̂d , |̂f , |̂M and |̂þ in arbitrary theories. If
we are interested in relaxing the notion of an independence relation in such a way that it becomes
useful, for example, in all theories without the independence property, then it is important to know
all the implications between the non-basic axioms (extension and local character) and additional
properties such as full existence and symmetry. In this section we will make a first attempt in this
direction, by proving the following result.

Proposition 6.1. We consider relations |̂ that satisfy the basic axioms for independence rela-
tions (i. e. invariance, monotonicity, base monotonicity, transitivity, normality, and finite char-
acter).
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Figure 2: Classification of relations satisfying the basic axioms of independence relations, according to which of
four remaining properties hold. For five nodes of this lattice diagram there is an example in Section 6. These can
be used to assemble examples for the lower nodes.

(1) If |̂ satisfies extension and local character, then |̂ also satisfies symmetry and full
existence.

(2) If |̂ satisfies symmetry and full existence, then |̂ also satisfies extension.
No other relations between extension, local character, symmetry and full existence hold in

general. More precisely, there are examples of complete theories with relations |̂ satisfying the
basic axioms which show that:

(3) |̂ may satisfy extension and symmetry, but neither full existence nor local character.
(4) |̂ may satisfy extension and full existence, but neither symmetry nor local character.
(5) |̂ may satisfy symmetry and local character, but neither extension nor full existence.
(6) |̂ may satisfy full existence and local character, but neither extension nor symmetry.
(7) |̂ may satisfy symmetry and full existence, but not local character.

Proof. (1) and (2) are by Remark 1.2 and Theorem 2.5. The rest is shown by the series of examples
below. (3) Example 6.2. (4) Example 6.3. (5) Example 6.4. (6) Example 6.5. (7) Example 6.6.

Example 6.2. (no local character, no full existence)
The empty ternary relation satisfies all axioms for strict independence relations except local char-
acter. It also satisfies symmetry, but not full existence.

Example 6.3. (no local character, no symmetry)
We will extend the theories T0 and T from Example 2.6. First we describe the signature of the
respective extensions T ∗

0 and T ∗: It has the sorts P (‘points’) and E (‘equivalence relations’)
as well as a new sort Γ (‘equivalence classes’). The functions and relations of T ∗

0 consist of the
relation p ∼e q (for p, q ∈ P and e ∈ E), a new relation written (slightly abusing notation) as
p/e = c for p ∈ P , e ∈ E and c ∈ Γ, and a function ε : Γ → E.

The axioms of T ∗
0 include those of T0, i. e., ∼e is an equivalence relation for every e ∈ E. They

also say that ∃≤1c(p/e = c), so it makes sense to regard p/e as a partial function P × E → Γ
which we will use informally in the following. The other axioms say ε(p/e) = e (if p/e exists) and
p ∼e q ↔ p/e = q/e (also if p/e exists).

Clearly every model of T0 is also a model of T ∗
0 , and if we restrict a model of T ∗

0 to the sorts
P and E we get a model of T0. By the same arguments as for T0 we can find an ω-categorical
theory T ∗ with elimination of quantifiers which is the Fraïssé limit of the finite models of T ∗

0 . So
T ∗ extends both T and T ∗

0 .
For any subset A of the big model of T ∗ we write P (A) = A ∩ P , E(A) = (A ∩ E) ∪ ε(A ∩ Γ)

and Γ(A) = (A ∩ Γ) ∪ {p/e | p ∈ P (A), e ∈ E(A)}. It is not hard to check that acl A = dclA =



14 Hans Adler

P (A) ∪ E(A) ∪ Γ(A). It easily follows that

A |̂M
C

B ⇐⇒

 P (A) ∩ P (B) ⊆ P (C) and
E(A) ∩ E(B) ⊆ E(C) and

A/e ∩B/e ⊆ C/e for all e ∈ E(BC)

 ,

where A/e is defined as P (A)/e∪(Γ(A)∩P/e). Using this, it is not hard to check that A |̂M
C

B =⇒
A |̂þ

C
B and that A |̂M

C
B =⇒ A |̂d

C
B, from which it easily follows that |̂M = |̂þ = |̂d = |̂f .

Hence |̂f satisfies all axioms for strict independence relations except local character (which would
imply that there is a strict independence relation for T ∗). It also satisfies full existence, though
not symmetry.

Example 6.4. (no extension, no full existence)
Let T be the theory of an infinite set. Define |̂ as follows:

A |̂
C

B ⇐⇒
(
|C| ≥ ℵ0 and A ∩B ⊆ C

)
or A ⊆ C or B ⊆ C.

This relation satisfies all axioms for strict independence relations except extension. It also satisfies
symmetry, but not full existence. Note that even though |̂ has local character, |̂∗ does not.

Example 6.5. (no extension, no symmetry)
Consider the theory from Examples 1.4 and 4.4. By Lemma 4.2 the relation |̂M satisfies the
axioms of strict independence relations except extension and local character. |̂M also satisfies
local character and full existence because |̂þ does. We have already seen that |̂M does not satisfy
extension.

|̂M is not symmetric either: Suppose b lies between a and c. Then a 6 |̂Mbc as we have just seen.
But it is easy to see that bc |̂M a.

Example 6.6. (no local character)
Consider the theory of the random graph (the Fraïssé limit of the finite undirected graphs) with
the following relation:

A |̂
C

B ⇐⇒ A ∩B ⊆ C and there is no edge from A \ C to B \ C.

The relation |̂ satisfies all axioms for strict independence relations except local character. It also
satisfies full existence and symmetry.

In fact, for relations |̂ which satisfy invariance and monotonicity the only implications between
the remaining axioms are those given by Remark 1.2 and Theorem 2.5 [1]. Of course, for some
specific relations |̂ more can be said. For example, Byunghan Kim has shown that T is simple iff
|̂f (or |̂d ) has local character, iff |̂f (or |̂d ) is symmetric, iff |̂f (or |̂d ) satisfies the transitivity

axiom on the right hand side [18].
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