L3 Mathématiques Printemps 2009,/2010
Fonctions d’une Variable Complexe J. Melleray

Quelques exercices corrigés pour préparer le partiel du 20 avril.

Exercice 1.2.9 On va simplement corriger la deuxiéme question, la premiére en étant un cas particulier
(avec U (z,y) = ax + by + ¢)

i)

ii)

Notons D f(, . la différentielle de f (vue comme une fonction définie sur U C R? et a valeurs dans
R?) en un point (z,y) € U. L’application F = ¥ o f est constante sur U, donc sa différentielle est
nulle en tout point (z,y) € U ; d’aprés la régle de la chaine, cette différentielle vaut

DFpy)y = DV y) 0 Dfay) -

On a donc, pout tout (z,y) € U, DV, ) 0 Df(y ) = 0. Si jamais D f, ) est inversible en un point
(z,y) alors I'équation ci-dessus entraine que DV, ) = 0, ce qui contredit I’hypothése sur W. Par
conséquent, pour tout (z,y) € U, Df,) n’est pas inversible. Mais, comme f est holomorphe, sa
différentielle en un point z = (z,y) correspond a la multiplication par f’(z), et est donc inversible
ssi f'(z) # 0. Finalement, on obtient que f’(z) = 0 pour tout z € U. Puisque U est connexe, ceci
entraine que f est constante sur U.

On aurait pu faire toute cette question en utilisant des dérivées partielles, les équations de Cauchy-
Riemann et une résolution de systéme... mais un peu d’algébre linéaire n’a jamais fait de mal a
personne !

Une droite du plan est ensemble des points (z,y) tels que az + by + ¢ = 0 (pour un certain triplet
(a,b,c) € R3) tandis qu'un cercle est donné par une équation du type (x —x¢)? + (y —yo)? — R? = 0.
En appliquant le résultat de la question précédente aux fonctions U1 (z,y) = ax + by et ¥o(z,y) =
(r —20)%+ (y — y0)?, on en déduit que les seules fonctions holomorphes dont I'image est incluse dans
une droite du plan (i.e qui satisfont U1 (f(z)) = 0 pour tout z € U) sont les fonctions constantes;
de méme les seules fonctions holomorphes dont 'image est incluse dans un cercle du plan sont les
fonctions constantes.

Vous wverrez bientot en cours que les fonctions holomorphes non constantes sont des fonctions ou-
vertes, i.e l'image d’un ouvert par une fonction holomorphe non constante est toujours un ouvert.
Ce théoréeme a bien sir pour corollaire le résultat montré dans cet exercice.

Exercice 1.2.10

1.

2.

Supposons que @1 soit telle que P + i@ soit holomorphe. Les équations de Cauchy-Riemann nous
disent qu’on doit avoir a la fois

P _ 9Q oP _ 01
ox — Oy et ox — Oy
P _ _ 0Q oP _ _ 0
oy ox oy ox

Par conséquent, les deux dérivées partielles de () — Q1 doivent étre nulles, ce dont on déduit que
Q@ — Q1 est constante sur U (qui est connexe). Réciproquement, si Q1 = @ + ¢ avec ¢ € R alors
P+1iQ1 = f+ic est holomorphe. Finalement, on obtient donc que les fonctions Q) telles que P+iQ1
soit holomorphe sont les fonctions de la forme Q1 = @ + ¢, avec ¢ € R.

On va simplement corriger les questions (a) et (d), les deux autres étant similaires.

(a) Appelons @ la partie imaginaire de f; f est holomorphe si, et seulement si, les équations de
Cauchy-Riemann sont vérifiées, i.e si, et seulement si,

99 (2, y) = 92 (z,) = 22— 1



La premiére ligne nous donne Q(z,y) = 2zy + = + F(y), la deuxiéme ligne donne Q(z,y) =
2xy — y + G(x). On obtient finalement que @ doit étre de la forme Q(z,y) = 22y + x — y + ¢,
avec ¢ € R. Notons qu’on a alors

flz,y) =2 —y* —x —y+i2zxy + 2 — y) +ic = (z +iy)* — (x +iy) + i(x + iy) + ic

Autrement dit, f(z) = 2% + (i — 1)z + ic, avec ¢c € R
(d) En appliquant la méme méthode, on obtient
{%m, y) = ch(y)sin(a)

Gy (x,y) = —sh(y) cos(z)

En intégrant comme dans l'exemple précédent, on obtient P(z,y) = —ch(y) cos(z) + ¢, et fina-
lement f(x,y) = —ch(y) cos(z) + ish(y) sin(z) + c.

En utilisant les formules reliant fonctions trigonométriques et fonctions hyperboliques (ch(y) =
cos(iy) et ish(y) = sin(iy)) on obtient

f(z,y) = — cos(iy) cos(x) + sin(iy) sin(z) + ¢ = —cos(x + iy) + ¢ .

3. On note P(z,y) = ax?® + 2bxy + cy? avec a, b, c réels.

(a) Toujours grace aux équations de Cauchy-Riemann, on doit avoir, en notant @ la partie réelle

de f :
or _ 9Q
or — Oy
or _ _9Q
oy ox

Comme P est un polynéme, P est de classe C*°, et les équations ci-dessus montrent qu’il en
va, de méme pour Q!; on peut donc considérer les dérivées secondes de P, Q. Les équations de
Cauchy-Riemann entrainent que

P%isque Q 2est de classe C?, on peut lui appliquer le 1emr2ne de SQChwarz qui nous donne I’égalité
(‘?xgy = gy(’i Finalement, on voit que P doit vérifier 27]: + 887];
0, c’est-a~dire a = —c. (Bien stir, on aurait simplement pu intégrer les deux lignes données par
Cauchy-Riemann pour calculer @ & une constante prés et retrouver cette condition ; mais ci-
dessus on a montré un résultat plus général, qui s’appliquerait a toutes les fonctions qui sont
partie réelle d’une fonction holomorphe).

En appliquant les mémes méthodes que tout a I’heure pour calculer @, on obtient (quand
a=—c)

= 0, autrement dit 2a+2c¢ =

Q(z,y) = 2azy + b(y*> —2*) + K (K eR)

Finalemenent, on obtient que, pour une certaine constante K € R, on a
f(z,y) = 2bzy+a(z?—y?)+i (2azy + b(y? — xz))+iK = a(z?—y*+2ixy) —ib(2* —y*+2izy) +i K .

Autrement dit, f(z) = (a —ib)2% +iK, avec K € R.

1. On verra plus tard dans le cours qu’une fonction holomorphe est toujours de classe C*°.



Exercice 3.3.2

1.

a)

b)

Appelons f une détermination holomorphe du logarithme sur U, i.e une fonction holomorphe telle
que ef(*) = z pour tout z € U. Si I'on pose g(z) = e/ (2)/P alors on a

VzeU g(z)P =ePf@/P = /() = 5

Par conséquent, g est une détermination holomorphe de z — z'/? sur U.

On doit avoir, pour tout z € U, fP(z) = z. En dérivant cette inégalité, on obtient

VzeU pf(2)(f(z))"" =1,

On voit en particulier qu’on doit avoir f(z) # 0 pour tout z € U; si 0 € U on aurait f(0)? = 0, donc
f(0) =0 et on vient de voir que c’est impossible. Par conséquent 0 &€ U.

On a vu a la question précédente que fi et fo ne s’annulent pas. Notons D, I'ensemble (fini) des
racines n-iémes de l'unité, Rappelons que cet ensemble correspond géométriquement aux sommets
d’un polygdne régulier a p cotés, représenté ci-dessous quand p = 7.

Les racines septiémes de 1'unité.

Considérons la fonction g = f1/fo. Puisque f1(2)? = z = fa(2)P pour tout z € U, on voit que
g(2)? = 1 pour tout z € U. Par conséquent, g prend ses valeurs dans l’ensemble fini D,. Comme g
est continue et U est connexe, cela signifie que g est constante, autrement dit il existe une racine
p-ieme de 'unité X telle que f1(z) = Af2(z) pour tout z € U.

Si f est une détermination holomorphe de z — 2P sur U alors, pour tout A € D, Af est aussi
une détermination holomorphe de z — 21/, On vient de montrer la réciproque dans la question
précédente. Par conséquent, les déterminations holomorphes de z — z!/? sont les fonctions de la
forme Af, ot A est une racine p-iéme de 'unité. Il y a autant de telles fonctions que de racines
p-iémes de 'unité, c’est-a-dire p.

Sur U = C\R™ ; on sait qu’il existe une détermination holomorphe sur U du logarithme. Appelons Log
la détermination principale. Alors la question a) nous dit que g: z — elo8(2)/3 ost une détermination
holomorphe de z — z/3. On a g(1) = €' = 1; puisque e%7/3 est une racine cubique de l'unité, on
voit donc que f = e*"/3g est une détermination de z — z'/3 telle que f(1) = e*7/3,

L’unicité d’une telle fonction f est immédiate, puisque comme U est connexe deux déterminations
holomorphes de z — z'/3 sur U doivent étre proportionnelles, et deux fonctions proportionnelles qui
sont égales en un point sont égales partout.



Exercice 4.1.4 Reprenons cet exercice ; en TD on a vu, en appliquant la définition de 'intégrale curviligne,
que

f(2)e?dz :/ f(Reit)eie“.Reitdt.
0

TR
En utilisant 'inégalité triangulaire, on en avait déduit que

</
0

(On a utilisé le fait que |e*| = e®°(*) appliqué a z = iRe').
Finalement, en utilisant 'hypothése sur f, nous étions arrivés a

(2)e*dz

f(Reit)eiReit‘ Rdt = R/ |f(Rezt)| e*RSin(t)dt
0

TR

(2)e*dz

YR

< MRn+1/0 efRsin(t)dt ) (1)

Nous nous trouvames alors fort marris, nul ne sachant comment remplacer ce R**! par le R™ demandé
par ’énoncé... Nous avions vu que, par symétrie (sin(m — t) = sin(t)), on avait

T w/2
/ e—Rsin(t)dt — 2/ e_RSin(t)dt )
0 0

Je vous avais alors demandé de réfléchir & des majorations possibles de cette intégrale- et d’essayer d’utiliser
une idée proche de celle d’une de vos camarades, qui proposait d’utiliser 'inégalité sin(t) < ¢, valable pour
tout ¢ > 0, mais hélas dans le mauvais sens pour nous étre utile ici (on en déduirait une minoration de
lintégrale).

On chercherait donc une inégalité du type sin(t) > at, avec un « permettant de récupérer le résultat de

. e L 2t . .
Pénoncé; il est alors tentant de chercher a établir inégalité sin(¢f) > —, qui se trouve étre valable sur
7r

[0, 7/2] (c’est une conséquence du fait que le graphe de la fonction sin est concave sur [0, 7] ; tous ses points
se trouvent donc au-dessus de la corde joignant (0,0) et (5,1), comme essaye de le montrer le dessin a
la fin de lexercice). Armés de cette inégalité, nous obtenons (en utilisant le fait que I’exponentielle est
croissante, et que I'intégrale préserve les inégalités)

/2 ) /2 T
[ e Oas [ e = e
0 ~—Jo 2R

T

Finalement, on obtient donc / e~ st < ce qui nous permet, en réinjectant cette inégalité dans

0
E,
0

(1), d’obtenir le résultat demandé par I’énoncé, a savoir

(z)eizdz < MnR" .

TR

L’inégalité de concavité de sin est souvent utile quand on doit majorer certaines intégrales ; voici un dessin
essayant de la justifier...
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L’inégalité de concavité du sinus



Exercice 5.2.4

1. Ici, on pourrait étre tenté de reprendre la preuve vue en cours du fait que 'indice ne prend que des
valeurs entiéres ; en fait, 'intégrale de ’exercice est un indice. Voyons pourquoi : déja, notons que si
v est un circuit tracé dans U alors f o~y est un circuit tracé dans C. Une paramétrisation de f o~y
est bien str donnée par t — f((t)) pour tout ¢ € I ou I est U'intervalle de définition de 7.
L’indice a de 0 par rapport & f o~ vaut, par définition,

R oy 701 ()
“= 2w foy % 2171/f (Fon)(t)dt = 2ir o f(y(®) ¢

Maintenant, si 'on calcule 'intégrale de I’énoncé en utilisant la définition de l'intégrale curviligne,

on voit que
1@, e,
2ir /., f(2) 2m r f(v(@®)

t.

22y (t)dt .

1 "(z
On voit finalement que — / ' )dz est égal & «; c’est donc un entier relatif.
¥

2im /., f(2)
2. Fixons un circuit v dans U. Notons que, si g est une détermination holomorphe de f1/7 i.esi ¢" = f,
alors on a , ,
LI f(2)

9(z)  f(z2)

En particulier, si pour tout n > 0 il existe une détermination holomorphe g¢,, de f/™, alors on a

1 !
16, [,
2im 5 f(2) 2ir J., gn(2)
gn(2) .
Puisque, d’aprés le résultat de la question précédente appliquée & gy, %in n e )dz est un entier
1T gn
/
relatif, on en déduit que % / f'z dz est divisible par n; ceci étant vrai pour tout n > 0, on en
i

/
déduit finalement que / 'z
5 f(

dz = 0. Puisque le circuit 7 était quelconque, ceci prouve que f'/f a

une primitive holomorphe sur U, autrement dit il existe une détermination holomorphe de f sur U.
Le fait que l'intégrale de la question 1 soit égale & lindice de 0 relativement a f oy sera utile quand
nous compterons les zéros de fonctions holomorphes.



