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Exercice 1. Commençons par étudier
∫ +∞

1

dx

x1+
1
x

. La fonction intégrée est continue sur [1,+∞[, et à

valeurs positives. Au voisinage de +∞ on a

1

x1+
1
x

= e−(1+
1
x ) ln(x) =

1

x
e−

ln(x)
x ∼+∞

1

x
.

Par comparaison à une intégrale de Riemann, on en déduit que
∫ +∞

1

dx

x1+
1
x

est divergente.

L’intégrale
∫ +∞

0

ln(t)e−t dt est généralisée en 0 et en +∞ ; la fonction intégrée est continue sur ]0,+∞[,

négative sur ]0, 1] et positive sur [1,+∞[. En 0 on a ln(t)e−t ∼0 ln(t), et
∫ 1

0
ln(t) dt est convergente.

Donc
∫ 1

0
ln(t)e−t dt est convergente. En +∞, on peut par exemple utiliser le fait que ln(t)e−

t
2 tend vers

0 quand t tend vers +∞, ce qui montre qu’il existe M > 1 tel que e−t ln(t) ≤ e− t
2 . Puisque

∫ +∞

M

e−
t
2 dt

converge, on en déduit que
∫ +∞

M

ln(t)e−t dt est convergente.

Au final, on obtient que
∫ +∞

0

ln(t)e−t dt converge.

Exercice 2. On suit l’énoncé et on pose

ϕ(x, y) = (u, v) = (
x

y
, xy) .

La fonction ϕ est de classe C1 sur l’ouvert D, et son déterminant jacobien en (x, y) ∈ D vaut 2
x

y
6= 0.

Pour montrer que ϕ est un difféomorphisme de classe C1 sur D, il nous reste à vérifier que ϕ est injective
sur D ; on suppose donc que (x1, y1), (x2, y2) ∈ D sont tels que ϕ(x1, y1) = ϕ(x2, y2). On a alors

x1
y1

=
x2
y2

et x1y1 = x2y2

En multipliant ces deux égalités l’une par l’autre, on obtient x21 = x22, ce dont on déduit que x1 = x2
puisque x1, x2 sont strictement positifs par définition de D. On en déduit immédiatement que y1 = y2,
par conséquent ϕ est bien injective sur D, et est donc (d’après le théorème d’inversion globale) un
difféomorphisme de classe C1 de D sur ϕ(D). Pour déterminer ϕ(D), on note que(

0 < x < y et
1

x
< y <

2

x

)
⇔
(
y > 0, 0 <

x

y
< 1 et 1 < xy < 2

)
.

En particulier, ϕ(D) ⊆ D′ = {(u, v) : 0 < u < 1 et 1 < v < 2}. Pour voir la réciproque (si on veut donner

tous les détails) : fixons (u, v) ∈ D′ ; alors (x, y) =
(√

uv,

√
v

u

)
∈ D, et ϕ(x, y) = (u, v). On a donc aussi

D′ ⊆ ϕ(D), ce qui prouve que ϕ(D) = D′.
La formule de changement de variables nous dit (en utilisant le fait que x2 = uv) que notre intégrale est

de même nature que
∫∫

D′
u2v2eu

1

2u
dudv, et que les deux intégrales sont égales si elles convergent.
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Comme la fonction intégrée est continue sur D′ et à valeurs positives, on peut essayer d’appliquer la
formule de Fubini : ∫ 1

u=0

(∫ 2

v=1

ueuv2

2
dv

)
du =

∫ 1

u=0

ueu

2

23 − 1

3
du

=
7

6

∫ 1

0

ueu du

=
7

6

(
[ueu]

1
0 −

∫ 1

0

eu du

)
=

7

6
.

(L’égalité de l’avant-dernière ligne vient de l’application de la formule d’intégration par parties à un
produit de deux fonctions de classe C1 sur le segment [0, 1])

Le théorème de Fubini nous permet donc de conclure que I est convergente et vaut
7

6
.

Exercice 3. On considère la fonction f : R3 → R définie par f(x, y, z) = xy+yz+xz+2x+2y−z. C’est
une fonction de classe C1, et on a bien f(0, 0, 0) = 0. Pour pouvoir appliquer le théorème des fonctions
implicites, on calcule la matrice jacobienne de f et on obtient

Jac(f)(x, y, z) =
(
y + z + 2 x+ z + 2 x+ y − 1

)
En (0, 0, 0) cette matrice vaut

(
2 2 −1

)
; puisque −1 6= 0, le théorème des fonctions implicites nous

permet de conclure que l’équation f(x, y, z) = 0 définit bien au voisinage de (0, 0) une fonction ϕ de
classe C1 telle que z = ϕ(x, y).
Pour calculer les dérivées partielles de ϕ en (0, 0), on considère l’équation f(x, y, ϕ(x, y)) = 0, valable
sur un voisinage de (0, 0) ; en prenant les différentielles, et en appliquant l’équation obtenue en (0, 0), on
obtient grâce à la règle de la chaîne que

(
2 2 −1

) 1 0
0 1

∂ϕ
∂x (0, 0)

∂ϕ
∂y (0, 0)

 =
(
0 0

)
.

Nous obtenons donc : {
2− ∂ϕ

∂x (0, 0) = 0

2− ∂ϕ
∂y (0, 0) = 0

Par conséquent, on obtient que
∂ϕ

∂x
(0, 0) =

∂ϕ

∂y
(0, 0) = 2.

Exercice 4. 1. La fonction f : (x, t) 7→ arctan(xt)

1 + t2
est continue sur R2. De plus, sur R× [0,+∞[ on

a |f(x, t)| ≤ π

2(1 + t2)
, et t 7→ π

2(1 + t2)
est continue et intégrable sur [0,+∞[. D’après le théorème

de continuité des intégrales à paramètres, F est donc bien définie et continue sur R.
2. Comme arctan(0) = 0, on voit que F (0) = 0. Pour calculer F (1), on écrit

F (1) =

∫ +∞

0

arctan(t)

1 + t2
dt =

[
1

2
(arctan(t))

2

]+∞
0

=
π2

8
.
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3. On va appliquer le théorème de convergence dominée ; considérons une suite (xn) qui tend vers

+∞. Alors F (xn) =
∫ +∞

0

fn(t) dt, où fn est la fonction définie par t 7→ arctan(xnt)

1 + t2
. A t > 0 fixé,

arctan(xnt) converge vers
π

2
quand n tend vers +∞, donc la suite (fn) converge simplement vers la

fonction t 7→ π

2(1 + t2)
sur ]0,+∞[. De plus, |fn(t)| ≤

π

2(1 + t2)
pour tout n et tout t > 0, et on a vu

que la fonction majorante est intégrable sur ]0,+∞[. Grâce au théorème de convergence dominée,

nous pouvons donc affirmer que F (xn) =
∫ +∞

0

fn(t) dt converge vers
∫ +∞

0

π

2(1 + t2)
dt =

π2

4
.

Ceci est valable pour toute suite (xn) tendant vers +∞, on a donc montré que

lim
x→+∞

F (x) =
π2

4
.

4. Pour tout (x, t) ∈ R2, on a
∂f

∂x
(x, t) =

t

(1 + x2t2)(1 + t2)
.

C’est une fonction continue des deux variables (x, t) ; étant donné que l’énoncé ne nous demande
pas de montrer que F est dérivable en 0, on se doute qu’il peut y avoir un problème en ce point,
qu’on traite comme d’habitude : on fixe a > 0, et on essaie de montrer que F est dérivable sur
]a,+∞[. Sur ]a,+∞[×]0,+∞[, on a

0 ≤ ∂f

∂x
(x, t) ≤ t

(1 + a2t2)(1 + t2)
.

Pour pouvoir appliquer le théorème de dérivabilité des intégrales à paramètres, il nous suffit donc

de vérifier que, pour tout a > 0, la fonction t 7→ t

(1 + a2t2)(1 + t2)
est intégrable sur ]0,+∞[.

Cette fonction se prolonge par continuité en 0, est à valeurs positives, et est équivalente en +∞
à

t

a2t4
=

1

a2t3
. Par comparaison à une intégrale de Riemann, la fonction est bien intégrable sur

]0,+∞[ ; on peut donc appliquer le théorème de dérivabilité des intégrales à paramètres pour
conclure que F est de classe C1 sur ]a,+∞[ (puisque la dérivée partielle de f par rapport à x est
une fonction continue de (x, t) et est dominée par une fonction intégrable indépendante de x) et
que

∀x > 0 F ′(x) =

∫ +∞

0

t

(1 + x2t2)(1 + t2)
dt .

Ceci etant vrai sur ]a,+∞[ pour tout a > 0, c’est en fait vrai sur ]0,+∞[ ; en appliquant le
changement de variables (C1, bijectif) u = t2, on obtient que, pour tout x > 0, on a

F ′(x) =
1

2

∫ +∞

0

du

(1 + x2u)(1 + u)
.

5. Fixons un x > 0 et différent de 1 ; alors la fraction rationnelle (en u)
1

(1 + x2u)(1 + u)
peut s’écrire

sous la forme
1

(1 + x2u)(1 + u)
=

a

1 + u
+

b

1 + x2u
.

(Ceci est faux quand x = 1, auquel cas la fraction rationnelle est déjà un élément simple, 1
(1+u)2 ).

Pour calculer a, b, on applique la méthode habituelle : on multiplie par u + 1 et on substitue

u = −1, ce qui donne a =
1

1− x2
; on multiplie par 1 + x2u et on substitue u = − 1

x2
, obtenant

ainsi b =
1

1− 1
x2

=
x2

x2 − 1
.

Tous ces amusants calculs nous permettent d’obtenir que, pour tout x > 0 et différent de 1, on a

2F ′(x) =

∫ +∞

0

(
1

(1− x2)(1 + u)
+

x2

(x2 − 1)(1 + x2u)

)
du
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Calculons d’abord l’intégrale de 0 à M pour un M > 0 qu’on fera ensuite tendre vers +∞ :∫ M

0

(
1

(1− x2)(1 + u)
+

x2

(x2 − 1)(1 + x2u)

)
du =

[
1

1− x2
ln(1 + u) +

1

x2 − 1
ln(1 + x2u)

]M
0

=
1

x2 − 1
ln

(
1 + x2M

1 +M

)

Cette quantité tend vers
2 ln(x)

x2 − 1
quand M tend vers +∞, et nous avons finalement obtenu, au prix

d’un peu de sueur et de larmes, l’égalité tant espérée, valable pour tout x > 0 et différent de 1 :

F ′(x) =
ln(x)

x2 − 1
.

En x = 1, on sait que cette quantité doit avoir une limite, qui vaut F ′(1), puisqu’on a montré que

F est de classe C1 sur ]0,+∞[ ; et en effet, puisque
ln(x)

x− 1
tend vers ln′(1) = 1 quand x tend vers

1, on obtient F ′(1) =
1

2
(qu’on aurait aussi pu obtenir simplement en calculant l’intégrale obtenue

plus haut directement pour x = 1)

6. La fonction t 7→ ln(t)

t2 − 1
est continue sur ]0, 1[ ; d’après le théorème fondamental de l’analyse et le

résultat de la question précédente on a, pour tout (x1, x2) tel que 0 < x1 < x2 < 1 :∫ x2

x1

ln(t)

t2 − 1
dt = F (x2)− F (x1) .

Puisque F est continue sur R, cette quantité a une limite quand on fait tendre x1 vers 0 et x2

vers 1 (indépendamment l’un de l’autre), qui vaut F (1)−F (0) = π2

8
. Par conséquent, nous venons

d’établir que
∫ 1

0

ln(t)

t2 − 1
dt converge et vaut

π2

8
.

7. Pour tout t ∈]0, 1[, on a

ln(t)

t2 − 1
= ln(t)

(
−

+∞∑
n=0

t2n

)
=

+∞∑
n=0

(
− ln(t)t2n

)
=

+∞∑
n=0

gn(t)

Nous avons affaire à une série de fonctions positives qui converge simplement sur ]0, 1[ ; il est tentant
d’échanger série et intégrale, ce qui est justifié puisque les fonctions sont à termes positifs et on
sait que l’intégrale converge.

On fixe donc n ≥ 0, et on calcule
∫ 1

0

− ln(t)t2n dt ; on a très envie d’utiliser une intégration par

parties - pour éviter un problème en 0 on fixe ε ∈]0, 1] et on intègre par parties sur [ε, 1] :∫ 1

ε

− ln(t)t2n dt =

[
− ln(t)t2n+1

2n+ 1

]1
ε

+

∫ 1

ε

t2n

2n+ 1
dt

=
ln(ε)ε2n+1

2n+ 1
+

1− ε2n+1

(2n+ 1)2

En faisant tendre ε vers 0, on arrive à∫ 1

0

− ln(t)t2n dt =
1

(2n+ 1)2
.

Nous en déduisons que
π2

8
=

∫ 1

0

ln(t)

t2 − 1
=

+∞∑
n=0

1

(2n+ 1)2
.
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Ce n’est pas tout à fait la somme des
1

n2
, mais presque ; si on note S =

+∞∑
n=1

1

n2
(qui converge par

comparaison série-intégrale), on a

S =

+∞∑
n=1

1

(2n)2
+

+∞∑
n=0

1

(2n+ 1)2

=
1

4

+∞∑
n=1

1

n2
+
π2

8

=
S

4
+
π2

8

Ainsi,
3

4
S =

π2

8
, ou encore S =

π2

6
.

Exercice 5. 1. Soit x ∈ Rn ; il nous suffit de montrer que le noyau de df(x) est réduit à {0}. Si h
appartient au noyau de df(x), on a 〈df(x)(h), h〉 = 0, donc la propriété satisfaite par f et le fait
que α soit strictement positif nous donnent 〈h, h〉 = 0, autrement dit h est le vecteur nul.

2. Fixons a, b ∈ Rn. On suit l’énoncé et on considère la fonction g : t 7→ 〈f(a+ t(b− a), b− a〉 définie
sur R. Cette fonction est la composée de la fonction t 7→ f(a + t(b − a)), qui est de classe C1, et
de la fonction u 7→ 〈u, b− a〉, qui est linéaire et donc de classe C∞. Par conséquent, g est de classe
C1 sur R, et la règle de la chaîne (ajoutée au fait que la différentielle d’une application linéaire F
en un point x est égale à F ) nous permet de voir que

∀t ∈ R g′(t) = 〈df(a+ t(b− a))(b− a), b− a〉 .

La condition satisfaite par f nous donne donc g′(t) ≥ α〈b− a, b− a〉. En intégrant cette inégalité,
on obtient que g(1)− g(0) ≥ (1− 0)α〈b− a, b− a〉, autrement dit

〈f(b)− f(a), b− a〉 ≥ α〈b− a, b− a〉 .

3. Le résultat de la question précédente montre que, si a, b ∈ Rn sont tels que f(a) = f(b), on doit
avoir 〈b−a, b−a〉 = 0, autrement dit b−a = 0, ou encore a = b. Donc f est injective sur Rn ; de plus
f est de classe C1 par hypothèse, et on a vu à la première question que df(x) est inversible pour tout
x ∈ Rn. Le théorème d’inversion globale nous permet de conclure que f est un difféomorphisme de
classe C1 de Rn dans lui-même.
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