Stabilizers of closed sets in the Urysohn space

Julien Melleray

Abstract
Building on earlier work of Katětov, Uspenskij proved in [9] that the group of isometries of Urysohn’s universal metric space \(U \), endowed with the pointwise convergence topology, is a universal Polish group (i.e it contains an isomorphic copy of any Polish group). Answering a question of Gao and Kechris, we prove here the following, more precise result: for any Polish group \(G \), there exists a closed subset \(F \) of \(U \) such that \(G \) is topologically isomorphic to the group of isometries of \(U \) which map \(F \) onto itself.

1 Introduction
In a posthumously published article ([7]), P.S Urysohn constructed a complete separable metric space \(U \) that is universal (meaning that it contains an isometric copy of every complete separable metric space), and \(\omega \)-homogeneous (i.e such that its isometry group acts transitively on isometric \(r \)-tuples contained in it).
In recent years, interest in the properties of \(U \) has greatly increased, especially since V.V Uspenskij, building on earlier work of Katětov, proved in [8] that the isometry group of \(U \) (endowed with the product topology) is a universal Polish group, that is to say any Polish group is isomorphic to a (necessarily closed) subgroup of it.
In [2], S. Gao and A.S Kechris used properties of \(U \) to study the complexity of the equivalence relation of isometry between certain classes of Polish metric spaces; as a side-product of their construction, they proved the beautiful fact that any Polish group is (topologically) isomorphic to the isometry

*MSC: Primary 51F99, Secondary 22A05.
group of some Polish space. A consequence of their construction is that, for any Polish group G, there exists a sequence (X_n) of closed subsets of U such that G is isomorphic to $\text{Iso}(U, (X_n)) = \{ \varphi \in \text{Iso}(U) : \forall n (\varphi(X_n) = X_n) \}$. This led them to ask the following question (cf [2]): Can every Polish group be represented, up to isomorphism, by a group of the form $\text{Iso}(U, F)$ for a single subset $F \subseteq U$?

The purpose of this article is to provide a positive answer to this question by proving the following theorem:

Theorem 1.1. Let G be a Polish group. There exists a closed set $F \subseteq U$ such that G is (topologically) isomorphic to $\text{Iso}(F)$, and every isometry of F is the restriction of a unique isometry of U; in particular, G is isomorphic to $\text{Iso}(U, F)$.

This gives a somewhat concrete realization of any Polish group as a subgroup of $\text{Iso}(U)$.

The construction, which will be detailed in section 3, starts with a bounded Polish metric space X such that G is isomorphic to $\text{Iso}(X)$ (the isometry group of X, endowed with the product topology) (Gao and Kechris proved that such an X always exist see [2]). Identifying G with $\text{Iso}(X)$, we construct an embedding of X in U and a discrete, unbounded sequence $(x_n) \subseteq U$ such that $F = X \cup \{x_n\}$ has the desired properties (here we identify X with its image via the embedding provided by our construction).

Acknowledgements. Several conversations with Mathieu Florence while I was working on this paper were very helpful; for this I am extremely grateful, and owe him many thanks.

2 Notations and definitions

If (X, d) is a complete separable metric space, we say that it is a *Polish metric space*, and often write it simply X.

To avoid confusions, we say, if (X, d) and (X', d') are two metric spaces, that f is an *isometric map* if $d(x, y) = d'(f(x), f(y))$ for all $x, y \in X$; if f is onto, then we say that f is an *isometry*.

A *Polish group* is a topological group whose topology is Polish. If X is a separable metric space, then we denote its isometry group by $\text{Iso}(X)$, and
endow it with the product topology, which turns it into a second countable topological group, and into a Polish group if \(X \) is Polish (see [1] or [5] for a thorough introduction to the theory of Polish groups).

We say that a metric space \(X \) is \textit{finitely injective} iff for any finite subsets \(K \subseteq L \) and any isometric map \(\varphi: K \to X \) there exists an isometric map \(\tilde{\varphi}: L \to X \) such that \(\tilde{\varphi}|_K = \varphi \). Up to isometry, \(U \) is the only finitely injective Polish metric space (see [7]).

Let \((X, d)\) be a metric space; we say that \(f: X \to \mathbb{R} \) is a \textit{Katětov map} iff
\[
\forall x, y \in X \ |f(x) - f(y)| \leq d(x, y) \leq f(x) + f(y).
\]
These maps correspond to one-point metric extensions of \(X \). We denote by \(E(X) \) the set of all Katětov maps on \(X \) and endow it with the sup-metric, which turns it into a complete metric space.

That definition was introduced by Katětov in [4], and it turns out to be pertinent to the study of finitely injective spaces, since one can easily see by induction that a non-empty metric space \(X \) is finitely injective if, and only if,
\[
\forall x_1, \ldots, x_n \in X \ \forall f \in \mathcal{E}(\{x_1, \ldots, x_n\}) \ \exists z \in X \ \forall i = 1 \ldots n \ d(z, x_i) = f(x_i).
\]
If \(Y \subseteq X \) and \(f \in \mathcal{E}(Y) \), define \(\hat{f}: X \to \mathbb{R} \) (the Katětov extension of \(f \)) by
\[
\hat{f}(x) = \inf\{f(y) + d(x, y): y \in Y\}.
\]
Then \(\hat{f} \) is the greatest 1-Lipschitz map on \(X \) which is equal to \(f \) on \(Y \); one checks easily (see for instance [4]) that \(\hat{f} \in E(X) \) and \(f \mapsto \hat{f} \) is an isometric embedding of \(E(Y) \) into \(E(X) \).

To simplify future definitions, we will say that if \(f: X \to \mathbb{R} \) and \(S \subseteq X \) are such that
\[
\forall x \in X \ f(x) = \inf\{f(s) + d(x, s): s \in S\}, \text{ then } S \text{ is a support of } f, \text{ or that } S \text{ controls } f.
\]
Notice that if \(S \) controls \(f \in E(X) \) and \(S \subseteq T \), then \(T \) controls \(f \).

Also, \(X \) isometrically embeds in \(E(X) \) via the Kuratowski map \(x \mapsto f_x \), where \(f_x(y) = d(x, y) \). A crucial fact for our purposes is that
\[
\forall f \in E(X) \ \forall x \in X \ d(f, f_x) = f(x).
\]

Thus, if one identifies \(X \) with its image in \(E(X) \) via the Kuratowski map, \(E(X) \) is a metric space containing \(X \) and such that all one-point metric
extensions of X embed isometrically in $E(X)$.

We now go on to sketching Katětov’s construction of U; we refer the reader to [2], [3], [7] and [9] for a more detailed presentation and proofs of the results we will use below.

Most important for the construction is the following

Theorem 2.1. (Urysohn) If X is a finitely injective metric space, then the completion of X is also finitely injective.

Since U is, up to isometry, the unique finitely injective Polish metric space, this proves that the completion of any separable finitely injective metric space is isometric to U.

The basic idea of Katětov’s construction works like this: if one lets $X_0 = X$, $X_{i+1} = E(X_i)$ then, identifying each X_i to a subset of X_{i+1} via the Kuratowski map, let Y be the inductive limit of the sequence X_i.

The definition of Y makes it clear that Y is finitely injective, since any $\{x_1, \ldots, x_n\} \subseteq Y$ must be contained in some X_m, so that for any $f \in E(\{x_1, \ldots, x_n\})$ there exists $z \in X_m$ such that $d(z, x_i) = f(x_i)$ for all i.

Thus, if Y were separable, its completion would be isometric to U, and one would have obtained an isometric embedding of X into U.

The problem is that $E(X)$ is in general not separable: at each step, we have added too many functions.

Define then $E(X, \omega) = \{f \in E(X) : f \text{ is controlled by some finite } S \subseteq X\}$.

$E(X, \omega)$ is easily seen to be separable if X is, and the Kuratowski map actually maps X into $E(X, \omega)$, since each f_x is controlled by $\{x\}$. Notice also that, if $\{x_1, \ldots, x_n\} \subseteq X$ and $f \in E(\{x_1, \ldots, x_n\})$, then its Katětov extension \hat{f} is in $E(X, \omega)$, and $d(\hat{f}, f_x) = f(x_i)$ for all i.

Thus, if one defines this time $X_0 = X$, $X_{i+1} = E(X_i, \omega)$, then the inductive limit Y of $\cup X_i$ is separable and finitely injective, hence its completion Z is isometric to U, and $X \subseteq Z$.

The most interesting property of this construction is that it enables one to keep track of the isometries of X: indeed, any $\varphi \in Iso(X)$ is the restriction of a unique isometry $\hat{\varphi}$ of $E(X, \omega)$, and the mapping $\varphi \mapsto \hat{\varphi}$ from $Iso(X)$ into $Iso(E(X, \omega))$ is an isomorphic embedding of topological groups.

That way, we obtain for all i continuous embeddings $\Psi^i : Iso(X) \to Iso(X_i)$, such that $\Psi^{i+1}(\varphi)|_{X_i} = \Psi^i(\varphi)$ for all i and all $\varphi \in Iso(X)$.

This in turns defines a continuous embedding from $Iso(X)$ into $Iso(Y)$, and since extension of isometries defines a continuous embedding from the
group of isometry of any metric space into that of its completion (see [8]),
we actually have a continous embedding of $Iso(X)$ into the isometry group
of Z, that is to say $Iso(\mathbb{U})$ (and the image of any $\varphi \in Iso(X)$ is actually an
extension of φ to Z).

3 Proof of the main theorem

To prove theorem 1.1, we will use ideas very similar to those used in [2];
all the notations are the same as in section 2.
We will need an additional definition, which was introduced in [2]:
If X is a metric space and $i \geq 1$, let
$$E(X,i) = \{ f \in E(X) : f \text{ has a support of cardinality } \leq i \}$$

We endow $E(X,i)$ with the sup-metric.
Gao and Kechris proved the following result, of which we will give a new,
slightly simpler proof:

Theorem 3.1. (Gao-Kechris)
If X is a Polish metric space and $i \geq 1$ then $E(X,i)$ is a Polish metric
space.

Proof:
Notice first that the separability of $E(X,i)$ is easy to prove; we will prove
its completeness by induction on i.
The proof for $i = 1$ is the same as in [2]; we include it for completeness.
First, let (f_n) be a Cauchy sequence in $E(X,1)$.
It has to converge uniformly to some Katětov map f, and it is enough to
prove that $f \in E(X,1)$.
By definition of $E(X,1)$, there exists a sequence (y_n) such that
$$\forall x \in X \ f_n(x) = f_n(y_n) + d(y_n,x) \quad (*)$$
But then let $\varepsilon > 0$, and let M be big enough that $m,n \geq M \Rightarrow d(f_n,f_m) \leq \varepsilon$.
Then, for $m,n \geq M$, one has
$$2d(y_n,y_m) = (f_n(y_m) - f_m(y_m)) + (f_m(y_n) - f_n(y_n)) \leq 2\varepsilon.$$
This proves that \((y_n)\) is Cauchy, hence has a limit \(y\).

One easily checks that \(f(y) = \lim f_n(y_n)\), so that (*) gives us, letting \(n \to \infty\),

\[\forall x \in X \quad f(x) = f(y) + d(y, x)\]

That does the trick for \(i = 1\); suppose now we have proved the result for
\(1 \ldots i - 1\), and let \((f_n)\) be a Cauchy sequence in \(E(X, i)\).

By definition, there are \(y^n_1, \ldots, y^n_i\) such that:

\[\forall x \in X \quad f_n(x) = \min_{1 \leq j \leq i} \{f_n(y^n_j) + d(y^n_j, x)\} \quad (**).

Once again, \((f_n)\) converges uniformly to some Katětov map \(f\), and we want
to prove that \(f \in E(X, i)\).

Thanks to the induction hypothesis, we can assume that there is \(\delta > 0\) such
that for all \(n\) and all \(k \neq j \leq i\) one has \(d(y^n_j, y^n_k) \geq 2\delta\) (if not, a subsequence
of \((f_n)\) can be approximated by a Cauchy sequence in \(E(X, i - 1)\), and the
induction hypothesis applies).

Let \(d_n = \min \{f_n(x) : x \in X\}\).

Then \((d_n)\) is Cauchy, so it has a limit \(d \geq 0\); up to some extraction, and
if necessary changing the enumeration of the sequence, we can assume that
there is \(p \geq 1\) and \(\delta' > 0\) such that:

- \(\forall j \leq p \quad f_n(y^n_j) \to d\)
- \(\forall j > p \quad \forall n \quad f_n(y^n_j) > d + \delta'\).

Let \(\varepsilon > 0\), \(\alpha = \min(\delta, \delta', \varepsilon)\) and choose \(M\) big enough that \(n, m \geq M \Rightarrow d(f_n, f_m) < \frac{\alpha}{4}\) and \(|f_n(y^n_j) - d| < \frac{\alpha}{4}\) for all \(j \leq p\).

Then, for \(n, m \geq M\) and \(j \leq p\) one has:

\(f_n(y^n_j) < d + \frac{\alpha}{2}\), so there exists \(k \leq p\) such that \(f_n(y^n_j) = f_n(y^n_k) + d(y^n_k, y^n_j)\).

Such a \(y^n_k\) has to be at a distance strictly smaller than \(\delta\) from \(y^n_j\): there is at
most one \(y^n_k\) that can work, and there is necessarily one. Thus, one obtains,
as in the case \(i = 1\), that \(d(y^n_k, y^n_j) \leq \varepsilon\).

This means that one can assume, choosing an appropriate enumeration, that
for \(k \leq p\) each sequence \((y^n_k)_n\) is Cauchy, hence has a limit \(y_k\).

Define then \(\tilde{f}_n: x \mapsto \min_{1 \leq k \leq p} \{f_n(y^n_k) + d(x, y^n_k)\}\).

\(\tilde{f}_n \in E(X, p)\), and one checks easily, since \(y^n_k \to y_k\) for all \(k \leq p\), that \((\tilde{f}_n)\)
converges uniformly to \(\tilde{f}\), where \(\tilde{f}(x) = \min_{1 \leq k \leq p} \{f_k + d(x, y_k)\}\).

If \(p = i\) then we are finished; otherwise, notice that, using again the induc-
tion hypothesis, we may assume that there is $\eta > 0$ such that
\[\forall n \forall j > p \quad f_n(y^n_j) < \tilde{f}_n(y^n_j) - \eta \quad (***) . \]
Now define \tilde{g}_n by $\tilde{g}_n(x) = \min\{f_n(y^n_j) + d(x, y^n_j)\}$.

Choose M such that $n, m \geq M \Rightarrow d(f_n, f_m) < \frac{\eta}{4}$ and $d(\tilde{f}_n, \tilde{f}_m) < \frac{\eta}{4}$.

Then (***) shows that for all $n, m \geq M$ and all $j > p$,
\[f_m(y^n_j) \leq f_n(y^n_j) + \frac{\eta}{4} \leq \tilde{f}_n(y^n_j) - \frac{3\eta}{4} \leq \tilde{f}_m(y^n_j) - \frac{\eta}{2} , \]
so that $f_m(y^n_j) = f_m(y^n_j) + d(y^n_j, y^n_k)$ for some $k > p$.

Consequently, for $m, n \geq M$ and $j > p$, $f_m(y^n_j) = \tilde{g}_m(y^n_j); \text{ by definition, } f_m(y^n_j) = \tilde{g}_m(y^n_j)$.

This proves that for all $n, m \geq M$ one has $d(\tilde{g}_n, \tilde{g}_m) \leq d(f_n, f_m)$, so that (\tilde{g}_n) is Cauchy in $E(X, i - p)$, hence has a limit $\tilde{g} \in E(X, i - p)$ by the induction hypothesis.

But then, (**) shows that, for all $x \in X$, $f(x) = \min(\tilde{f}(x), \tilde{g}(x))$, and this concludes the proof.

If Y is a nonempty, closed and bounded subset of a metric space X, define
\[E(X, Y) = \{ f \in E(X) \colon \exists d \in \mathbb{R}^+ \forall x \in X \ f(x) = d + d(x, Y) \} \]
$E(X, Y)$ is closed in $E(X)$, and is isometric to \mathbb{R}^+.

Now we can go on to the

Proof of theorem 1.1.

Essential to our proof is the fact that for every Polish group G there exists a Polish space (X, d) such that G is isomorphic to the group of isometries of X (This result was proved by Gao and Kechris, see [2]).

So, let G be a Polish group, and X be a metric space such that G is isomorphic to $Iso(X)$.

One can assume that X contains more than two points, and (X, d) is bounded, of diameter $d_0 \leq 1. (\text{If not, define } d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}). \text{ Then } (X, d') \text{ is now a bounded Polish metric space with the same topology as } X, \text{ and the isometries of } (X, d') \text{ are exactly the isometries of } (X, d) \text{.} \)
Let $X_0 = X$, and define inductively bounded Polish metric spaces X_i, of diameter d_i, by:

$$X_{i+1} = \left\{ f \in E(X_i, i) \cup \bigcup_{j < i} E(X_i, X_j) : \forall x \in X_i \ f(x) \leq 2d_i \right\}$$

(We endow X_{i+1} with the sup-metric; since X_i canonically embeds isometrically in X_{i+1} via the Kuratowski map, we assume that $X_i \subseteq X_{i+1}$).

Remark that $d_i \to +\infty$ with i, and that each X_i is a Polish metric space.

Let then Y be the completion of $\bigcup_{i \geq 0} X_i$.

The definition of $\bigcup X_i$ makes it easy to see that it is finitely injective, so that Y is isometric to U.

Also, any isometry $g \in G$ extends to an isometry of X_i, and for any i and $g \in G$ there is a unique isometry g^i of X_i such that $g^i(X_j) = X_j$ for all $j \leq i$ and $g^i|_{X_0} = g$ (same proof as in [4]).

Remark also that the mappings $g \mapsto g^i$, from G to $Iso(X_i)$, are continuous (see [8]).

All this enables us to assign to each g an isometry g^* of Y, given by $g^*|_{X_i} = g^i$, and this defines a continuous embedding of G into $Iso(Y)$ (see again [8] for details).

It is important to remark here that, if $f \in X_{i+1}$ is defined by $f(x) = d + d(x, X_j)$ for some $d \geq 0$ and some $j < i$, then $g^*(f) = f$ for all $g \in G$ (This was the aim of the definition of X_i; adding ”many” points that are fixed by the action of G).

Notice that an isometry φ of Y is equal to g^* for some $g \in G$ if, and only if, $\varphi(X_n) = X_n$ for all n.

The idea of the construction is then simply to construct a closed set F such that $\varphi(F) = F$ if, and only if, $\varphi(X_n) = X_n$ for all n. To achieve this, we will build F as a set of carefully chosen ”witnesses”.

The construction proceeds as follows:

First, let $(k_i)_{i \geq 1}$ be an enumeration of the non-negative integers where every number appears infinitely many times.

Using the definition of the sets X_i, we choose recursively for all $i \geq 1$ points $a_i \in \bigcup_{n \geq 1} X_n$ (the witnesses), non-negative reals e_i, and a nondecreasing sequence of integers (j_i) such that:
- $e_i \geq 4, \forall i \geq 1 \ e_{i+1} > 4e_i$.
- $\forall i \geq 1 \ j_i \geq k_i, \ a_i \in X_{j_i+1}$ and $\forall x \in X_{j_i}, d(a_i, x) = e_i + d(x, X_{k_i-1})$
- $\forall i \geq 1 \ \forall g \in G \ g^*(a_i) = a_i$.

(This is possible, since at step i it is enough to fix $e_i > \max(4e_{i-1}, \text{diam}(X_{k_i}))$, then find $j_i \geq \max(1 + j_{i-1}, k_i)$ such that $\text{diam}(X_{j_i}) \geq e_i$, and define $a_i \in X_{j_i+1}$ by the equation above; then, by definition of g^* and of a_i, one has $g^*(a_i) = a_i$ for all $g \in G$)

Let now $F = X_0 \cup \{a_i\}_{i \geq 1}$; since X_0 is complete, and $d(a_i, X_0) = e_i \to +\infty$, F is closed.
We claim that for all $\varphi \in \text{Iso}(Y)$, one has

$$(\varphi(F) = F) \iff (\varphi \in G^*).$$

The definition of F makes one implication obvious.
To prove the converse, we need a lemma:

Lemma 3.2. If $\varphi \in \text{Iso}(F)$, then $\varphi(X_0) = X_0$, so that $\varphi(a_i) = a_i$ for all i. Moreover, there exists $g \in G$ such that $\varphi = g^*|_F$.

Admitting this lemma for a moment, it is now easy to conclude:
Notice that lemma 3.2 implies that G is isomorphic to the isometry group of F, and that any isometry of F extends to Y.
Thus, to conclude the proof of theorem 1.1, we only need to show that the extension of a given isometry of F to Y is unique. As explained before, it is enough to show that, if $\varphi \in \text{Iso}(Y)$ is such that $\varphi(F) = F$, then $\varphi(X_n) = X_n$ for all $n \geq 0$.
So, let $\varphi \in \text{Iso}(Y)$ be such that $\varphi(F) = F$.
It is enough to prove that $\varphi(X_n) \supseteq X_n$ for all $n \in \mathbb{N}$ (since this will also be true for φ^{-1}), so assume that this is not true, i.e. there is some $n \in \mathbb{N}$ and $x \notin X_n$ such that $\varphi(x) \in X_n$.
Let $\delta = d(x, X_n) > 0$ (since X_n is complete), and pick $y \in \bigcup X_m$ such that $d(x, y) \leq \frac{\delta}{4}$.
Then $y \in X_m \setminus X_n$ for some $m > n$; now choose i such that $k_i = n + 1$ and $j_i \geq m$.
Then we know that

$$d(\varphi(y), \varphi(a_i)) = d(y, a_i) = e_i + d(y, X_n) \geq e_i + \frac{3\delta}{4},$$

and
\[d(a_i, \varphi(y)) \leq d(a_i, \varphi(x)) + d(x, y) \leq e_i + \frac{\delta}{4}, \text{ so that } d(\varphi(a_i), a_i) \geq \frac{\delta}{2}, \] and this contradicts lemma 3.2.

It only remains to give the

Proof of lemma 3.2:

Since we assumed that \(X_0 \) has more than two points and \(\text{diam}(X_0) \leq 1 \), the definition of \(F \) makes it clear that

\[\forall x \in F \ (x \in X_0) \Leftrightarrow (\exists y \in F: 0 < d(x, y) \leq 1) \]

The right part of the equivalence is invariant by isometries of \(F \), so this proves that \(\varphi(X_0) = X_0 \) for any \(\varphi \in \text{Iso}(F) \). In turn, this easily implies that \(\varphi(a_i) = a_i \) for all \(i \geq 1 \).

Thus, if one lets \(g \in G \) be such that \(g|_{X_0} = \varphi|_{X_0} \), we have shown that \(\varphi = g^*|_F \).

\[\diamond \]

References

11

Equipe d’Analyse Fonctionnelle, Université Paris 6
Boîte 186, 4 Place Jussieu, Paris Cedex 05, France.
e-mail: melleray@math.jussieu.fr