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Exercice 1. Commengons par étudier / 5T La fonction intégrée est continue sur [1,+oo[, et a
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valeurs positives. Au voisinage de 400 on a
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Par comparaison a une intégrale de Riemann, on en déduit que / 5T est divergente.
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L’intégrale / In(t)e™" dt est généralisée en 0 et en +00; la fonction intégrée est continue sur 0, +o0o],
0

négative sur ]0,1] et positive sur [1,+oc[. En 0 on a In(t)e™* ~q In(t), et fol In(t) dt est convergente.

Donc fol In(t)e~tdt est convergente. En 400, on peut par exemple utiliser le fait que ln(t)e*% tend vers

+oo
0 quand t tend vers 400, ce qui montre qu’il existe M > 1 tel que e *In(t) < e s, Puisque / e % dt
+oo M
converge, on en déduit que / In(t)e~ " dt est convergente.
M
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Au final, on obtient que / In(t)e™" dt converge.
0

Exercice 2. On suit I’énoncé et on pose
x
e(x,y) = (u,v) = (;xy) :

x
La fonction ¢ est de classe C* sur Pouvert D, et son déterminant jacobien en (z,y) € D vaut 2= # 0.
Y

Pour montrer que ¢ est un difféomorphisme de classe C' sur D, il nous reste & vérifier que ¢ est injective
sur D ; on suppose donc que (x1,¥1), (x2,y2) € D sont tels que ¢(x1,y1) = ¢(x2,y2). On a alors

T Z2

— =— et ziy = T2

Y1 Y2
En multipliant ces deux égalités I'une par 'autre, on obtient 22 = 22, ce dont on déduit que z; = xo
puisque x1, xo sont strictement positifs par définition de D. On en déduit immédiatement que y; = o,
par conséquent ¢ est bien injective sur D, et est donc (d’aprés le théoréme d’inversion globale) un
difféomorphisme de classe C* de D sur ¢(D). Pour déterminer (D), on note que

1 2
(0<:c<yet<y<)<:>(y>0,o<x<1et1<xy<2) .
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En particulier, ¢(D) C D" = {(u,v): 0 <u < 1et 1 < v < 2}. Pour voir la réciproque (si on veut donner

tous les détails) : fixons (u,v) € D'; alors (z,y) = (x/uv, \/?> € D, et p(z,y) = (u,v). On a donc aussi
u

D’ C (D), ce qui prouve que ¢(D) = D’.

La formule de changement de variables nous dit (en utilisant le fait que x?

= uw) que notre intégrale est

1
de méme nature que / / u2v26“2— dudv, et que les deux intégrales sont égales si elles convergent.
’ u



Comme la fonction intégrée est continue sur D’ et & valeurs positives, on peut essayer d’appliquer la

formule de Fubini :
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(L’égalité de lavant-derniére ligne vient de lapplication de la formule d’intégration par parties & un
produit de deux fonctions de classe C! sur le segment [0, 1])
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Le théoréme de Fubini nous permet donc de conclure que I est convergente et vaut 5

Exercice 3. On considére la fonction f: R® — R définie par f(z,y,2) = 2y +yz+xz+21+2y—2. Clest
une fonction de classe C*, et on a bien f(0,0,0) = 0. Pour pouvoir appliquer le théoréme des fonctions
implicites, on calcule la matrice jacobienne de f et on obtient

Jac(f)(z,y,2) = (y+2+2 z+2+2 x+y—1)

En (0,0,0) cette matrice vaut (2 2 71) ; puisque —1 # 0, le théoréme des fonctions implicites nous
permet de conclure que 'équation f(z,y,z) = 0 définit bien au voisinage de (0,0) une fonction ¢ de
classe C! telle que z = p(x,y).

Pour calculer les dérivées partielles de ¢ en (0,0), on considére 'équation f(z,y,p(z,y)) = 0, valable
sur un voisinage de (0, 0) ; en prenant les différentielles, et en appliquant I’équation obtenue en (0,0), on
obtient grace a la régle de la chaine que

1 0
2 2 -1 0 1 =(0 O
( ) 22(0,0) 22(0,0) 00

Nous obtenons donc :

dp d¢
p équent, on obtient que < (0,0) = <2 (0,0
ar conséquent, on obtient que 8:5( ) 3y( )
. . arctan(xt) . 9
Exercice 4. 1. La fonction f: (x,t) — e est continue sur R?. De plus, sur R x [0, +oo[ on
alf(z,t)] < ﬁ, et t — ﬁ est continue et intégrable sur [0, +o00[. D’apreés le théoréme

de continuité des intégrales & parameétres, F' est donc bien définie et continue sur R.

2. Comme arctan(0) = 0, on voit que F'(0) = 0. Pour calculer F(1), on écrit

+oo 2

F(1) = /;OO %r;gt)dt: B (arctan(t))zh ==



3. On va appliquer le théoréme de convergence dominée; considérons une suite (z,,) qui tend vers
arctan(z,t)
1+41¢2

™ . .
arctan(x,t) converge vers 5 quand n tend vers +o0o, donc la suite (f,,) converge simplement vers la

+oo
+oo. Alors F(z,) = / fn(t)dt, ou f, est la fonction définie par ¢ — At >0 fixé,
0

fonction ¢ ——— sur 10, 4+o0[. De plus, | fn ()| < 5 pour tout n et tout ¢t > 0, et on a vu

™
2(1+t2) (1+1¢2)
que la fonction majorante est intégrable sur ]0, +oo[. Grace au théoréme de convergence dominée,
+oo +oo 2
T T
nous pouvons donc affirmer que F(z,) = t) dt converge vers —dt = —.
pony ave Flan) = [ fult)dt comvenge vers [ o=
Ceci est valable pour toute suite (z,,) tendant vers +o0o, on a donc montré que
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lim F(z)=—.
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4. Pour tout (z,t) € R? on a

0 t

—f(x, t) = .

ox (14 22t2)(1+¢2)
C’est une fonction continue des deux variables (z,t); étant donné que I’énoncé ne nous demande
pas de montrer que F' est dérivable en 0, on se doute qu’il peut y avoir un probléme en ce point,
qu’on traite comme d’habitude : on fixe a > 0, et on essaie de montrer que F' est dérivable sur
la, +oo[. Sur Ja, +00[%]0, +0c0], on a

of ¢
0= 5: @)= aramare -

Pour pouvoir appliquer le théoréme de dérivabilité des intégrales & paramétres, il nous suffit donc
t

de vérifier que, pour tout a > 0, la fonction ¢t est intégrable sur ]0, +ool.

(14 a2t2)(1 +2)
Cette fonction se prolonge par continuité en 0, est a valeurs positives, et est équivalente en +oo

t

a prrriialim vl Par comparaison a une intégrale de Riemann, la fonction est bien intégrable sur
a a

10, 4+00[; on peut donc appliquer le théoréme de dérivabilité des intégrales & paramétres pour

conclure que F est de classe C! sur ]a, +oo| (puisque la dérivée partielle de f par rapport a x est

une fonction continue de (x,t) et est dominée par une fonction intégrable indépendante de z) et

que

+o0o t
Vo >0 F’ = dt .
v (@) /0 1+ 222)(1 + £2)
Ceci etant vrai sur Ja,+oo[ pour tout a > 0, c’est en fait vrai sur ]0,4o0o[; en appliquant le
changement de variables (C!, bijectif) u = ¢, on obtient que, pour tout = > 0, on a

I O du
=3}, TreaaEa

5. Fixons un = > 0 et différent de 1; alors la fraction rationnelle (en u)

1

m peut s’écrire

sous la forme
1 a b

(1+ 22u)(1 4+ u) T 1tu + 1+ 22u
(Ceci est faux quand z = 1, auquel cas la fraction rationnelle est déja un élément simple, -1~z ).

(I+w)
Pour calculer a,b, on applique la méthode habituelle : on multiplie par u + 1 et on substitue

u = —1, ce qui donne a = 17 on multiplie par 1 + z2u et on substitue u = — obtenant

—.’E27 ?a
i b 1 z?
ainsib= ——— = ———.
1—L  22-1
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Tous ces amusants calculs nous permettent d’obtenir que, pour tout x > 0 et différent de 1, on a

2 (z) = /;OO ((1 - xQ;(l T T @@= 1)9221 n x2u)> du




Calculons d’abord 'intégrale de 0 & M pour un M > 0 qu’on fera ensuite tendre vers 400 :

M 1 x? 1 1 LM
/o (ux?)(uu)*(:ﬁ1><1+x2u>)d“:[mm“*“)*zz11n<1+m> 0

1 I 1+ 22M
= n
2 —1 1+ M

2In(x
Cette quantité tend vers — (2)
72 —
d’un peu de sueur et de larmes, 1’égalité tant espérée, valable pour tout x > 0 et différent de 1 :
In(x)
x2—1"

quand M tend vers +00, et nous avons finalement obtenu, au prix

F'(z) =

En x = 1, on sait que cette quantité doit avoir une limite, qui vaut F’(1), puisqu’on a montré que

In(z)

F est de classe C! sur |0, +o0[; et en effet, puisque tend vers In'(1) = 1 quand z tend vers
x—

1
1, on obtient F'(1) = 3 (qu’on aurait aussi pu obtenir simplement en calculant U'intégrale obtenue

plus haut directement pour x = 1)

In(t)

o est continue sur |0, 1[; d’aprés le théoréme fondamental de Panalyse et le

résultat de la question précédente on a, pour tout (z1,z2) tel que 0 < z7 <y < 1:

. La fonction t —

2 -1

/mh“)ﬁzF@g_F@Q.

1

Puisque F' est continue sur R, cette quantité a une limite quand on fait tendre x; vers 0 et xo
2

7r
vers 1 (indépendamment 1'un de Pautre), qui vaut F(1) — F(0) = 3 Par conséquent, nous venons

In(t) 72

1
d’établir que dt converge et vaut —.
d /0 21 Verse b vatb g

. Pour tout ¢ €]0,1], on a

ln(t) = 2n ~— 2n S
g =) (D) = (@) =) galt)
n=0

n=0 n=0

Nous avons affaire a une série de fonctions positives qui converge simplement sur |0, 1[; il est tentant
d’échanger série et intégrale, ce qui est justifié puisque les fonctions sont & termes positifs et on

sait que l'intégrale converge.
1

On fixe donc n > 0, et on calcule —In(t)t*" dt; on a trés envie d’utiliser une intégration par

parties - pour éviter un probléme en 0 on fixe € €]0, 1] et on intégre par parties sur [g,1] :

1 2n+171 1 42
—In(t)t*+ 2"
~In@®)*"dt = | ———r dt
/5 n(t) { o0+ 1 €+/€ o+ 1

ln(5)52n+1 1— €2n+1
 2n+1 (2n +1)2

En faisant tendre € vers 0, on arrive a

1
1
—In(t)t*"dt = ——— .
=
Nous en déduisons que
L /1 In(t) *f 1
8 Jo t*-1 = (2n+1)?



—+o0
mais presque; si on note S = E — (qui converge par
n

n=1

Ce n’est pas tout a fait la somme des —,
n

comparaison série-intégrale), on a
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Ainsi, 15 = %, ou encore S = %

Exercice 5. 1. Soit z € R™; il nous suffit de montrer que le noyau de df (z) est réduit a {0}. Si h
appartient au noyau de df (x), on a {df(z)(h),h) = 0, donc la propriété satisfaite par f et le fait
que « soit strictement positif nous donnent (h, h) = 0, autrement dit h est le vecteur nul.

2. Fixons a,b € R™. On suit I'énoncé et on considére la fonction g: ¢t — (f(a+t(b—a),b— a) définie
sur R. Cette fonction est la composée de la fonction t — f(a + t(b— a)), qui est de classe C1, et
de la fonction u — (u,b— a), qui est linéaire et donc de classe C*°. Par conséquent, g est de classe
C! sur R, et la régle de la chaine (ajoutée au fait que la différentielle d'une application linéaire F'
en un point x est égale & F') nous permet de voir que

ViteR ¢'(t) = (df(a+t(b—a))(b—a),b—a) .

La condition satisfaite par f nous donne donc ¢'(t) > (b — a,b — a). En intégrant cette inégalité,
on obtient que ¢g(1) — ¢(0) > (1 — 0)a(b — a,b — a), autrement dit

(f(b) = f(a),b—a) > a(b—a,b—a) .

3. Le résultat de la question précédente montre que, si a,b € R™ sont tels que f(a) = f(b), on doit
avoir (b—a,b—a) = 0, autrement dit b—a = 0, ou encore a = b. Donc f est injective sur R™ ; de plus
f est de classe C! par hypothése, et on a vu & la premiére question que df (x) est inversible pour tout
x € R™. Le théoréme d’inversion globale nous permet de conclure que f est un difféeomorphisme de
classe C!' de R™ dans lui-méme.



