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Avertissement. Ces notes comportent certainement leur lot d’erreurs plus ou moins graves. Le cours ne sui-
vra pas exactement les notes, qui sont suceptibles d’évoluer au cours du semestre. Remarques, commentaires,
questions, corrections, etc. sont les bienvenus.

Les mots qui apparaissent dans un cadre rouge sur le fichier pdf sont cliquables (par exemple, dans la table
des matiéres, pour passer a la section correspondante ; ou dans 'index, pour retrouver les endroits ot apparait
un terme particulier).
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Chapitre 1

Intégrale des fonctions continues par
morceaux

1.1 Rappels
Définition 1.1. Soit I un intervalle de R. Une fonction f: I — C est continue en x € I si
Ve>036>0Vyellz—y <d=|fly)—fz)<e.

On dit que f est continue sur I si f est continue en x pour tout = € I.

Remarque 1.2. Cette définition s’applique bien str également pour les fonctions & valeurs réelles, qui sont un
cas particulier de fonctions a valeurs dans C. Dans ces notes, a chaque fois qu’il sera écrit « Soit f: I — C », il
faut penser qu’on parle d’une fonction a valeurs réelles ou complexes.

Attention, la notion de continuité est locale : elle dépend du point z ot I'on se place. En particulier, dans
la définition ci-dessus, § dépend a la fois de z et de €. Quand on peut choisir § ne dépendant que de €, on parle
d’uniforme continuité.

Définition 1.3. Soit I un intervalle de R, et f: I — C. On dit que f est uniformément continue sur I si
Ve>035>0Ve,yel|z—yl <é=|f(y)— f(z) <e.

En général, une fonction continue sur un intervalle I n’est pas uniformément continue, comme le montre
I’exercice suivant.

Exercice 1.4. Soit f: ]0,4+o00[— R définie par f(z) = % Montrer que f est continue mais pas uniformément
continue. Montrer qu’il en va de méme de la fonction z — 22, définie sur R tout entierﬂ

Néanmoins, il existe un cas trés important ou la continuité est équivalente a 'uniforme continuité.

Théoréme 1.5. Soit I = [a,b] un segment, i.e. un intervalle fermé borné de R, et f: I — C une fonction
continue sur I. Alors f est uniformément continue sur I.

Démonstration. Supposons que f ne soit pas uniformément continue sur [a, b] : alors il existe € > 0 tel que, pour
tout entier n, on peut trouver , et y, dans I avec |z, — y,| < L mais |f(z,) — f(yn)| > €. Grace au théoréme
de Bolzano-Weierstrass, on peut trouver une application strictement croissante ¢: N — N telle que les suites
(Ty(n)) et (Yyu(n)) soient toutes les deux convergentes. Comme p(n) > n, on a [Ty (n) — Yp(n)| < ﬁ — 0 quand
n tend vers 400, donc (Ty(y)) €t (Yp(n)) convergent vers le méme point x. Puisque |f(zy(m)) — f(Ypm))| > €, il
est impossible que les deux suites f(zy,(,)) et f(Yy(n)) convergent toutes deux vers f(z). Par conséquent f n’est
pas continue en x, donc f n’est pas continue sur I.

On vient de montrer que si f n’est pas uniformément continue sur I alors f n’est pas continue sur I, ce qui
est la méme chose que montrer que si f est continue sur I alors f est uniformément continue sur 1. O

i. Question subsidiaire : quels polyndémes sont uniformément continus sur R ?



On a vu que l'idée de la continuité uniforme était que, pour un ¢ fixé, le § qui témoigne de la continuité
devient indépendant du point ou l'on se place. La méme idée se retrouve quand on considére des suites de
fonctions.

Définition 1.6. Soit I un intervalle de R, (f,,) une suite de fonctions définies sur I a valeurs dans C et f: I — C.
On dit que (f,) converge simplement vers f sur I si pour tout = € I la suite (f,(z)) converge vers f(z). En
utilisant des quantificateurs :

Ve>0Ve €I AN Vn > N |fo(x) — f(z)| <e.

Comme dans la définition de la continuité, N dépend a priori de ¢ et de x; quand il est possible de choisir
un N qui ne dépend que de ¢, on dit qu’il y a convergence uniforme.

Définition 1.7. Soit I un intervalle de R, (f,,) une suite de fonctions définies sur I a valeurs dans C et f: I — C.
On dit que (f,) converge uniformément vers f sur I si

Ve >03NVz e IVn> N |fu(z) — f(z)| <e.

De maniére équivalente, (f,) converge uniformément vers f sur I si la suite sup; |f, — f| converge vers 0
quand n tend vers 4oc0.

La convergence uniforme est bien plus forte que la convergence simple; si les f, sont des fonctions sympa-
thiques (par exemple, continues) convergeant uniformément vers f, on peut espérer que f ait également des
propriétés sympathiques. Le théoréme suivant en est un exemple important.

Théoréme 1.8. Soit I un intervalle de R, et (f,) une suite de fonctions continues sur I a valeurs dans C
convergeant uniformément vers f: I — C. Alors [ est continue.

Démonstration. Fixons z € I et € > 0. Il existe IV tel que
VyelvVn=N |fuly) = fly)l <e.

Fixons un tel N ; comme fx est continue en z, il existe d tel que pour tout y € I satisfaisant |z — y| < § on ait

[fn(y) — ()] <e.

Par conséquent, pour tout y € I satisfaisant |[x — y| < 0 on a

[f(@) = f)l = [f(@) = fn@@)+ In(@) = fn(y) + In(y) — f)]
< |f(@) = fv@)| + [fn(@) = fn)] -+ [fn(y) = F)l
< 3e.
Comme € > 0 et x étaient quelconques, cela suffit & prouver que f est continue sur I. [

Remarque 1.9. Dans la preuve, on a eu besoin de ’inégalité triangulaire, qui affirme que, étant donnés deux
complexes a et b, on a |a + b| < |a| + |b]. Cette inégalité est fondamentale en analyse; elle tire son nom du fait
qu’elle exprime analytiquement le fait que, dans un triangle, la longueur d’un cété est toujours plus courte que
la somme des longueurs des deux autres cotés - conséquence du fait que le plus court chemin entre deux points
est une ligne droite.

Exercice 1.10. Soit I un segment, de R, (f,,) une suite de fonctions a valeurs complexes convergeant unifor-
mément vers f sur I, et (g,) une suite de fonctions a valeurs complexes convergeant uniformément vers g sur
I. Montrer que (f,gn) converge uniformément vers fg sur I.

1.2 Intégrale des fonctions en escalier

Définition 1.11. Soient a < b deux réels. Une subdivision de [a,b] est une suite finie (ag,a1,...,a,) telle que
ap = a, a, = b et a; < a;41 pour tout ¢ € {0,...,n — 1}. On définit le pas d’une subdivision (ag, ay,...,an)
comme étant égal a la quantité max{a;41 —a;: i € {0,...,n —1}}.

Intuitivement, considérer une subdivision (ag, ..., a,) revient & considérer un découpage de [a, b] en n inter-
valles [ag,a1],..., [an—1,b]; dire que le pas de la subdivision est petit signifie que tous les intervalles créés lors
du découpage sont petits.



Définition 1.12. Soient a < b deux réels, et (ag,...,a,), (bo,...,bn,) deux subdivisions de [a,b]. On dit que

(bo, . .., b)) raffine (ao, . .., an) si chaque intervalle [b;, b; 1] est contenu dans un invervalle de la forme [ax, ax41].
Cela signifie que la subdivision (bg,...,b,) a été obtenue en découpant les intervalles de la subdivision
(G’Oa R an)'
Exercice 1.13. Soient a < b deux réels, et (ag, ..., an) et (bo, ..., by) deux subdivisions de [a, b]. Alors il existe
une subdivision (co, ..., ¢p) qui raffine a la fois (ao,...,an) et (bo,...,bm).
(Indication : ¢o,...,cp, peuvent par exemple étre obtenus en écrivant dans l'ordre croissant I’ensemble

{ao,...7an;b0,...7bm})

Définition 1.14. Soient a < b deux réels; f: [a,b] — C est une fonction en escalier s'il existe une subdivision
(ag, ..., ay,) de [a,b] telle que f soit constante sur chaque intervalle Ja;, a;11[. On dit que (ag, ..., a,) témoigne
du fait que f est en escalier, ou encore est une subdivision adaptée a f.

Proposition 1.15. 1. Une fonction en escalier ne prend qu’un nombre fini de valeurs.
2. Une combinaison linéaire de fonctions en escalier sur [a,b] est une fonction en escalier sur [a,b].

3. Un produit de fonctions en escalier sur [a,b] est une fonction en escalier sur [a,b].

Démonstration. La premiére propriété découle immédiatement de la définition. Les preuves des deuxiémes et
troisiéme propriétés sont trés similaires, on va simplement montrer la troisiéme. Soient donc f, g deux fonctions
en escalier, (ag, ..., a,) une subdivision qui témoigne du fait que f est en escalier et (bo, ..., by, ) une subdivision
qui témoigne du fait que g est en escalier. Par I'exercice précédent, on peut trouver une subdivision (co, ..., ¢p)
qui raffine ces deux subdivisions. Etant donné i entre 0 et p — 1, il existe j, k tel que [¢;, ¢;+1] soit contenu dans
[a;,aj+1] et dans [by, bi11]. En particulier, les deux fonctions f et g sont constantes sur |¢;, ¢;41[, donc fg y est
constante aussi. Ainsi, la subdivision (co, ..., ¢,) témoigne du fait que fg est une fonction en escalier. O

Définition 1.16. Soient a < b deux réels, f: [a,b] — C une fonction en escalier, et ¢ = (ag,...,a,) une
subdivision adaptée & f. On pose

n—1
1.0 = Y (ouss = an) (4221)

k=0

‘l’“z& par n’importe quel point de

Remarque 1.17. Dans la définition de I(a, o), on aurait pu remplacer
Jak, ag4+1[ sans changer la valeur de I(a, o).

Lemme 1.18. Soient a < b deux réels, f: (a,b] — C une fonction en escalier, et o, 7 deuzx subdivisions adaptées

a f. Alors I(f,o) =I(f, 7).

Démonstration. Commengons par le cas ou 7 = (bo, ..., by) raffine o = (ag,...,ay,). Alors il existe jo,...,jn
tels que pour tout k € {0,...,n} on ait b;, = aj (en particulier jo =0, j, = m). Alors on a
m—1 b + b
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I(f,7) = Z(bj+1—bj)f <]2]>
7=0
n—1tg41—1
b + 041
= > (b1 —b)f (JQJ
k=0 j=ig
1
_ SN (ak + ak+1>
- e
k=0 j=ig
n—1 ip41—1

ak+ak+1> Z b]-&-l—b‘

J=ik

ol
Il
>—IO

Il
3
~
7N /_\
$
_|_
S
Ea
Jr
=
N——
Q
Ea
+
=
I
1S
Ea
~—



On a donc démontré le résultat désiré dans le cas o 7 raffine . Si maintenant 7 et ¢ sont deux subdivisions
quelconques adaptées a f, il existe une subdivision v qui raffine a la fois 7 et . Cette subdivison est encore
adaptée a f, donc par le cas précédent on a I(f,o) = I(f,y) et I(f,v) = I(f,7). On en déduit bien que
I(f,o) =I(f,7).

O

Ce lemme nous permet finalement de définir 'intégrale d’une fonction en escalier.

Définition 1.19. Soient a < b deux réels, f: [a,b] — C une fonction en escalier, et o une subdivision adaptée
a f. On pose

b
| t@de=1(s.0)

Le lemme précédent nous dit que cette définition est légitime : quelle que soit la subdivision o adaptée & f
que l'on choisisse, I(f,0) a toujours la méme valeur.

Quelle est I'intuition derriére cette définition ? Pour une fonction f a valeurs positives, I'intégrale est censée
représenter « l'aire sous la courbe de f ». Dans le cas ot f est en escalier, le domaine sous la courbe de f est
une union finie de rectangles, et la formule que ’on a donnée pour l'intégrale de f correspond & la somme des
aires de ces rectangles.

Evidemment, on ne veut pas intégrer que des fonctions en escalier; I'idée de la construction de 'intégrale
présentée dans ces notes est que l'intégrale ici définie se comporte suffisamment bien pour que 'on puisse
I’étendre aux fonctions qui sont limite uniforme d’une suite de fonctions en escalier. Ce sont ces fonctions qui
joueront un roéle clé - en particulier, on montrera que toute fonction continue a cette propriété. Avant cela,
faisons une liste de propriétés remarquables de 'intégrale des fonctions en escalier.

Proposition 1.20. 1. Etant donnés deux réels a < b, on a fabl =b—a.

2. Etant donnés trois réels a < b < ¢ et f une fonction en escalier sur [a,c], on a (relation de Chasles)

/abf(x)dx—l—/bcf(:n)dx:/:f(x)dx.

3. Etant donnés deuz réels a < b et une fonction [ en escalier sur [a,b] et a valeurs positives, fff >0
(positivité de l’intégrale) )=.

4. Etant donnés deux réels a < b, deuz fonctions f,g en escalier sur [a,b] et deux constantes «,f3, on a
(linéarité de l’intégrale) :

/ab(af(a:) + Bg(x)) dz = a/abf(a;) dx+ﬁ/abg(x) dr |

5. Etant donnés deux réels a < b, et f une fonction en escalier sur [a,b], on a (inégalité triangulaire)

/abf(x) dx

6. Etant donnés deuz réels a < b, et [ une fonction en escalier sur [a,b], on a

S/ablf(x)ldx-

b

/ab flx)dx = /ab Ré(f)(x) da:-H'/ Im(f)(z) dz .

a

Toutes ces propriétés découlent immédiatement de la définition de l'intégrale des fonctions en escalier ; leur
vérification est laissée en exercice (important pour s’assurer que les définitions ont été bien comprises...). On
utilisera dans les suites ces propriétés en les combinant entre elles, par exemple sous la forme suivante : si
f et g sont deux fonctions en escalier sur [a,b] & valeurs réelles, et f(xz) < g(z) pour tout = € [a,b], alors

fab f(z)dx < f; g(x) dz (cette inégalité découle des propriétés de linéarité et de positivité).

4



1.3 Intégrale des fonctions réglées

Définition 1.21. Soient a < b deux réels, et f: [a,b] — C. On dit que f est réglée s’il existe une suite de
fonctions (f,,) en escalier sur [a,b] et convergeant uniformément vers f.

De maniére équivalente, f est réglée sur [a,b] si pour tout € > 0 il existe une fonction en escalier g telle que
pour tout z de [a,b] on ait |f(z) — g(x)|] < e. Notons qu’une fonction réglée f est nécessairement bornée : en
effet, il existe une fonction en escalier g telle que |f(x) — g(x)| < 1 pour tout = de [a,b] (caractérisation qu’on
vient d’énoncer appliquée avec ¢ = 1). Comme g ne prend qu’un nombre fini de valeurs, il existe M tel que
lg(x)] < M pour tout z de [a,b], ce dont on déduit que

Vo € [a,0] [f(z)| < |f(z) — g(x)| + [g(x)| <1+ M .
Un dernier effort avant de pouvoir définir 'intégrale des fonctions réglées.

Lemme 1.22. Soient a < b deux réels.

1. Soit (fy) une suite de fonctions en escalier sur [a,b] convergeant uniformément vers une fonction f. Alors
la suite (ff fn(x)dz) est une suite de Cauchy (donc convergente).

2. Si(fn) et (gn) sont deux suites de fonctions en escalier sur [a,b] convergeant uniformément vers la méme
fonction f, alors

b b
lim / fo(x)de = lim gn(z) ,dx .

n—-+oo n—+oo J,

Démonstration. Commengons par prouver . Fixons £ > 0. Puisque (f,) converge uniformément vers f, il
existe NV tel que
Vm,n > N Vz € [a,] |fu(z) — fm(2)] < €.

On en déduit, par linéarité et positivité de I'intégrale des fonctions en escalier, que :

b b
vm,nzN/ |fn(:c)—fm(a:)|da:§/ cdv=c(b—a) .

En appliquant I'inégalité triangulaire, on a finalement

b b
/ (@) = () da| < / Fal@) = (@) d < (b — ) .

Ainsi, pour tout € > 0 il existe N tel que

Ym,n > N <eglb—a).

/ab fn(z)dx — /ab fm(z) dx

Ceci achéve la démonstration de (1f) ; pour prouver , nous devons simplement montrer que f; fulx)dx —

ff gn(x) dz converge vers 0. Fixons a nouveau € > 0; puisque (f,) et (g,) convergent uniformément vers la
méme fonction, (f, — gn) converge uniformément vers 0, par conséquent il existe N tel que |fn(x) — gn(z)| < e
pour tout x € [a,b] et tout n > N. On a alors, pour tout n > N :

/ab fn(z)da — /abgn(x) dx

b
/ (ful@) — gn(2)) de

IA

b
/ @) — gu(2)] de
e(b—a)

<

Ceci prouve que f: fn(x)de — f; gn(x) dz converge vers 0.



Définition 1.23. Soient a < b deux réels, f une fonction réglée sur [a,b] et (f,) une suite de fonctions en
escalier sur [a,b] qui converge uniformément vers f. Alors on pose

/:f(x)d;v = lim /abfn(m)dx .

n—-+oo

La limite apparaissant dans la définition ne dépend pas du choix de la suite (f,) de fonctions en escalier
convergeant uniformément vers f, donc notre définition a bien un sens. Comme pour les fonctions en escalier, on
pourrait énumérer les propriétés fondamentales de 'intégrale des fonctions réglées, ce qu’on fera dans la section
suivante. Pour I'instant, introduisons la classe de fonctions que nous voulons vraiment pouvoir intégrer.

Exercice 1.24. Soient a < b deux réels.Montrer qu'une combinaison linéaire et un produit de fonctions réglées
sur [a,b] sont encore des fonctions réglées. Montrer qu’'une limite uniforme de fonctions réglées sur [a,b] est
encore une fonction réglée sur [a, b].

Définition 1.25. Soient a < b deux réels. On dit qu’une fonction f: [a,b] — C est continue par morceaur sur
[a,b] s’il existe une subdivision (ag,...,a,) de [a,b] telle que la restriction de f a chaque intervalle |a;, a;41]
soit continue et admette une limite a droite en a; et une limite & gauche en a;41 (autrement dit, il existe une
fonction continue sur [a;, a;41] qui coincide avec f sur Ja;, a;y1]).

Comme premiers exemples, notons qu’une fonction continue sur [a,b| est bien str continue par morceaux
b b )
et qu'une fonction en escalier est également continue par morceaux.

Définition 1.26. Soient a < b deux réels. Une subdivision pointée o = (ag, ..., an;&o,---,&n—1) de [a,b] est la
donnée :

— d’une subdivision (ao,...,a,) de [a,b];

— de points &, ...,&,—1 de [a,b] tels que pour tout i € {1,...,n — 1} on ait & € [a;, a;t+1]-

Théoréme 1.27. Soient a < b deux réels, f: [a,b] — C une fonction continue et (o,) une suite de subdivisions
pointées (af, ..., ap s &, ... ,fﬁpfl) dont le pas tend vers 0 quand p tend vers +oo. Soit f,, la fonction en escalier
sur [a,b] égale a f(EF) sur [af,af ,[. Alors la suite (f,) converge uniformément vers f.

Démonstration. Fixons € > 0. Comme f est continue sur [a, b], elle est uniformément continue sur [a,b]. Ainsi,
il existe ¢ tel que

Ve,yel|lz—y|<d=|f(z)— fly) <e.

Pour p suffisamment grand, le pas de o, est inférieur a 6. Alors, pour tout ¢ € {0,...,n, — 1} et tout = dans
lai,a;41[ on a |f(z) — fp(x)| = |f(x) — f(&)] < e puisque |z — &'| < 4. On en déduit que, pour p suffisamment
grand :

Vo€ I |f(z) - fola) <<

Ceci prouve que (f,) converge uniformément vers f. O

On en déduit immédiatement le résultat suivant.
Théoréme 1.28. Soient a < b deux réels. Toute fonction continue par morceauzx sur [a,b] est réglée.

En effet, le résultat précédent entraine que toute fonction continue sur [a, b] est réglée; le cas des fonctions
continues par morceaux est laissé en exercice. Dans la suite de ce cours, nous nous concentrerons sur l'intégrale
des fonctions continues par morceaux. L’intégrale d’une fonction continue par morceaux peut se calculer en
découpant son intervalle de définition en intervalles témoignant de la continuité par morceaux, comme le précise
I’énoncé ci-dessous dont la démonstration est laissée en exercice.

Proposition 1.29. Soit f une fonction continue par morcequz sur [a,b], et ag < ... < a, des éléments de [a,b]
tels que ag = a,a, = b et f coincide sur chaque intervalle |a;, a;+1] avec une fonction f; qui est continue sur
[ai,a;+1]. Alors on a

/ ) da = Z:é / fil@) da .



Définition 1.30. Soient a < b deux réels, f: [a,b] — C continue par morceaux et o = (ag,...,an;&0,--,&n—1)
une subdivision pointée de [a, b]. On appelle somme de Riemann associée a f et o le nombre

n—1

S(f,o) = Z(akJrl —ar) f(&k) -

k=0

Théoréme 1.31. Soient a < b deux réels, f une fonction continue par morceaux sur [a,b] et (op) une suite de

subdivisions pointées de [a,b] dont le pas tend vers 0 quand p tend vers +oo. Alors S(f,o,) tend vers f: f(z)dx
quand p tend vers +oo.

Démonstration. Dans le cas ol f est continue, ce résultat est une conséquence immeédiate du théoréme [1.27]
dont on reprend ici les notations : en effet, la suite (f,) converge uniformément vers f, et fab fp(z)dz = S(f,0p).
Par définition de l'intégrale d’une fonction réglée, S(f,o,) tend donc vers f: f(z)dx.

Le cas des fonctions continues par morceaux est laissé en exercice (diviser [a,b] en intervalles témoignant
du fait que f est continue par morceaux, puis appliquer le résultat obtenu pour les fonctions continues et la

proposition [1.29)). O

Un cas particulier trés important en pratique est celui ou lon divise Uintervalle [a,b] en n intervalles de
méme longueur b*Ta. On obtient alors, par exemple, les formules suivantes :
— Si f est une fonction continue sur [a, b], alors

b _ n—1 _
[ (5 2 (o00557).

k=0

— Si f est une fonction continue sur [a, b], alors

b _ n _
[t (52) £ o 57)

En effet, la premiére somme correspond a une somme de Riemann pour une subdivision pointée ot I’'on découpe
[a,b] en n intervalles de méme longueur, et ou le point choisi dans chacun des intervalles est son extrémité de
gauche ; la deuxiéme formule correspond au méme découpage de 'intervalle, en choisissant dans chaque intervalle
son extrémité de droite.

Cette constatation nous permettrait de calculer les intégrales de certaines fonctions continues trés simples :
par exemple,

n—4+oco n n n—-+4oo 77,2 2 2

1 n—1
/xdxz lim EZE: lim im:1
0

Bien sir, on est habitué a calculer ce type d’intégrales en utilisant des primitives, ce qu’on fera dans la section
suivante, et il est donc assez rare qu’on utilise une somme de Riemann pour calculer une intégrale ; par contre,
calculer une intégrale peut permettre de calculer des limites de suites, si les suites en question sont des sommes
de Riemann (ou sont proches d’étre des sommes de Riemann; cf. feuille d’exercices).

Exercice 1.32. En utilisant une somme de Riemann, calculer [ e dz, [ cos(z)dx et [ sin(z) dz.

1.4 Propriétés fondamentales de 'intégrale

Notation. Soient a > b deux réels, et f: [b,a] — C une fonction continue par morceaux. On pose f: f(z)dx =
— [ f(z) dz. On pose aussi [ f(x)dz = 0.

Proposition 1.33. — Soient a, b, c trois réels et f une fonction continue par morceaux sur un intervalle qui
contient a,b et c. Alors on a (Relation de Chasles)

/abf(x)dx—k/bcf(x)dx:/acf(x)dm.



— FEtant donnés deux réels a < b et une fonction f continue par morceaux sur [a,b] et & valeurs positives,
f; f > 0 (positivité de I’intégrale).

— FEtant donnés deux réels a < b, deux fonctions f,g continue par morceauzrs sur |a,b] et deux constantes
a, 3, on a (linéarité de l’intégrale) :

/ab(af()+ﬂg x—a/f dx—i—ﬂ/

— Ftant donnés deux réels a < b, et f une fonction continue par morceauz sur [a,b], on a (inégalité

triangulaire)
b
< [ ls@las.

— Etant donnés deux réels a < b, et f une fonction continue par morceauz sur [a,b], on a

(z)dx

/abf(a?)dx:/:Ré(f)(at)dx—f—i/ab]m(f)<x)dw.

Toutes ces propriétés se déduisent facilement & partir de la définition de I'intégrale d’une fonction continue
par morceaux et des propriétés analogues pour l'intégrale d’une fonction en escalier ; leur vérification est laissée
en exercice.

Théoréme 1.34. Soient a < b deux réels et f une fonction continue par morceaux sur [a,b] & valeurs réelles.
Alors on a

(b—a) 1nff</ fx)de < (b—a)sup f(z)dx

[a,b]
Si f est de plus supposée continue, alors il existe ¢ € [a,b] tel que f(x f flx

Notons que l'inf et le sup dans le théoréme ci-dessus sont bien définis puisqu’une fonction continue par
morceaux sur [a,b] est nécessairement bornée.

Démonstration. Par définition d'un inf et d’'un sup, on a, pour tout z € [a, b], infl, ) f < f(x) < supy,, f. Par
positivité de l'intégrale, on en déduit

/1nffdm</f dx</supfdx.
a a [a,b]

Ceci prouve 'inégalité désirée. Si maintenant f est continue sur [a, ], alors 'inf et le sup sont un min et un max
puisqu’une fonction continue sur un intervalle fermé borné est bornée et atteint ses bornes sur cet intervalle.
Appelons m le minimum de f sur [a,b] et M le maximum de f sur [a,b]. On a alors f([a,b]) = [m, M] par le
théoréme des valeurs intermédiaires, et 1'inégalité ci-dessus donne

/abf(x)deM.

“b—-a
Ceci achéve la démonstration. O
Théoréme 1.35. Soient a < b deux réels, et f une fonction continue par morceauz sur [a,b] et & valeurs
positives. Alors / f(@)dx =0 si, et seulement si, [ est nulle partout sauf peut-étre en un nombre fini de points
de [a,b)].

Démonstration. Si f est nulle partout sauf peut-étre en un nombre fini de points de [a, b], alors il découle de la
proposition que f est d’intégrale nulle.

Réciproquement, supposons f d’intégrale nulle. Commencons par le cas ou f est continue; si f prend une
valeur strictement positive en xg € [a, ], alors il existe un intervalle [c,d] C [a,b] avec ¢ < d sur lequel f est &
valeurs strictement positives, donc le minimum de f sur [c,d] est strictement positif, et le théoréme précédent

8



nous permet de conclure que / f(z)dz > 0; la relation de Chasles et la positivité de I'intégrale nous donnent

/f da:f/f d:v+/f der/f )dz >0 .

On vient de montrer que, si f est continue, & valeurs positives et prend une valeur non nulle, alors son intégrale
b

alors :

est strictement positive ; autrement dit, si / f(z)dx =0 et f est continue & valeurs positives sur [a, b] alors f

est la fonction nulle.
Reste le cas ot f n’est que supposée continue par morceaux : alors il existe a; < ... < a, avec a; = a,
an, = b tels que f coincide sur chaque intervalle ]a;, a;11[ avec une fonction f; qui se prolonge contintiment &

[a;,a;11], et on a
b n—1 na;44
/ f(x)dx:Z/ fi(x) dzx
a i=1 7

b ait1
Par positivité de I'intégrale, si / f(z) dz = 0 alors on doit avoir / fi(z)dz = 0 pour tout i € {1,...,n—1};
a Qs
comme les f; sont continues on en déduit que chaque f; est nulle sur [a;, a;41]. Par conséquent, f est nulle partout
sauf peut-étre en ay,...,a,. O

Le théoréme suivant, qui peut s’avérer trés utile pour comprendre le comportement des intégrales de produits
de fonctions, en particulier lorsqu’on étudie des intégrales généralisées.

Théoréme 1.36 (Premicre formule de la moyenne). Soient a < b deux réels, f: [a,b] — R une fonction continue
et g: la,b] = R une fonction continue par morceauz et & valeurs positives. Alors il existe ¢ € [a,b] tel que

/Qbf<x>g<x>dx ==f(0)]£bg(x)dw

Démonstration. Comme g est continue par morceaux et a valeurs positives, 'intégrale de g ne peut valoir 0
que si g est nulle partout sauf peut-étre en un nombre fini de points, auquel cas il en va de méme de fg, dont

b b
I'intégrale est donc nulle elle aussi. Par conséquent, tout ¢ € [a, b] est tel que / f(@)g(z)dz = f(e) / g(x)dx
a a

dans ce cas (trés) particulier.
b

On peut donc supposer que / g(z) dx # 0, auquel cas on doit montrer qu’il existe ¢ tel que

a

_r
f: g(z) dx

Comme f est continue sur [a, b], 'image de [a,b] par f est un intervalle [m, M] (ot m est le minimum de f sur
[a,b] et M son maximum), et Pexistence d’un ¢ comme ci-dessus est équivalente a I'inégalité

x)de < M
fg da:/f r <

Autrement dit, il nous suffit de démontrer que

/ dx</f ;1:<M/

Comme ¢ est a valeurs positives, on a pour tout x € [a,b] mg(z) < ) < Mg(z), et on obtient I'inégalité
désirée par positivité et linéarité de I'intégrale.

b
/f@M@Mw:ﬂ@-

O

Exercice 1.37. Montrer que, si g est continue et a valeurs strictement positives, on peut obtenir ¢ €]a, b| dans
la conclusion du théoréme ci-dessus (on pourra introduire la fonction G: t — fat g(x) dz et utiliser le changement
G(t)(b—a)

aw

de variables u = a +



Théoréme 1.38. Soient a < b deux réels, et [ une fonction continue par morceauz sur [a,b]. Alors la fonction
F définie sur [a,b] par F(t) = fat f(z)dx est continue sur [a,b)].

Démonstration. Une fonction continue par morceaux est nécessairement bornée, autrement dit il existe M tel
que |f(x)| < M pour tout x € [a,b]. On a alors, pour tout s,t € [a,b] :

[ sl <| [ 1sa

En particulier, F(s) tend vers F'(t) quand s tend vers ¢, donc F' est continue sur [a, b] O

F(t) = F(s)| = <

< M|t—s|.

Il serait tentant de penser que la fonction F' définie ci-dessus est toujours dérivable, et que F' = f. Clest
faux en général : par exemple, pour des fonctions & valeurs réelles, le théoréme de Darboux nous dit qu’une
fonction dérivée doit vérifier la conclusion du théoréme des valeurs intermédiaires (i.e. I'image d’un intervalle
par une fonction dérivée est un intervalle) donc une fonction en escalier non constante ne peut jamais étre une
dérivée. Il existe néanmoins un cas essentiel ot ce résultat est vrai.

Théoréme 1.39 (Théoréme fondamental de 'analyse). Soient a < b deux réels, f une fonction continue sur
[a,b], et F la fonction définie sur [a,b] par F(t) = fat f(z)dx. Alors F est dérivable sur [a,b], F' = f, et F est
lunique primitive de f sur [a,b] qui s’annule en a.

Démonstration. Commengons par montrer que F’ = f; pour cela, fixons ¢ € [a, b] (bien siir en a on ne considérera
qu’une dérivée a droite, et de méme en b on ne considérera qu’'une dérivée a gauche) Pour tout s € [a,b] , on a :

t t t
F(O) - F) - =970 = [ f@)do= [ feyda= [ (1)~ f®)do
Fixons £ > 0. Comme f est continue en ¢, il existe § > 0 tel que, pour tout s € [a, b], on ait
t—s|<d=[f(t) - f(s)| <e.

Notons que si |t —s| < § alors |t —x| < § pour tout & appartenant au segment d’extrémités ¢ et s. Par conséquent,
|f(t) — f(2z)| < e pour tout x appartenant a ce segment, et l'inégalité triangulaire nous donne, pour tout s tel
que |t —s] <§:

<elt—s|.

/ (f(2) — (1)) da

On obtient donc finalement, pour tout s € [a, b] tel que |t — s| < §, que

’F(t)—F(S)
t—s

—f(t)‘ <e.

Ceci prouve que lim;_,; w = f(t), autrement dit que F est dérivable en ¢ et F'(t) = f(¢t).

Si maintenant G est une autre primitive de f sur [a,b] qui s’annule en a, alors (G — F)" = 0, donc l'inégalité
des accroissements finis appliquée & G — F (qui est continue et dérivable sur [a,b]) entraine que G — F est
constante sur [a,b]. Comme G(a) = F(a) = 0 par hypothése, on obtient bien que G(x) = F(x) pour tout = de
[a, b]. O

Remarque 1.40. La raison pour laquelle on a utilisé I'inégalité des accroissements finis (qu’on reverra plus
tard dans ce cours) est que, pour des fonctions a valeurs complexes, il n’y pas d’égalité des accroissements finis,
comme le montre ’exemple de la fonction ¢ — €.

Exercice 1.41. En utilisant le théoréme fondamental de ’analyse, donner une nouvelle démonstration du

théoréme [[L35]

On peut maintenant se rappeler de notre technique habituelle pour calculer des intégrales : utiliser les
primitives (technique qui ne marche, hélas, pas toujours...).

Corollaire 1.42. Soient a < b deux réels, f une fonction continue sur [a,b] & valeurs dans C et F' une primitive
de f sur [a,b]. Alors on a fab f(z)dz = F(b) — F(a).

ii. On vient en fait de montrer que F est lipschitzienne sur [a, b].
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On note souvent [F]Z la quantité F'(b) — F(a).

Démonstration. Si F est une primitive de f sur [a,b], alors F' — F(a) est encore une primitive de f sur [a,b],

par conséquent le théoréme précédent nous donne que, pour tout ¢ € [a, b], on a F(t) f f(z)dz. On
obtient le résultat désiré en appliquant cette formule pour t = b. O

Corollaire 1.43 (Formule d’intégration par parties). Soient a < b deux réels et f, g deux fonctions de classe
C! sur [a,b] a valeurs dans C. Alors on a

/f ©)dz = [fg]! /f

Démonstration. On utilise la formule (fg)' = f'g+ ¢'f. Comme f'g+ ¢’ f est continue, et a pour primitive fg,
on peut lui appliquer le résultat précédent et obtenir (par linéarité de l'intégrale)

b b
fal’ = / f(@)g(x) da + / (@) () dx

C’est la formule qu’on souhaitait démontrer. O

Corollaire 1.44 (Formule de changement de variables). Soient a < b, ¢ < d quatre réels, f une fonction continue
sur [a,b] & valeurs dans C et ¢ une fonction de classe C! sur [c,d] et telle que ¢([c,d]) C [a,b]. Alors on a

d e(d)
/ Flo(t) (1) dt = / fo)d .
¢ @(c)

Démonstration. Soit F une primitive de f sur [a, b]. Alors, par la formule de dérivation des fonctions composées,
F o p est une primitive de (f o @)@’ sur [c,d], et le théoréme fondamental de I’analyse nous permet d’écrire :

»(d)
/ e — [Foy]’ = F(p(d) - F(p(c)) = / S

O

Il est trés important, pour la formule de changement de variables écrite ci-dessus, que f soit continue et
que ¢ soit de classe C'. Il n’est pas nécessaire, par contre, que ¢ soit une bijection de [¢,d] sur son image.
Souvent, on applique la formule ci-dessus en « partant de la droite vers la gauche », i.e. on veut poser x = ¢(t).
Il est alors un peu délicat de trouver les bonnes bornes pour I'intégrale de gauche, sauf dans le cas ol ¢ est une
bijection. Ce cas particulier est particuliérement utile en pratique.

Corollaire 1.45 (Cas particulier de la formule de changement de variables). Soient a < b, ¢ < d quatre réels,
f une fonction continue sur [a,b] & valeurs complexes, et ¢ une bijection de classe C! de [c, d] sur [a,b]. Alors
on a

O]
[ ra= [, fem@ .

Un autre intérét de la formule ci-dessus est qu’elle se généralise au cas ol f est continue par morceaux et
aux intégrales de fonctions de plusieurs variables.
Concluons ce chapitre avec la formule de Taylor avec reste intégral, qui nous servira plus tard.

Théoréme 1.46 (Formule de Taylor avec reste intégral). Soit I un intervalle de R, z,y € I et f: I — C une
fonction de classe C™"*1 sur I (pour un entier n). Alors on a

N k) (g Y (y — )"
sy = B —ap s [T gy ar.



Démonstration. On procéde par récurrence sur n. Pour n = 0, on souhaite montrer que, si f est une fonction de
classe C'! sur [a,b], alors pour tout x,y € [a,b] on a f(y) = f(z) + [ f'(t) dt. C’est une conséquence immédiate
du théoréme fondamental de ’analyse.

Supposons maintenant la formule établie au rang n, et considérons une fonction f de classe C"*2 sur I.
Fixons également x,y € I. Puisque f est de classe C"*! sur I, on peut lui appliquer la formule au rang n et
obtenir

n ) (p Y (g — £\
Fly) = Z f k'( )(y ) +/ (y n't) FOO (@) dt
k=0 ' r ’

Puisque (1) est de classe C', on peut utiliser une intégration par parties dans l'intégrale exprimant le reste,
ce qui donne :

/y Mf(n"'l)(t) gt {_(y—t)";lf(nﬂ)(t)} v . /y Mﬂmz)(ﬂ dt

- = (n+1 (n+1)!
— g)nt+l v — )t

En réinjectant cela dans la formule au rang n, on obtient

f(y) _ En: f(l:_'(x) (y _ x)k + (y — x)n-i-l f(n—&-l)(m) + /y (y — t>n+1 f(n+2) (t) dt

= (n+1)! (n+1)!
n+1 (k) z y _ \n+l

- S s [ e ar.
k=0 ’ x ’

O

Remarque 1.47. 1l existe d’autres formules de Taylor pour une fonction f: [a,b] — C, qu’on va revoir au
début du chapitre suivant.
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Chapitre 2

Rappels : équivalents, développements
limités...

Dans ce chapitre, I désigne un intervalle ouvert de R, et xp un élément de I. Notre objectif principal ici
est de rappeler, sans démonstrations, la définition d’un développement limité et les opérations qu’on peut faire
sur les développements limités, ainsi que celles qu’on ne doit surtout pas faire. On va surtout s’intéresser aux
fonctions définies sur un intervalle ouvert et & valeurs dans R ; avant cela, quelques mots sur les équivalents et
la comparaison de fonctions ne sont sans doute pas de trop.

2.1 Equivalents et comparaison

Définition 2.1.

Pour f, g deux fonctions de I dans C, on écrit f(x) = 04,(g) pour dire que f(x) s’écrit sous la forme g(z)e(z),
ou ¢ est une fonction qui tend vers 0 quand x tend vers xg; on dit que f est négligeable devant g au voisinage
de z.

Remarque 2.2.
— Si ¢ ne s’annule pas au voisinage de xo (sauf peut-étre en xg) écrire que f = 04,(g) est la méme chose

T
qu’écrire que lim fé; = 0. En particulier, écrire f = 0,,(1) signifie simplement que f(z) tend vers 0
z—zo g(x
quand x tend vers xg.
— Souvent, xg est sous-entendu, et on écrit simplement f = o(g). Dans ce cas, il est important de savoir en

quel point on est en train d’essayer de comparer f et g...

Définition 2.3. Pour f, g deux fonctions de I dans C, on écrit f(x) ~;, (¢) pour dire que f(x) s’écrit sous la
forme g(z)e(x), ou € est une fonction qui tend vers 1 quand x tend vers xg; on dit que f est équivalente a g au
voisinage de xg.

Remarque 2.4.

— Comme son nom l'indique, la relation ~,, est une relation d’équivalence sur les fonctions : en particulier,
c’est la méme chose d’écrire que f ~,, ou qu g ~g, f.

— Si ¢ ne s’annule pas au voisinage de xo (sauf peut-étre en xg) écrire que f = 04,(g) est la méme chose

- @)
qu’écrire que lim ——= = 0.
T—TQ g(f]j)

— Attention, écrire f ~,, 0 est une condition trés contraignante : cela signifie que f est nulle sur un voisinage
de xg, ce qui est beaucoup plus fort que le fait de dire que f(z) tend vers 0 quand x tend vers xzg. Si
jamais vous écrivez dans un exercice f ~ 0, il y a une trés forte probabilité que vous soyiez en train de
commettre une erreur.

— Comme pour o, souvent z( est sous-entendu et on écrit simplement f ~ g.

— Un équivalent n’est pas une égalité ou une identité magique. En particulier, en général on ne peut pas
ajouter des équivalents. Par exemple, définissons des fonctions fi, g, h sur R en posant f(x) = z, g(z) = —xz,

h(x) = x + 2% pour tout € R. Alors, en 0, on a f(z) ~ h(x), mais f(z) + g(z) = 0 = 22h(x) + g(z)...
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Notons qu’on pourrait aussi définir les notions de o, ~ en 00, et aussi les définir pour des suites. On utilisera
ces notions sans rappels dans la suite; si elles posent probléme il serait important que vous les révisiez.

2.2 Développements limités

Définition 2.5.
On dit que f: I — R admet un développement limité d’ordre n en xy s’il existe un polynéme P de degré n, a
coefficients réels, et une fonction € : I — R tels que :

Ve el, f(r) = Plx —xo) + (x — zg)"e(z) et lim e(x) =0

T—T0o

Autrement dit, on a f(z) = P(x — o) + o((x — x0)").

On dit alors que P est la partie réguliére d’ordre n du développement limité, et f — P le reste d’ordre n.

Notons que la définition entraine immédiatement que, si f admet un développement limité a l'ordre n en
T, de partie réguliére P, et m < n est un entier, alors f admet aussi un développement limité & ’ordre m en
g, dont la partie réguliére est formée par les termes de P de dégré inférieur ou égal a m.

On se contente souvent ci-dessous de traiter le cas des développements limités au voisinage de 0, puisqu’une
simple translation permet de s’y ramener. Rappelons que, si 0 € I et si f admet un développement limité
d’ordre n > 1 en 0, alors f est dérivable en 0 (en fait, admettre un développement limité & l'ordre 1 en zg est
équivalent & étre dérivable en xg, comme on le vérifie facilement & partir des définitions). Par contre, f' n’est
pas continue en 0 a priori (considérer par exemple x + x2 sin(1/z)).

Proposition 2.6.

Si f : I — R admet un développement limité d’ordre n en 0, alors la partie réguliére du développement limité
est unique (donc le reste est unique également).

Si f est paire (f(x) = f(—x)), alors le polynome P est pair. Si f est impaire (f(x) = —f(—x)) alors P est
1Mpair.

Maintenant que nous nous souvenons un peu mieux de ce qu’est un développement limité, il est temps d’énoncer

les théorémes qui permettent en pratique de calculer les D.Ls.

Proposition 2.7.
- Formule de Taylor-Lagrange :
Si f est n+ 1 fois dérivable sur I, alors f admet un développement limité d’ordre n en 0, de partie réguliére

/ £(0)
P(X) = f(0) + f/(0)X +... 4 == X"
et de reste f(x) — P(x) = %xnﬂ pour un certain ¢ compris entre 0 et x. (bien sir ¢ dépend de x)

- Formule de Taylor-Young : Si f(™ (0) existe, alors f admet un développement limité d’ordre n en 0 de partie
réguliére

M (0)x"
L0

P(X)=f(0)+ f'(0)X +... o

Remarquez que la deuxiéme formule a des hypothéses plus faibles, et donne un résultat plus faible aussi puis-
qu’elle ne permet pas d’évaluer le reste. Les deux formules montrent que, pour calculer le développement limité
d’une fonction & l'ordre n en 0, on peut se contenter de calculer ses n dérivées successives en 0; en pratique,
c’est une trés mauvaise méthode dés que n dépasse 2 ou 3, car trés lourde en calculs.

On peut sans (trop) risquer de se tromper ajouter, multiplier des développements limités :

Proposition 2.8.
Si f, g admettent des développements limités a l'ordre n en 0, de parties réguliéres respectives P et Q, alors :

14



- Af + pg admet un développement limité d’ordre n en 0, de partie réguliére AP + u@
— f.g admet un développement limité d’ordre n en 0, de partie réguliére les termes de degré < n de P.Q.

Pour calculer le développement limité de 5 dans le cas ou g(0) # 0, on peut également diviser des développe-
ments limités selon la méthode des puissances croissantes (voir exemple du DL de tan a la fin de la fiche).

Rappelons un résultat trés important : on peut intégrer un développement limité, mais on ne peut pas
dériver un développement limité en général : il se peut que f admette un développement limité d’ordre n,
et que f’ n’ait pas de développement limité d’ordre n — 1.

Proposition 2.9.
Si f est dérivable et [ admet un développement limité d’ordre n en 0 de partie régulicre ag+a1 X +...+a, X",

alors f admet un D.L d’ordre n+ 1 en 0, de partie réguliere P(X) = f(0) + apX + %XQ +... ;‘—LX”H.

Remarquons que, dans ’énoncé ci-dessus, il est primordial de ne pas oublier le terme « f(zo) », qui est la
constante d’intégration !

Il ne reste plus qu'un théoréme important a énoncer sur les développement limités : on peut composer des
développement limités.

Proposition 2.10.

Si f admet un développement limité en xg d’ordre n et de partie réguliére P, et g admet un développement limité
d’ordre n en f(xo) de partie régulicre Q, alors g o f admet un développement limité d’ordre n en xq, de partie
réguliere constituée par les termes de degré < n de QQ o P.

Il y a un piége : il faut veiller a bien utiliser le développement limité de g en f(zg), et pas en xg... Il faut aussi
faire attention a composer des développements limités de méme ordre : si on connait par exemple le dévelop-
pement limité de f en g & 'ordre 3 en xg, et le développement limité de g a Pordre 42 en f(x(), on n’a assez
d’information que pour calculer le développement limité de g o f a 'ordre 3 en zg.

f
g
mence par calculer le développement limité de % par composition, puis on le multiplie avec celui de f.

Il est trés important de se rappeler qu’un développement limité est une égalité mathématique,
pas une identification magique : il faut toujours indiquer le reste et savoir & quel ordre on calcule le déve-
loppement.

Ce théoréme peut étre utilisé pour calculer le développement limité d’un quotient £, ou g(0) # 0 : on com-

Pour terminer ces notes, mentionnons le cas des fonctions d’une variable réelle & valeurs complexes. Tous
les énoncés donnés plus haut restent corrects (en considérant des polynomes a coeflicients complexes, bien siir),
sauf un : la formule de Taylor-Lagrange est fausse pour les fonctions a valeurs complexes.

En effet, la preuve de cette formule se base sur I’égalité des accroissements finis (qui est en fait la formule
de Taylor-Lagrange a lordre 1) et celle-ci est fausse pour les fonctions & valeurs complexes. Un exemple pour se
convaincre : considérons la fonction f: R — C définie par f(t) = e'’. Alors f est de classe C°°, et f'(t) = ie' ne
s’annule jamais (le module de f’(t) vaut toujours 1). On a f(27) — f(0) = 0, donc il est impossible qu’il existe ¢
tel que f(27) — f(0) = 27w f(c). La raison de cette différence entre R et C est que R est muni d’un ordre naturel,
compatible avec les opérations algébriques (tout particuliérement, un nombre est positif ssi c’est un carré) ; de
plus cet ordre a de nombreuses propriétés (borne sup, borne inf, archimédianité...). Sur C, il n’existe pas de
telle relation d’ordre.

Tout cela ne pose pas de probléme particulier : sur C, on peut toujours utiliser la formule de Taylor-Young,
ainsi que la formule de Taylor avec reste intégral, qu’on reverra plus tard (et qui est & connaitre pour les écrits
du CAPES!). La théorie serait par contre totalement différente si on considérait des dérivées de fonctions de
variable complexe & valeurs complexes - c¢’est la théorie des fonctions holomorphes.

En analyse, les développements limités sont particuliérement importants pour calculer des limites, mais
aussi pour obtenir des équivalents de fonctions, méthode fréquemment utilisée pour étudier la convergence
d’une série ou d’une intégrale. Il faut absolument les maitriser et connaitre les développements limités des
fonctions classiques, ou savoir les retrouver rapidement.
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Quelques développements importants :

1
= l-a+a® o (S 4 ofa")
.%'2 n+lxn n
e m(l+a)=z— 4.+ (1) +o") .
®_1 z?  2? " n
* = +x+?+€+---+ﬁ+o(a§ ) -
(E2 1,271 L
° Cos(x):1—?4--.-4-(—1)"(2”)!+o(m2"+) .
:1;3 x2n+1 ) )
’Sin(x):l’—z—&—...—i—(—l)nm—i—o(kx"""),
3 2n+1
o arctan(z) = — = 4.+ (<) 57 +0 (m2"+2)n.
o (1+x)° :1+a.m+...+a.(a—1).--(0‘—”4‘1)%"’0(35") (valable pour tout o € R).

Un exemple : trois méthodes pour calculer le développement limité de tan en 0 & ’ordre 5.

Premiére méthode : la division selon les puissances croissantes.
On commence par écrire
3 5
sin(z) @ — % 4+ {55 +o(2”)
tan(sc) = = 22 P 5
cos(z) 11— L+ L+ o(ad)

Puis on utilise la méthode des puissances croissantes :

T - %3 + % + o(z®) l—m—;—i—%—i—o(ﬁ)
— x4+ T - 4 o) z+Z 4+ 28
R e
Z2° + o)

On obtient donc finalement que tan(z) = z + % + Za° + o(2®).

Deuziéme méthode : par composition, en utilisant le développement limité de ﬁ (ci-dessous, les termes en
gris clair sont ceux qu’on aurait pu se passer d’écrire, puisqu’ils font apparaitre des termes de degré > 5).

x—%g—&-%—l—o(aﬁ)

1—9”2—2+§—i+0(x5)

tan(z) =

3 5
r—Z 4
= — 52 o)

1-(5-%

23 25 22 4 o R ) 22 A 2 1.11 2 4 s
— Ty LT St BT ol T TS
(-G Tt G -+ (GG ) (5 ) (5 — 5 ) +el@)
x3 x® x? 5zt
= _ - 1 - - 5
(z G +12O)( +5 )+ o(x”)
3 228 5

(Note : dans la derniére ligne, on n’a pas fait apparaitre les termes de degré > 5, puisque ce sont tous des o(x?))

Troisieme méthode : en utilisant une équation différentielle. On a tan’(z) = 1 + tan?(z). En écrivant le
développement de tan’ en 0 & I'ordre 4 sous la forme a + bz? + cz* + o(x*) (il n’y pas de termes d’ordre impair :
tan est impaire, donc tan’ est paire), le fait que tan(0) = 0 et le théoréme d’intégration des développements
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limités nous donne que le dévéloppement limité de tan en 0 & ’ordre 5 est égal & az + b%g + c”—; +o(z%). La
formule tan’(z) = 1 + tan?(x) nous donne alors (par composition) :

5

3
a+bx? +ca* +o(x?) =1+ (ax + b%+(¢%)2 + o(z?) .
J

Autrement dit, on a

2 4 4 0 2 2ab 4 U7 4

a+br®+cx® +o(z*)=1+a"x —|—?x +6,1f + o(z*)
Le théoréme d’unicité des développements limités nous permet d’identifier les deux développements terme a
terme : cecidonnea =1,b=a’? = 1,et c = ? = % En reportant cela dans la formule donnant le développement

de tan a Pordre 5 en 0 en fonction de a,b, ¢, on obtient de nouveau tan(zr) = x — 7”3—3 + Za® + o(2®).

17



18



Chapitre 3

Intégrales impropres

3.1 Deéfinition et premiéres propriétés

Définition 3.1. Soit I un intervalle de R et f: I — C. On dit que f est continue par morceaux sur [ si, pour
tout segment J contenu dans I, la restriction de f a J est continue par morceaux.

Remarque 3.2. — La restriction de f a J désigne simplement la fonction définie sur J par z — f(z). On
utilise la notation f|; pour la restriction de la fonction f & I’ensemble J.
— Si I est un segment, alors on retrouve la notion de fonction continue par morceaux vue précédemment.
— Si par exemple I =]0,1], et f: z — %, alors f est continue sur I donc continue par morceaux, mais f ne
se prolonge pas en une fonction continue par morceaux sur [0, 1], puisque f n’est pas bornée.

Notation. Dans la suite, quand on écrit un intervalle semi-ouvert [a,b[, la notation signifie que a € R et

b € [a,+oo[U{+0}; de méme pour un intervalle Ja,b] on autorise a = —oo, et pour un intervalle Ja,b] on
autorise a = —oo et b = +oo.
On commence par définir les intégrales impropres sur les intervalles semi-ouverts, i.e I = [a,b] ou ]a,b].

Comme ces deux cas sont symétriques, dans les démonstrations je traiterai toujours le cas I = [a, b].

Définition 3.3. Soit I = [a, b[ un intervalle semi-ouvert de R, et f: I — C une fonction continue par morceaux.
On dit que ff f(t)dt est convergente si lim,_,- [ f(t) dt existe.

Dans ce cas, on pose f: f(t)dt =lim,_,~ [ f(t)dt et on appelle cette limite intégrale impropre (ou géné-
ralisée) de f sur I.

Bien stir, on définit symétriquement la convergence d’une intégrale sur ]a, b], en considérant lim,,_, ,+ jf f(t)dt.

Ici, remarquons qu’il y a un possible conflit de notations : si f est une fonction continue par morceaux sur
[a, b], alors le symbole f: f(t) dt peut désigner l'intégrale de f comme fonction continue par morceaux sur [a, b],
ou alors l'intégrale de f comme fonction continue par morceaux sur [a,b[ dont U'intégrale converge. Il nous faut
donc vérifier que nos deux notations coincident quand elles ont toutes les deux un sens, ce pourquoi on énonce
et démontre le lemme suivant.

Lemme 3.4. Soit f une fonction continue par morceauz sur |a,b]. Alors fj f(t)dt =lim,_,;- faz f(t)dt.

Démonstration. Comme f est continue par morceaux sur [a, b] il existe M tel que |f(¢t)| < M pour tout ¢ € [a, b],

et on a donc
/bf(t)dt/wf(t)dt /bf(t)dt
a a fll;
< [

b
< /Mdt
M-z

).

Par conséquent on a f: ft)ydt — f; f(t)dt — 0 quand z tend vers b, ce qu’on voulait démontrer. O
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Exemple. 1. Ona [ e 'dt = [—e~']; = 1—e". On en déduit que f+oo ~tdt =1 (cette notation signifiant
que 'intégrale converge et qu’elle vaut 1).

2. fml % = —In(z) pour z dans ]0, 1], qui tend vers +oco quand x tend vers 0. Par conséquent fol % diverge.

3. Il ne faut pas croire que lim;_,q f(t) = 400 entraine que fo t) dt diverge! Par exemple, en utilisant les
mémes méthodes que dans les deux exemples ci-dessus, vérifiez que fo % =2.
Remarque 3.5. Pour I = [a,b[, et f: I — C une fonction continue par morceaux, dire que ff f(t) dt converge
est équivalent & dire que, pour toute suite (z,,) d’éléments de [a,b] qui converge vers b, la suite ff” f(@t)dt est
convergente.

Que faire maintenant si on étudie une intégrale sur un intervalle ouvert ? Eh bien, on coupe l'intervalle en
deux, et on se raméne a 1’étude de deux intervalles semi-ouverts.

Définition 3.6. Si I =lJa,b[ et f: I — C est continue par morceaux sur I, on dit que fab f(t)dt converge s’il
existe zo € I tel que [ f(t) dt et fjo f(t) dt convergent.

On pose alors f; ft)ydt= [T f(t)dt+ ffo f(t)dt

Lemme 3.7. La définition ci-dessus ne dépend pas du choix de xg, c’est-a-dire que s’il existe xg €|a, b tel que
[20 f(t)dt et f; f(t)dt convergent toutes les deux, alors :
0

—~ Pour tout x €]a,b| les intégrales [ f(t)dt et ff f(t)dt convergent toutes les deuz, et
T p@ydt+ [0 f()dt= [T f(E)dt+ [ f(E) dt

Démonstration. En exercice, avec la relation de Chasles. O

Maintenant, la notation fol sin(x) dz, par exemple, peut avoir 4 sens différents : intégrale sur [0, 1], sur [0, 1],
sur ]0,1] ou sur ]0,1[. Comme dans le lemme c’est un bon exercice de vérifier que, dés que deux de ces
notations sont définies simultanément, elles coincident.

En pratique, pour déterminer si une intégrale converge sur |a, b[, on choisit arbitrairement un point xy €]a, b|,
et on étudie séparément les deux intégrales sur ]a, zo] et sur [z, b].

Remarque 3.8. Une autre facon de présenter les choses serait de dire que, pour une fonction f continue
par morceaux sur |a, b, 'intégrale de f sur |a, b[ existe si, et seulement si, lim,_, o+ ,_p— [ f Y f(t)dt existe (et
I'intégrale est alors égale a cette limite). Cela peut-étre utile pour calculer facilement une 1ntegrale généralisée
quand on connait une primitive de f, par exemple : mais cela impose de considérer séparément les variables
x et y, i.e de considérer une limite d’une fonction de deux variables.

Par exemple, il est tout & fait possible que limg, . ffr f(t)dt existe sans que fj;o f(t)dt converge :
regardez ce qui se passe pour la fonction f: ¢ +— ¢t (ou pour n’'importe quelle fonction impaire...).

Notation. Si I =Ja,b[ et f est continue par morceaux sur I, d’intégrale convergente, on pose [," f(t)dt =

— f; f(t)dt. Si une intégrale ne converge pas on convient que 'autre ne converge pas non plus. On retrouve
alors la relation de Chasles pour les intégrales généralisées convergentes.

Il est parfois utile, pour étudier la convergence d’une intégrale impropre, d’utiliser un changement de va-
riables. On va énoncer un théoréme de changement de variables adapté & ce contexte.

Théoréme 3.9 (Formule de changement de variables pour les intégrales impropres). Soient a < b, ¢ < d quatre
réels, [ une fonction continue sur I et gp une bijection de classe C*! de |c,d[ sur]a,b[. Alors on a :

— Si ¢ est croissante, f; ft)d f flp )dt
- Si p est décroissante, f: fyde=[; f( '(t) dt

Remarquons que, comme tout egalité entre intégrales généralisées énoncée dans ce cours, la notation f f(t)

f flp '(t) dt signifie qu’une des intégrales converge si, et seulement si, ’autre converge, et qu’alors elles sont
égales. Il ne faut pas manipuler des intégrales généralisées dans des calculs avant d’avoir prouvé
qu’elles convergent !
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Démonstration. On va se contenter de traiter le cas ol ¢ est croissante, 'autre cas étant similaire. Alors,
on a lim, .+ o 1 (2) = c et lim,_,,- ¢ (z) = d (si ¢ était décroissante on aurait lim,_,,+ o 1 (z) = d et
lim, p- (P_l(x) =c).

De plus, par le théoréme de changement de variables pour des fonctions continues sur un segment, on a,
pour tout = < y €]a, b[, que

y ) )

[ rwa= [ e
® e (x)

Si on suppose que que fcd flo(t))¢'(t) dt existe, on en déduit, en faisant tendre x vers a et y vers b, que f: f(t)dt

existe et vaut fcd Flp(t)e'(t) dt.
Pour voir la réciproque, on utilise le méme raisonnement, en considérant cette fois-ci z < y € [¢,d], en
utilisant la formule de changement de variables sous la forme

»(y) y
/ fmﬁ:/fwmwwm
o(x) T

et en notant que, quand z tend vers ¢ et y tend vers d, p(z) tend vers a et ¢(y) tend vers b.
O

Comme toujours quand on étudie des questions de convergence, il est trés utile de disposer d'un critére
permettant de vérifier que la limite existe sans avoir besoin de calculer la limite explicitement.

Théoréme 3.10 (Critére de Cauchy). Soit I = [a,b] et f: I — C une fonction continue par morceauz. Alors
fab f(t)dt converge si, et seulement si :

Ve >0 Jc € [a,b] Vz,y € [c, b]

/:f(t)dt‘ge.

Démonstration. Supposons que le critére soit vérifié, fixons une suite (x,,) d’élements de [a, b[ qui converge vers
b et e > 0. On trouve ¢ € [a,b] témoignant du fait que le critére est vérifié; il existe N tel que z,, € [¢, b] pour
tout n > N. Alors, pour tout n,m > N, on a

/: Ft) dt — /:m F(t) dt‘ =

Ceci prouve que la suite ( f; f) dt) est de Cauchy, donc convergente. Par conséquent, si le critére est vérifié,
alors f; f(t) dt converge.
Supposons maintenant que f; f(t) dt converge, et fixons € > 0. Alors il existe ¢ € [a, b] tel que ‘fab fe)ydt— [T f(t) dt‘ <

€ pour tout x € [¢, b].
Par conséquent, pour tout x,y € [c,b], on a

/:f(t)dt‘ /;f(t)dt—/abf(t)dwr/abf(t)dt—/ayf(t)dt

/:n f(t)dt‘ <e.

x b b y
< [ rwa- [rod | [ roa- [ oa
< 2.
Ceci étant vrai pour tout € > 0, on voit que le critére de Cauchy est vérifié. O

Exercice 3.11. Enoncer le critére de Cauchy pour la convergence de l'intégrale d’une fonction continue par
morceaux sur I =]a, bl.

Définition 3.12. Soit I un intervalle de R d’extrémités a et b, et f: I — C une fonction continue par morceaux.
On dit que fab f(t)dt converge absolument si f; |f(t)| dt converge.

Théoréme 3.13. Soit I un intervalle de R d’extrémités a et b, et f: I — C une fonction continue par morceauz.
Si f: f(t)dt converge absolument alors fj f(t)dt converge, et f; f(t) dt‘ < f; |f(t)]dt .
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Démonstration. On ne va traiter que le cas I = [a,b] : le cas I =]a,b] se traite de la méme manicre, et le cas
I =]a, b] se déduit de la conjonction des deux cas précédents.
Fixons donc I = [a,b[ et € > 0. En apliquant le critére de Cauchy pour |f]|, on sait qu'’il existe ¢ € [a, b[ tel

que
Yy

Vm<ye[c,b[/ F)ldt <e .

xT

Alors, pour tout « < y € [¢,b] on a, grace a l'inégalité triangulaire :

yf(t) dt’ < /y If()]dt <e .

Par conséquent, f(f f(¢) dt vérifie le critére de Cauchy et est donc convergente.

Il est maintenant immédiat de vérifier I'inégalité de I'énoncé : pour tout z,y €la,b[ on a |[Y f(t)dt| <
[V 1f(t)] dt; en faisant tendre z vers a et y vers b, on obtient I'inégalité désirée (mais il a d’abord fallu montrer
que l'intégrale de f était convergente pour pouvoir faire ce passage a la limite!) O

A cause de ce théoréme, il est particuliérement important de comprendre la convergence des intégrales
impropres de fonctions positives.

3.2 Intégrales impropres de fonctions positives

La théorie des intégrales impropres de fonctions positives se base en grande partie sur ’observation suivante :
si I =[a,bl et f: I — RT est continue par morceaux, alors la fonction F': x f; f(¢) dt est croissante. Donc
deux cas sont possibles :

1. F est bornée sur [a, b[. Dans ce cas f; f(t) dt converge.
2. F n’est pas bornée sur [a,b[. Dans ce cas f: f(t)dt diverge, et on note fj f(t)dt = 400 (attention, cette
notation n’est définie que pour des fonctions a valeurs positives!).

La méme observation est bien str valide pour un intervalle de la forme ]a,b] et, en découpant, pour un
intervalle de la forme ]a, b[. On en déduit le résultat suivant.

Théoréme 3.14. Soit I un intervalle de R d’extrémités a et b, f une fonction continue par morceauxr sur I

G valeurs positives. Alors f; ft)dt existe si, et seulement si, il existe M tel que fy t)dt < M pour tous
x <y €la,bl.

Théoréme 3.15 (Premier théoréme de comparaison). Soit I un intervalle de R d’extrémités a et b, et f,g deux

fonctions continues par morceaux sur I, a valeurs positives, telles que f(x) < g(x) pour tout x € I. Supposons
que f g(t) dt converge ; alors f f(t)dt converge.

Notons que, par contraposée, on obtient que, sous les mémes hypothéses que ci-dessus, si f: f () dt diverge
alors f g(t) dt diverge.

Démonstration. Puisque g est a valeurs positives et f g(t) dt converge, il existe M tel que f Y g(t)dt < M pour
tous x < y de |a, b[. Par positivité et linéarité de 1’1ntegrale le fait que f(t) < g(t) pour tout ¢ 6 I entraine que
fy t)dt < fy t) dt pour tous x < y €]a,b[. Par conséquent on a aussi fy t)dt < M pour tous z < y de

Ja, b[, ce qui prouve, comme f est & valeurs positives, que fa f(t) dt converge. O

Remarquons qu’on pourrait énoncer un théoréme analogue pour les fonctions & valeurs négatives : ce qui
compte, c’est que les fonctions considérées gardent un signe constant. En réalité, il suffit qu’elles gardent un signe
constant prés des bornes de U'intervalle pour qu’on puisse appliquer ce théoréme (en découpant judicieusement
lintervalle d’intégration). Les mémes observations s’appliquent pour le théoréme suivant.

Théoréme 3.16 (Second théoréme de comparaison). Soit I = [a,b[, et f,g deux fonctions continues par
morceauz, & valeurs réelles, gard(mt un signe constant sur I et telles que f(x) ~y- g(z). Alors fab f(t)dt

converge si, et seulement si, f g(t) dt converge.
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Démonstration. Quitte & multiplier f et g par —1, on peut supposer que f et g sont toutes deux positives sur
1. Par définition de ~, il existe ¢ < b tel que

Vi € e,b] 3 f(x) < 9(a) < 2f(x)

Fixons un tel c¢. A 'aide du premier théoréme de comparaison, on voit que fcb f(t) dt converge si, et seulement

si, ff g(t) dt converge. Ceci donne le résultat désiré. O

Remarque 3.17. Dans le second théoréme de comparaison, on ne considére qu’un intervalle semi-ouvert ;
la raison est que l'information sur 1’équivalent n’est donnée qu’en b, par conséquent on ne sait rien sur le
comportement de f et g au voisinage de a.

Bien siir, un théoréme similaire est vrai pour I =|a, b], pour des fonctions de signe constant sur I et équi-
valentes en a (en réalité, par découpage, il suffit que les fonctions soient de signe constant au voisinage de a et
équivalentes en a).

3.3 Intégrales impropres et séries

Soit f: [0, 400 une fonction continue par morceaux. Alors f0+oo f(t) dt converge si, et seulement si, la suite

(J3™ f(t)dt) converge pour toute suite (z,) qui tend vers 4+occ. Puisque la relation de Chasles nous donne

Th+1

/j”f(t)dt::g/“ Ftydt |

on voit que ( foz" f(t)dt) converge si, et seulement si, la série de terme général f;:“ f(t)dt est convergente
pour toute suite (x,) qui tend vers +oc.

Ce lien entre séries et intégrales est plus intéressant pour les fonctions a valeurs positives : en effet, pour
une fonction a valeurs positives, la convergence de f0+oo f(t) dt est équivalente au fait qu’il existe une suite (z,)
tendant vers +oo et telle que fom" f(t) dt converge dans R.

Sans hypothése supplémentaires sur f, on ne peut pas faire mieux. Mais il existe un cas particulier trés
important.

Théoréme 3.18 (Comparaison série-intégrale). Soit f: [0,+0c0[— R une fonction continue par morceauz, &
+o00 +oo
valeurs positives et décroissante. Alors / f(t)dt converge si, et seulement si, Z f(n) converge.
0 n=0
Démonstration. Soit n un entier. Comme f est décroissante, pour tout ¢t € [n,n+1]on a f(n) > f(t) > f(n+1).
Par positivité et linéarité de I'intégrale, on en déduit que

/""‘1 f(n)dt > /”""1 ft)dt > /”""1 fn+1)dt,

n

autrement dit
n+1
oz [ sz fn).

En sommant ces inégalités pour n compris entre 0 et IV, on obtient que, pour tout entier IV, on a

N N+1 N
Zf(n+1)§/ F)dt <> f(n) .
n=0 0 n=0

N N+1
Si I'intégrale de f converge, on en déduit que Z fln+1)= Z f(n) est bornée, donc la série est convergente.
n=0 n=1
De méme, si la série est convergente alors on voit que f0N+1 f(t) dt est bornée et donc l'intégrale de f converge
(n’oublions pas que la fonction est & valeurs positives!). O

Ce théoréme est surtout utile pour déterminer si une série converge en se ramenant a la convergence d’une
oo

intégrale. Par exemple, en appliquant ce résultat, il est immédiat que Z Pl diverge.
k=0
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Chapitre 4

Suites d’intégrales ; intégrales a paramétre

4.1 Convergence uniforme et conséquences

Définition 4.1. Soit I un intervalle de R, et (f,) une suite de fonctions définies sur I et a valeurs complexes.
On dit que (fy) converge uniformément sur les segments vers f: I — C si, pour tout segment J C I, (fn;)
converge uniformément vers f);.

Remarque 4.2. — Si la suite (f,,) converge uniformément sur I, alors (f,,) converge uniformément sur les
segments vers f. La réciproque est fausse en général : par exemple, si I = [0, +o0o[, la suite de fonctions
o 0 siz <n . ) .
(fn) définie par f,(x) = . converge uniformément sur les segments vers la fonction nulle,
xr—n siz>n
mais ne converge pas uniformément vers la fonction nulle.
— La convergence uniforme sur les segments entraine la convergence simple, mais la réciproque est fausse.

Théoréme 4.3 (échange limite-intégrale pour la convergence uniforme sur un segment). Soit I = [a,b] un
segment de R, et (f,) une suite de fonctions continues par morceaux sur I & valeurs complexes qui converge

uniformément sur I vers une fonction f continue par morceauzr. Alors fab fn(x)dz converge vers fab f(z)dx
quand n tend vers +o0o. Autrement dit, dans ce cas on peut échanger limite et intégrale :

b b
Jim [ [ (ngrfwfm) da

Démonstration. La fonction f est supposée continue par morceaux, donc on peut considérer son intégrale sur

le segment [a, b], et on doit montrer que fa f(z)dz— f; frn(x) dx tend vers 0 quand n tend vers 4+o0o. Pour cela,
fixons € > 0; il existe N € N tel que |f,(x) — f(x)| < € pour tout n > N et tout « € I. On a alors, pour tout

n>N:
b b b
[ t@do [ @] = | [ (1@ - (o) o
b
< [ 1@ - fulalds
b
< / edx
< ¢eb—a).
Ceci prouve bien que f; fz)dz — f; fn(x) dx tend vers 0 quand n tend vers +oo. O

La démonstration ci-dessus a utilisé de maniére essentielle que I était de longueur finie ; dans le cas général,
on peut énoncer le résultat suivant, de démonstration aussi élémentaire.

Théoréme 4.4. Soit I un intervalle de R d’extrémités a et b, et (f,) une suite de fonctions continues par
morceaux sur I & valeurs complexes telle que :

25



1. (fn) converge uniformément sur les segments vers une fonction continue par morceauz f: I — C.
2. 1l existe une fonction g continue par morceauz sur I, d’intégrale finie, et telle que pour tout n € N et tout
x €I on ait |fn(x)] < g(z).

Alors Uintégrale de f sur I est absolument convergente, et f: fn(x) dx converge vers f; f(@)dz quand n tend
vers +00.

Avant de donner la preuve de ce résultat, notons qu’il est plus fort que celui du théoréme (pourquoi ?),
mais on va utiliser celui-ci dans notre preuve.

Démonstration. Pour tout x on a | f,(x)| < g(x) pour tout n, donc en passant a la limite on voit que | f(z)| < g(z)
donc l'intégrale de f sur I est absolument convergente.

Pour prouver que f; fn(x) dx converge vers fj f(x)dz quand n tend vers 400, on traite le cas I = [a,b].

Alors, fixons € > 0; le critére de Cauchy appliqué & g nous donne un ¢ € [a, [ tel que fcbg(ac) dr <e.Ona

alors :
b b
/ f(ac)dm—/ fn(z)dx

b
/wm—anx

c b
:‘/uw—anMf/um—numm

IN

c b
/qunwm%+/umeMMx

IN

l[umnWWM+[UMMM+[ﬁmmm
< |[ v - nepad o2 [ o e
< |[ U@ - ey da 2

Puisque la suite des restrictions de f,, & [a, ] converge uniformément vers la restriction de f a [a, ], le théoréme
précédent nous donne que, pour n suffisamment grand, on a | fac( f(@) = fu(x)) dx| < ¢ . Par conséquent, pour

ff f(z)dx — f; fn(z) dx‘ < 3e. ]

n suffisamment grand on a

Pour raccourcir un peu les énoncés, on appellera une fonction positive ¢ continue par morceaux sur I et
d’intégrale finie une fonction positive intégrable. Le théoréme ci-dessus peut étre un peu surprenant a premiére
vue : la nécessité de l'existence d’une fonction g qui majore toutes les |f,| ne saute pas aux yeux. Mais le
théoréme deviendrait faux si I’on ne rajoutait pas cette hypothése : par exemple, considérons la fonction f, qui
vaut % sur [0,n] et 0 ailleurs. Alors (f,,) converge uniformément vers la fonction nulle sur [0, +oo[, pourtant
fooo fn(z) dz = 1 ne tend pas vers 0 quand n tend vers +oo...

En fait, si ’on suppose qu'il existe une fonction g comme ci-dessus (ce qu’on appelle souvent une hypotheése
de « domination », au sens ou la fonction g domine, ou controle, le comportement de la fonction f), on peut
considérablement améliorer I’énoncé du théoréme [£.4] en remplagant la convergence uniforme par la convergence
simple. C’est le théoréme de convergence dominée, qu’on verra dans la prochaine section.

4.2 Convergence monotone et convergence dominée

On va énoncer deux théorémes permettant d’échanger limite et intégrale. Ces deux théorémes sont difficiles
a établir dans le cadre de l'intégrale des fonctions continues par morceaux , et a la fois naturels et plus généraux
dans le contexte de l'intégrale de Lebesgue. Ils seraient donc une bonne motivation pour mettre & jour notre
version de l'intégrale vers I'intégrale de Lebesgue ; nous ne le ferons pas dans ce cours.

Théoréme 4.5 (Théoréme de convergence monotone). Soit I un intervalle de R d’extrémités a,b, et (fy,) une
suite de fonctions continues par morceauz sur I, & valeurs positives, telles que pour tout x € I la suite (f,(z))
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soit croissante et converge vers f(x). On suppose de plus que f est continue par morceaux sur I. Alors f est
intégrable sur I si, et seulement si, la suite f; fn(x) dzx converge, et alors on a f; f(z)dz =lim f: fn(z) de.

Notons que la suite ff fn(x) dx est croissante, par conséquent soit elle est convergente (et sa limite est égale a
fab f(x) dx), soit tend vers 400 (et alors [, f = 400). Donc, si on admet 'écriture « 400 = +00 », la conclusion

du théoréme s’exprime simplement en disant que, dans tous les cas, f; f(z)dz = lim f; fn(z) da.

Théoréme 4.6 (Théoréme de convergence dominée). Soit I un intervalle de R, d’extrémités a, b et (fy) une
suite de fonctions continues par morceaux sur I a valeurs complexes telle que :

1. (fn) converge simplement sur I vers une fonction f: I — C.

2. Il existe une fonction g & valeurs positives et intégrable sur I telle que | fn(z)| < g(x) pour tout x € I.

Alors ff fn(x)dx converge vers fab f(x)dz quand n tend vers +oo.

On va essayer, dans la prochaine section, de donner une preuve du théoréme de convergence dominée dans
le cadre de I'intégrale définie dans ce cours. Cette partie n’est pas au programme de notre cours, mais constitue
une lecture intéressante pour celles et ceux qui souhaitent comprendre les outils qu’elles ou ils manipulent.

4.3 Preuve du théoréme de convergence dominée

La preuve « naturelle »du théoréme de convergence dominée se fait en utilisant des idées de la théorie de la
mesure. Pour les fonctions continues, on peut s’en passer avec un peu de travail. Pour s’en sortir, on a d’abord
besoin d’établir le théoréme suivant.

Théoréme 4.7 (Théoréme de Dini). Soit I un segment de R, et (f,) une suite de fonctions continues sur I
telle que pour tout x € I la suite f,(x) soit décroissante vers 0. Alors la suite (f,,) converge uniformément vers
0 sur 1.

.8. éore voi i \Y i impli ver-
Remarque 4.8. Ce théoréme permet de voir que, dans certains cas, la convergence simple implique la conver
gence uniforme. Comme on a déja montré ’analogue du théoréme de convergence dominée pour les fonctions
convergeant uniformément, ce résultat va nous étre trés utile.

Démonstration. On raisonne par absurde : si (f,) ne converge pas uniformément vers 0, alors il existe £ > 0
tel que, pour tout n, il existe =, € I tel que f,(z,) > €. Notons que, puisque f,(x) est décroissante pour tout
zel,ona fy(z,) > fn(z,) > e dés que k < n.

Grace au théoréme de Bolzano-Weierstrass, on peut trouver une application ¢: N — N strictement croissante
et telle que (x,(n)) converge vers x € I. Fixons un entier k. Pour tout n suffisamment grand, on a ¢(n) > k et,
par continuité de la fonction fr en z, [fx(2) — fu(2yn))| < § pour n grand. Pour n suffisamment grand, on a
donc

€ e ¢
> o> =,
(@) > ful®pm)) 52€7 5= 35
Ceci montre que la suite (fx(z)) ne tend pas vers 0, contredisant ’hypothése du théoréme. O

On va maintenant montrer un cas particulier du théoréme de convergence dominée, a partir duquel il sera
relativement facile d’obtenir le théoréme général.

Théoréme 4.9 (Cas particulier du théoréme de convergence dominée). Soit I = [a,b] un segment de R, et (fy)
une suite de fonctions continues sur I, a valeurs positives, telles que :
1. (fn) converge simplement sur I vers la fonction nulle.

2. Il existe une constante M telle que |f,(z)| < M pour tout n et tout x € I.

Alors fab fn(x)dx converge vers 0.

i. basée sur des notes de M. Alain Frisch disponibles sur Internet a ’adresse http://alain.frisch.fr/math/tcd.ps
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Démonstration. Fixons € > 0. Etant donnés deux entiers n, k et € I, on pose

gn.k(x) = max(fn (@), far1 (), s farn(@)) -

Pour un n fixé, la suite (gn x(x))r est croissante pour tout = € I; de plus, g, 1 est & valeurs positives et majorée

par M. Par conséquent (toujours a n fixé) la suite f: 9n.k(z) dz converge quand k tend vers +oo, et on peut
donc trouver k,, tel que

b b
Vk € N / Gn.k(z) dz S/ Gn.k, () dz + 2% )

On fixe un tel k,,, et on pose g, () = gnk, (x). On peut également faire en sorte que la suite (k,,) soit croissante,
ce qu’on fait dans la suite.
Faisons une liste des propriétés de la suite (g,) que nous allons utiliser :

1. Chaque g, est une fonction continue.
2. gn(x) > fn(x) pour tout n et tout = € I.
3. max(gn (), gn+1(x)) = gn,kn., () (ici on utilise que (k,) est croissante), ce dont on déduit que
b b . b .
[ maxtgn@), g @) do < [ g, @do+ 5= [an(o)des o
a a a
4. Pour tout = € I la suite g,(z) tend vers 0.

Maintenant, on voudrait bien que (g, ) soit une suite décroissante, pour pouvoir lui appliquer le théoréme de
Dini... Hélas, ce n’est pas tout a fait le cas. On introduit une nouvelle suite de fonctions, en posant pour tout
n et tout x € 1

hn(w) = min(gO(xv )» s agn(x)) .

Pour tout z la suite h,(z) décroit vers 0; de plus chaque h, est continue. Grace au théoréme de Dini, on
peut donc conclure que la suite (h,) converge uniformément vers 0 sur I et donc, puisque I est un segment,

fab hy(z) dx converge vers 0. On en déduit qu’il existe N € N tel que f: hn(x)dx < € pour tout n > N.
Notons que, pour tout z € I et tout n, on a

Bt (&) = min(hp (2), g 1(2)) = B () + g () — macx(h (&), g (2)) -
Donc, pour tout x € I et tout n, on a
0 < gnt1(2) = hnyr () = max(hn(2), gni1(2)) — ha(z) < max(gn(z), gn1(2)) — hn(2) .

Finalement, en utilisant I'inégalité obtenue en ci-dessus, on voit que

b b
0= / (g1 (@) = hnsa (@) do < / (90(@) = hn(@) + o -

On en déduit, en utilisant le fait que gg = hg et la formule donnant la somme des termes d’une série géométrique,

que, pour tout n,

b 1
/ (90(x) = ha(e)) < (1= o) <<

En mettant tout cela ensemble, on obtient finalement que, pour tout n > N, on a
b b b b
/ fu(z)dz < / gn(z)dr < / (gn(z) — hy(x)) dx +/ hn(z)dx < 2¢ .

La suite ( ff fn(x)dz) converge donc vers 0, ce qu’on voulait démontrer. O
On a fait le plus gros du travail.
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Preuve du théoréme de convergence dominée pour une suite de fonctions continues, & valeurs réelles. On se place
dans le cas ou I = [a,b] et (f,) est une suite de fonctions continues, & valeurs réelles, majorée sur I par une
fonction g intégrable et convergeant simplement vers une fonction f continue par morceaux sur I.

Comme |f| < g sur I, f est intégrable. Fixons € > 0. Il existe ¢ € [a, b] tel que fcbg(x) dx <e.

Sur [a, ], la suite de fonctions |f,, — f| est majorée par 2g, qui est bornée sur [a, ¢| car réglée. Donc il existe
M tel que | f(z) — f(z)] < M pour tout z de [a, c]. De plus, |f, — f| converge simplement vers 0 sur [a, c]. On
peut donc appliquer le théoréme qu’on vient de démontrer pour conclure que f: | fn(z) — f(x)| dz tend vers 0
quand n tend vers +oc. En particulier, il existe N € N tel que [ |f(x) — f(2)|dz < ¢ pour tout n > N.

Alors on obtient, pour tout n > N :

/abfn(x)da:—/abf(a:)dx < /:fn(a:)dx—/:f(x)dx + /ben(a:)da:—/cbf(m)dx
< /ablfn(x)—f(w)ldm+ /benu)dx " /bemdx
< /ab|fn(f€)—f($)|d$++2 /Cbg(x)dﬂf
< 3e.

O

Le cas des suites de fonctions continues & valeurs complexes s’en déduit facilement, en décomposant les
fonctions en partie réelle et partie imaginaire.

Le théoréme général, pour les fonctions continues par morceaux , se déduit a partir de ce qu’'on a fait en
utilisant le lemme suivant, dont la preuve est laissée en exercice (ainsi que la fin de la preuve du théoréme
de convergence dominée - si vous avez compris cette section, la fin de la preuve ne devrait pas poser trop de
problémes...).

Lemme 4.10. Soit I = [a,b] un segment de R et f: I — R une fonction réglée. Alors, pour tout € > 0 il existe
une fonction g continue sur I telle que g < f sur I et f;g(x) dx > fab f(z)dx —e.

4.4 Echanges série-intégrale

Les théorémes d’échange limite-intégrale vus précédemment peuvent se reformuler comme des théorémes sur
des séries de fonctions : étudier une série de fonctions ZZEB fi revient & essayer de comprendre le comportement
. n
de la suite (D, _, fx) quand n tend vers +oo.
En particulier, notre théoréme sur la convergence uniforme sur un segment d’une suite de fonctions continues
devient :

Théoréme 4.11. Soit I = [a,b] un segment de R, et f,: I — C une suite de fonctions continues par mor-

+oo . . . +oo b
ceaux telle que Y~ fn converge uniformément vers f continue par morceaux sur I. Alors, > =) fa fu(z) dz
converge et on a

b +oo b b [+oo +oo  n
/a f(x) d:c:;)/a fn(x)dz , ou encore /a (T;fn(x)> dzzg/a fo(x)dz .

Remarque 4.12. Siles (f,,) sont supposées continues, alors f est automatiquement continue en tant que limite
uniforme d’une série de fonctions continues.

Le théoréme de convergence monotone s’applique au cas des séries de fonctions positives, donnant le résultat
suivant.

Théoréme 4.13. Soit I un intervalle de R d’extrémités a,b, et (f,) une suite de fonctions continues par mor-
ceauzr & valeurs positives telle que Z::(’) fn converge simplement vers une fonction f continue par morceauz.
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Alors Z:i% (f: fn(x) dm) converge si, et seulement si, l'intégrale fab f(x) dx est convergente, et dans ce cas on

b 400 b b [+ +oo b
/a f(z) dx:7§<[1 fula) dx) , ou encore /a <;fn(a:)> dx:;/a fon(x)da .

Exercice 4.14. Montrer les deux théorémes ci-dessus, en utilisant les théorémes correspondants pour les suites
de fonctions.

Enfin, le théoréme de convergence dominée a une conséquence particuliérement importante en pratique;
la démonstration de ce théoréme en utilisant la version de I'intégrale que I'on a développée dans ce cours est
difficile et on ne la traitera pas.

Théoréme 4.15. Soit I un intervalle de R d’extrémités a,b et (f,,) une suite de fonctions de I dans C, continues
par morceauz, telle que ZZ:{) fn converge simplement sur I vers une fonction f continue par morceaux. On

suppose que la série :i% fab |frn(x)| dx converge. Alors lintégrale de f sur I converge absolument, et on a

b 400 b b [+oo oo n
/a f(z) dx:nz::o </a fn(x) dx) , ou encore /a (Z fn(x)> d:r—nzz:o/a fn(z)dx .

n=0

Remarque 4.16. Si on fait I'hypothése supplémentaire que la suite de fonctions > |f,| converge vers une
fonction continue par morceaux, alors on peut déduire le théoréme ci-dessus des théorémes de convergence
monotone et de convergence dominée qu’on a vus précédemment. Une difficulté technique de la démonstration
est qu’il pourrait y avoir des points ou la suite > |f,| diverge, ou bien il se pourrait que la limite ne soit pas
continue par morceaux ; ces difficultés se lévent relativement facilement si I’on utilise la théorie de la mesure,
mais posent un vrai probléme dans le cadre de notre version de U'intégrale...

4.5 Intégrales & paramétre

Dans cette section, on veut considérer des fonctions définies par une intégrale, et étudier la continuité/la
dérivabilité de ces fonctions. Considérons un exemple : la fonction F' définie sur R par

o0 gin(z
F(x) :/0 ( t)dt

t

11 est clair que F'(0) = 0. Il n’est pas clair que F'(z) soit bien définie pour x # 0; par exemple, si > 0, le
changement de variable u = xt donne

+oo ;
F(z) = / Mdu . (exemple vu en cours) .
0

U 2
Si z < 0, le changement de variables u = —z donne
+00 i
F(x):/ sin(~w) , T
0 u 2

La fonction f: (z,t) — @ est continue sur Rx]0, 400, F(z) = f0+°o f(z,t)dt est bien définie pour tout

z € R... mais n’est pas du tout continue puisqu’elle ne prend que 3 valeurs. Etant donné ce qu’on a vu dans les
sections précédentes, il n’est pas étonnant qu’on doive introduire une hypothése de domination pour obtenir la
continuité d’une intégrale & paramétres.

Théoréme 4.17 (Théoréme de continuité des intégrales & paramétre). Soit I un intervalle de R d’extrémités
a,b, J un intervalle de R et f: J x I — C une fonction telle que :

1. Pour tout x € J, t — f(x,t) est continue par morceauzr sur I.

2. Pour toutt € I, x — f(x,t) est continue sur J.

3. Il existe une fonction g intégrable & valeurs positives et telle que |f(x,t)| < g(t) pour tout (x,t) € J x I.

Alors la fonction F: x f; fx,t)dt est bien définie et continue sur J.
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Remarque 4.18. Les deux premiéres hypothéses ci-dessus sont automatiquement satisfaites si f est continue
sur J x I. Par ailleurs, on peut affaiblir 'hypothése de domination : pour obtenir la conclusion, il suffit que,
pour tout segment J’ contenu dans J, il existe une fonction g positive et intégrable telle que |f(z,t)| < g(¢)
pour tout x € J' et tout ¢t € I. En effet, le théoréme ci-dessus appliqué sur J’ montre que F est continue sur
J’; comme J est une union de segments, cela montre que F est continue sur J'.

Démonstration. Pour voir que F est bien définie sur J, il suffit de remarquer que, puisque ¢ — f(x,t) est
continue par morceaux et |f(x,t)| < g(t), Uintégrale f: f(x,t)dt est absolument convergente, donc convergente.

Soit maintenant (z,) une suite d’éléments de J qui converge vers x € J. Alors la suite de fonctions (h,,)
définie par h,(t) = f(x,,t) converge simplement vers t — f(x,t) puisque, a ¢ fixé, z — f(x,t) est continue; et
| (t)] < g(t) pour tout ¢t € I. Le théoréme de convergence dominée nous donne alors

b b
li = .
Jim [0 / Fot)dt
Autrement dit, lim(F(z,)) = F(z) pour toute suite x,, qui converge vers x € J : on vient de prouver que F est
continue sur J. O

On pourrait donner une preuve d’un cas un peu plus élémentaire de ce théoréme (en supposant f continue
sur J x I) « a la main », en n’utilisant pas le théoréme de convergence dominée.

Dans le cas ou I est un segment (et ot on ne considére donc pas d’intégrales généralisées) et ou f est
continue, on peut se passer de I'hypothése de domination (qui est en fait automatiquement satisfaite).

Corollaire 4.19. Soit I = [a,b] un segment de R, J un intervalle de R et f: J x I — C une fonction continue
sur J x I. Alors la fonction F': x — f; f(z,t) dt est continue sur J.

Démonstration. Commencgons par le cas oul J est aussi un segment. Alors la fonction f, étant continue sur
J x I qui est compact (produit de deux segments : c’est un rectangle dans le plan), est bornée sur J x I. Par
conséquent, il existe M tel que | f(z,t)| < M pour tout (x,t) € J X I, et on peut appliquer le théoréme précédent
avec la fonction g: t — M, qui est intégrable sur I, pour conclure que F' est continue.

Le raisonnement ci-dessus montre que, pour tout segment J' C J, la restriction de f & J' est continue;
comme J est une réunion de segments, cela prouve que f est continue sur J. O

On peut, de maniére analogue, établir un théoréme de dérivabilité des intégrales & parameétre. Rappelons
avant cela que, si f est une fonction de deux variables, la notation %(xo, to) désigne la dérivée de la fonction
x — f(z,tg) au point xg.

Théoréme 4.20 (Théoréme de dérivabilité des intégrales & parameétre). Soit I un intervalle de R d’extrémités
a,b, J un intervalle de R et f: J x I — C une fonction telle que :

1. Pour tout x € J la fonction t — f(x,t) est continue par morceauz sur I.

. 1l existe xog € J tel que f; f(xo,t)dt converge.

2
3. % existe sur J x I.

xr
4. Pour tout  dans J, t — g—i(x, t) est continue par morceaux sur I.
5

. 1l existe g intégrable et a valeurs positives telle que

%(x,t)‘ < g(t) pour tout (z,t) € J x I.
Alors la fonction F': x f; fx,t)dt est bien définie sur J, dérivable, et pour tout x € J on a

b
F'(z)= g—i(z,t)dt :

a

Remarque 4.21. Il est notable que ’on n’ait besoin que de supposer la convergence de F' en un point pour
obtenir la convergence de F' sur J tout entier. Par ailleurs, notons que la quatriéme hypothése ci-dessus est
vérifiée si jamais % existe et est continue sur J x I, ce qui sera le cas dans la plupart de nos exemples. Dans
ce cas, la fonction F est de classe C!, puisque le théoréme de continuité des intégrales & paramétre s’applique
pour prouver que sa dérivée est continue sur J.

Par ailleurs, ici encore, on pourrait affaiblir 'hypothése de domination de g—i en demandant simplement que,
pour tout segment J' contenu dans J, il existe g positive et intégrable sur I telle que |%(x, t)| < g(t) pour tout

(z,t) € J' x I, et obtenir la méme conclusion.
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Démonstration. Il nous faut commencer par montrer que F'(x) est bien définie sur J. Pour ¢ € I fixé, 'inégalité
des accroissements finis, appliquée a la fonction z — f(x,t), montre que 'on a

.0) = oo, <o = zalsup |52 @0)) <o = zalate)
e €

Fixons x € J. L’inégalité ci-dessus montre que fab(f(x, t) — f(zo,t)) dt converge, par conséquent fab flz,t)dt
converge puisque c’est la somme de deux intégrales convergentes.
Ensuite, toujours pour x € J fixé, prenons une suite (z,) qui tend vers x (avec x,, # x) et considérons la
suite de fonctions
f(@,t) — f(zn,t)

r — Ty

hop: t—

Pour un ¢ € I fixé, I'inégalité des accroissements finis applliquée comme ci-dessus montre que |h,(t)| < g(t).

De plus, quand n tend vers 400, h,(t) converge vers g—i(x, t) (c’est un taux d’accroissement).

Autrement dit, (h,,) converge simplement vers ¢ — %(m, t); on peut appliquer le théoréme de convergence

dominée, et obtenir que

b b
im [ h@di= [ v

n—+o0o a a 81’

On vient de montrer que, pour toute suite z,, convergeant vers x (avec x,, #  pour tout n), on a

- b
lim M — 8—f(x,t)dt .
n—+o0 T — Tp . Ox

Cela revient a dire que F' est dérivable et que

b
F'(x) :/ %(:ﬂ,t) it

Notons encore ici que, si on avait supposé = — %(m, t) continue pour tout ¢ € I, on obtiendrait que F' est

de classe C'' puisque le théoréme de continuité des intégrales a paramétre, appliqué a la formule ci-dessus pour

F’, montrerait que F’ est continue. O
Pour clore ce chapitre, notons que, si I est un segment et g—g est continue sur J x I, on peut se passer de

I’hypothése de domination sur % (qui est en fait automatiquement satisfaite sur tout segment de J, exactement
comme pour le théoréme de continuité des intégrales & parameétre)

Corollaire 4.22. Soit I un segment de R d’extrémités a,b, J un intervalle de R et f: J x I — C une fonction
telle que :

1. Pour tout z € J la fonction ¢t — f(z,t) est continue par morceaux sur I.
2. 1l existe o € J tel que ff f(xo,t) dt converge.
3. % existe et est continue sur J x 1.

Alors la fonction F': x — f; f(x,t)dt est bien définie sur J, de classe C!, et pour tout x € J on a

b
F'() :/ g—i(:c,t) dt .

Démonstration. Exercice (recommandé). O

Concluons ce chapitre par un exemple : pour z > 0, on pose

1 e_x2(1+t2) x . 2
F(x) :/ ————dt et G(z)= </ et dt) .

A z fixé, G(x) est le carré de l'intégrale d’une fonction continue sur un segment, donc G est bien définie ; de plus,
le théoréme fondamental de 'analyse, et la formule de dérivation d’un produit, donnent que G est dérivable sur

R et x "
G'(z) =2 / et dt = 2/ e 1 g,
0 0
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_z2 2
Comme la fonction (z,t) — f(z,t) = % est continue sur R x [0, 1], on peut affirmer grace au théoréme

de continuité des intégrales & paramétre que la fonction F' est bien définie et continue. De plus, on a

of

ox

—l’2(1+t2)
(z,t) = —22(1+ tQ)etQT — —2pe " ()

Cette fonction est continue sur R x [0,1], donc on peut appliquer le théoréme de dérivation des intégrales a
parameétre et obtenir que F' est dérivable et

1
F'(z) = / —2pe~® (14%) gt
0
Pour z > 0, on peut faire le changement de variables u = xt dans cette intégrale, ce qui donne
z 2 2
F'(z) = —2/ e W du=-G'(x) .
0

Par conséquent, la fonction F'+G est de dérivée nulle sur |0, +o00[, donc constante sur [0, +o0o[. Comme F(0) =
et G(0) =0, on a F'(z) + G(x) = § pour tout x € [0, +o0].

L’intégrale I = 0+O° et dt converge, donc la limite de G(z) quand z tend vers +oo existe et vaut 2. Pour
déterminer la limite de F' en +o00, considérons une suite x,, qui tend vers +oo. On a

1 ef‘ri(l“rtQ)
F(z) = / - dt.
0 t?P+1

jus
4

La suite de fonctions f,: ¢ — % converge simplement vers 0 quand n tend vers +oo; de plus, on a
0 < fult) < H%’ qui est intégrable sur [0,1]. Par conséquent on peut appliquer le théoréme de convergence

dominée et obtenir que lim,_, | fol fn(t)dt = 0. Autrement dit, pour toute suite (x,) qui tend vers +o0, on a
lim;, 400 F'(z,) = 0, ce qui revient a dire que lim,—, o, F(z) = 0.
De tout cela, on déduit que I2 = T, ou encore

4
—+oo
/ et dt:ﬁ .
0 2

Cette intégrale est appelée « intégrale de Gauss »et est importante en probabilités

ii. voir par exemple http://fr.wikipedia.org/wiki/Intégrale_de_Gauss
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Chapitre 5

Fonctions de plusieurs variables

On va maintenant considérer des fonctions de plusieurs variables réelles, a valeurs dans un espace vectoriel
réel de dimension finie. Autrement dit, on va étudier des fonctions définies sur une partie U de R™ et a valeurs
dans R™. On va commencer par rappeler quelques notions élémentaires de topologie en dimension finie ; toutes
ces notions ont été vues dans 'UE « Topologie élémentaire », donc il s’agit simplement de révisions que nous
ne ferons pas (ou peu) en cours. De méme, on passera vite en cours sur les propriétés des fonctions continues
de plusieurs variables, ainsi que les définitions élemntaires liées a la différentiabilité.

5.1 Rappels de topologie en dimension finie

Définition 5.1. Soit n un entier. Une norme sur R™ est une application N telle que :

1. Ve e R™ N(z) > 0. (Positivité de la norme)
2.V eR" N(z) =0 2 =0. (Axiome de séparation)
3. Vx e R" VA € R N(Az) = |A|N(x). (Homogénéité de la norme)

)

4. Vr,y e R" N(z+y) < N(z)+ N(y). (Inégalité triangulaire

Intuitivement, une norme sert & mesurer la longueur des vecteurs : une longueur est positive, le seul vecteur
dont la longueur est nulle est le vecteur nul, la longueur de Az est |A| fois la longueur de z, et la longueur de la
somme de deux vecteurs est plus petite que la somme de leurs longueurs.

On ne va pas manipuler de normes ésotériques dans ce cours, mais il est important de bien comprendre cette
notion abstraite. Rappelons quelques exemples.

Exemple. — La norme euclidienne sur R™ est définie par la formule suivante :

— La norme 1 est définie par
n
H(xla s >$71)H1 = Z ‘xll :
i=1

— Enfin, la norme infinie est définie par

l(z1,...,20)|lcc = max |z;] .
i=1,...,n
Théoréme 5.2 (Théoréme de Bolzano-Weierstrass pour || - ||oo). Soit z; = (2%, ..., 2%) une suite d’éléments
de R™ telle que pour tout k € {1,...,n} la suite (x%) soit bornée. Alors il existe une application strictement

croissante 1: N = N et & € R" tel que ||z — x|l tende vers 0.
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Démonstration. Pour tout k € {1,...,n} fixé, la suite x} est une suite bornée de réels, et on peut lui appliquer

le théoréme de Bolzano-Weierstrass pour les suites réelles. On commence par trouver ¢;: N — N strictement

Wl(%@z(i)))

croissante telle que (x(fl(i)) converge vers x1, puis @2 tel que (5 converge vers To, etc., jusqu’a ¢, telle

que (xﬁl(w“'%((i)))) converge vers . Ensuite, on pose ¥(i) = v1(pa(... (¢n(7)))). La fonction ¢: N — N est
strictement croissante, et par construction on a que xf(z converge vers xj pour tout k € {1,...,n}. En posant
x = (x1,...,%y), ceci est équivalent & dire que || — 2y ;) [|oo tend vers 0. O

Dans la suite, on utilisera principalement la norme infinie. Pour ce que nous souhaitons faire, le choix de
norme ne sera pas fondamental, & cause du théoréme suivant.

Théoréme 5.3 (Théoréme d’équivalence des normes en dimension finie). Soit n > 1 un entier, et N1, No deux
normes sur R™. Alors Ny et Ny sont équivalentes, c’est-a-dire qu’il existe deux réels strictement positifs m, M
tels que

Vo € R" mNi(z) < Na(x) < MNi(x) .

Démonstration. Soit N une norme sur R". Soit (ey, . .., ey) la base canonique de R™. Pour z = (21, ..., x,) € R,
I'inégalité triangulaire appliquée & N nous donne

N(z)=N (Z xkek> < okl N(er) < [l2lle Y Nex) -
k=1 k=1 k=1

En posant M = >"}_, N(ey), on vient de montrer que N(z) < M| z|~ pour tout z € R™.

Soit maintenant A = {z € R™: ||z||cc = 1}, et m = inf{N(z): x € A}. Il existe une suite (z;) d’eléments de
A tels que N(z;) tende vers M. Par le théoréme de Bolzano-Weierstrass pour || - ||, on peut trouver une suite
extraite (2,(;)) telle que ||z,;) — | tende vers 0. Il est facile de vérifier que € A (en particulier = est non
nul), et de plus on a N(z,;) — ) < M||z; — 2[[oo|donc N(z,(;) — o) tend vers 0 quand 4 tend vers +oo.

Par I'inégalité triangulaire pour N, [N () — N(z)| < N(z4) — x), donc N(z,(;)) converge vers N(x),
par conséquent N (z) = m est non nul puisque = est non nul. Ce qui nous intéresse est que m > 0, et que, par
définition,

Ve € R" ||z]jleo =1= N(z) >m .

Alors, si y € R™ est un vecteur non nul de R”, I'inégalité ci-dessus appliquée au vecteur nous donne

Iyl

N(y)
ylloo

>m.

Yy e R™\ {0} N (HJi) > m, ou encore

On vient donc de démontrer que N(y) > m|ly||e pour tout vecteur de R™ différent de 0. Cette inégalité est bien
str vraie aussi en 0, et finalement on a trouvé m, M strictement positifs tels que

Vy € R" m|lylloc < N(y) <m = M|yllco -

Ceci prouve que N est équivalente a || - ||oo ; toutes les normes sont donc équivalentes a || - ||, donc elles sont
toutes équivalentes entre elles. O

Définition 5.4. Soit N une norme sur R”, z € R” et R > 0 un réel. La boule ouverte de centre x et de rayon
R est I'ensemble
B(z,R[={y€R": N(z —y) < R} .

En dimension 2, si N est la norme euclidienne, la boule ouverte de rayon R et de centre 0 est le disque ouvert
de rayon R. Si par exemple NN est la norme infinie, la boule ouverte de centre 0 et de rayon R est 'intérieur du
carré | — N, N[x] — N, N|[.

On peut maintenant définir les ouverts et les fermés de R™.

Définition 5.5. Soit n un entier > 1, U C R™ et N une norme sur R”. On dit que U est ouvert si pour tout
z € U il existe r > 0 tel que la boule ouverte de centre x et de rayon r soit contenue dans U.
On dit que F' C R™ est fermé si son complémentaire est ouvert.

Remarquons que, & cause du théoréme d’équivalence des normes en dimension finie, la notion d’ensemble
ouvert ne dépend pas du choix de la norme dans la définition. Il en va de méme pour la notion d’ensemble fermé.
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Exercice 5.6. Soit N une norme sur R™. En utilisant I'inégalité triangulaire, montrer que toutes les boules
ouvertes pour N sont des ouverts.

Définition 5.7. Soit (x;) une suite d’élements de R, N une norme sur R” et € R™. On dit que z,, converge
vers x si N(z — x;) tend vers 0 quand 4 tend vers +oo.

Encore une fois, la notion de suite convergente ne dépend pas de la norme choisie, ce qui nous donne la
caractérisation suivante.

Proposition 5.8. Soit (x;) une suite d’élements de R™, N une norme sur R™ et x € R™. Notons x; =

(2%, ..., 2%) et x = (z1,...,2,). Alors (z;) converge vers x si, et seulement si, (z},) converge vers xy, pour tout
ke{l,...,n}.
Démonstration. La condition de I’énoncé exprime simplement le fait que ||z; — || tend vers 0. O

Proposition 5.9 (Caractérisation des fermés par les suites). Soit n > 1 un entier et F une partie de R™. Alors
F est fermé si, et seulement si, pour toute suite (x;) d’élements de F qui converge on a lim(z;) € F.

Démonstration. Fixons une norme N sur R™.

Supposons d’abord que F' est fermé, i.e. que son complémentaire est ouvert, et qu’il existe une suite (x;)
d’élements de F qui converge vers x ¢ F. Alors, il existe r > 0 tel que B(z,r[NF = @) et, comme N (x; — ) tend
vers 0, on voit que N(z; —x) < r pour ¢ suffisamment grand, donc x; € B(z,r[ pour ¢ grand, ce qui contredit
I’hypothése selon laquelle z; € F'. Donc, si F' est fermé, pour toute suite (x;) d’élements de F' qui converge on
a bien lim(z;) € F.

Ensuite, supposons que F' n’est pas fermé, i.e. que son complémentaire n’est pas ouvert. Cela signifie qu’il
existe z € F tel que, pour tout r > 0, la boule ouverte de centre x et de rayon r ne soit pas contenue dans le
complémentaire de F. En particulier, pour tout ¢ > 0 il doit exister z; € F' tel que N(z — z;) < % La suite x;
est une suite d’éléments de F' qui converge vers z, qui n’appartient pas a F. O

Définition 5.10. Soit F' une partie de R™. On dit que F' est compacte si de toute suite (z;) d’éléments de F'
on peut extraire une sous-suite qui converge vers ¢ € F.

Proposition 5.11. Une partie compacte de R™ est nécessairement fermée.

Démonstration. Soit F une partie compacte de R™, et (z;) une suite d’éléments de F' qui converge vers x € R™.
Par compacité de F, on peut extraire une sous-suite (z,(;)) qui converge vers 2’ € I'. Comme (z;) tend vers z,
on a aussi lim(z,(;y) = z, donc . = 2’ € F. O

En fait, en dimension finie, on a une caractérisation simple des parties compactes.

Définition 5.12. Soit A une partie de R™. On dit que A est bornée s’il existe une norme N sur R", et une
constante M, telles que

Vee AN(@Z)<M.

Encore une fois, a cause du théoréme d’équivalence des normes, s’il existe une norme N et une constante M
telles que Vo € A N(x) < M, alors pour toute norme N’ il existe une constante M’ telle que Vo € A N'(x) < M.

Exercice 5.13. Soit (z;) une suite d’éléments de R™ qui converge vers € R™. Montrer que la suite (x;) est
bornée, i.e {z;: i € N} est un sous-ensemble borné de R™.

Théoréme 5.14 (Théoréme de Bolzano-Weierstrass). Soit (x;) une suite bornée dans R™. Alors on peut en
extraire une sous-suite convergente.

Démonstration. C’est une conséquence immédiate du théoréme de Bolzano-Weierstrass pour || - || et de 'équi-
valence des normes en dimension finie.

Théoréme 5.15. Soit F' une partie de R™. Alors F' est compacte si, et seulement si, F' est a la fois fermée et
bornée.
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Démonstration. Supposons d’abord F' compacte. On a déja montré que F' est fermée. Pour voir que F' est
bornée, raisonnons par I’absurde : si ce n’est pas le cas, il existe une suite (z;) d’éléments de F telle que ||z;||oo
tende vers +oo. Alors (z;) ne peut pas avoir de sous-suite convergente, puisque aucune sous-suite de (x;) n’est
bornée et une suite convergente est nécessairement bornée. Par conséquent F' n’est pas compacte, contredisant
notre hypothése de départ.

Supposons maintenant que F' soit fermée et bornée, et soit x; = (x%,...,x%) une suite d’éléments de F.
D’aprés le théoréme de Bolzano-Weierstras, il existe z € R™ et ¢: N — N strictement croissante tels que (xy;)
converge vers & = (Z1,...,T,); comme F est fermé, x € F, et on vient de trouver une sous-suite de (z;) qui
converge vers © € F'. Autrement dit, on vient de prouver que F' est compacte. O]

Exercice 5.16. Soient Aq,..., A, des parties fermées et bornées de R. Montrer que A; X As X ... X A, est un
compact de R™.

Ce résultat est souvent utilisé dans le cas ot chaque A; est un segment.

5.2 Fonctions continues de plusieurs variables

Définition 5.17. Soit A une partie de R", et f: A — R™ une fonction. On dit que f est continue en a € A si,
pour toute suite (a;) d’éléments de A qui converge vers a, on a lim f(a;) = f(a). On dit que f est continue sur
A si f est continue en a pour tout a € A.

Exercice 5.18. Soit A une partie de R™, et f: A — R™ une fonction. Soit N7 une norme sur R™ et Ny une
norme sur R™. Montrer que f est continue en x € A si, et seulement si, pour tout ¢ > 0 il existe § > 0 tel que

Vye ANi(z—y) <d= Nao(f(z) — fy)) <e.

Proposition 5.19. Soit A une partie de R™, et f: A — R™ une fonction; on note f(x) = (f1(x),..., fm(z)).
Alors f est continue sur A si, et seulement si, chaque fonction fi est continue sur A.

Démonstration. Exercice, en utilisant la norme infinie. O

Pour cette raison, les fonctions de plusieurs variables réelles et a valeurs réelles jouent un réle particuliérement
important.

Exercice 5.20. Soit f: R? — R une fonction. Montrer que si f est continue alors pour tout € R ’application
y — f(z,y) est continue sur R, et pour tout y € R lapplication x — f(x,y) est continue sur R.
On considére la fonction définie f sur R? par

B () # (0,0
fley) = {o " si (z,y) = (0,0)

Montrer que f n’est pas continue en 0, et que pourtant pour tout x € R l'application y — f(z,y) est continue
sur R, et pour tout y € R I'application z — f(x,y) est continue sur R.

Théoréme 5.21. Soit A une partie compacte non vide de R™, et f une fonction continue de A dans R. Alors
f est bornée sur A et atteint ses bornes.

Démonstration. La preuve est essentiellement la méme que dans le cas des fonctions de R dans R. Soit M
la borne supérieure de f(A) (a ce stade de la preuve, il est possible que M = +00). Il existe une suite (z;)
d’¢léments de A telle que lim f(x;) = M. Comme A est compacte, (7;) admet une sous-suite (z,;))qui converge
vers € A. Par continuité de f, on obtient f(x) = lim f(z,(;)) = M, ce qui montre & la fois que M est finie et
que M est atteinte.

Le cas de la borne inférieure se traite de la méme fagon (ou, si on ne veut pas répéter la méme preuve, on
applique le cas précédent a la fonction g = —f). O

Ce résultat est ce dont nous aurons besoin dans la suite; notons qu’il se généralise facilement au cas des
fonctions a valeurs dans R™.

Théoréme 5.22. Soit A une partie compacte non vide de R™, et f une fonction continue de A dans R™. Alors
f(A) est compacte.
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Démonstration. Pour voir que f(A) est compacte, prenons une suite (y;) d’élements de f(A). Alors il existe une
suite (a;) d’éléments de A tels que f(a;) = y;. Par compacité de A, il existe une sous-suite (a,(;)) qui converge
vers a € A. Alors y,;) = f(ay,()) converge vers f(a) puisque f est continue. On vient de construire une suite
extraite de (y;) qui converge vers un élément de f(A), ce qui achéve la démonstration. O

Définition 5.23. Soit A une partie de R™, et f: A — R" une fonction. Soit N1 une norme sur R" et Ny une
norme sur R”. On dit que f est uniformément continue si pour tout € >0 il existe § > 0 tel que

Ve,y € ANi(z—y) <J= Nao(f(x) — fly)) <e.

Bien str, toute fonction uniformément continue sur A est continue; la réciproque, qui est fausse en général
(elle est déja fausse pour les fonctions de R dans R!) est vraie sur les compacts. A cause de I’équivalence des
normes en dimension finie, la notion de fonction uniformément continue ne dépend pas du choix de Ny,Ns.

Théoréme 5.24 (Théoréme de Heine-Borel). Soit A une partie compacte de R™, et f: A — R™ une application
continue. Alors f est uniformément continue sur A.

Démonstration. En exercice : c’est essentiellement la méme preuve que celle du théoréme (qui est un cas
particulier du théoréme ci-dessus). O

5.3 Différentiabilité des fonctions de plusieurs variables

Définition 5.25. Soient n,m > 1 deux entiers, U un ouvert de R™ et f: U — R™ une fonction. Soit N une
norme sur R”. On dit que f est différentiable en x € U s’il existe une application linéaire D: R™ — R™ et une
fonction e: U — R™ telles que l'on ait, pour tout y € U,

fly)=f(@)+ Dy — =)+ N(y —x)e(y), avec lim e(y) =0.

y—T
On dit que f est différentiable sur U si f est différentiable en x pour tout z € U.

Cette définition ne dépend pas du choix de la norme N. Si n = m = 1, on retrouve la définition usuelle de la
dérivée : Papplication D est alors la multiplication par f’(z). Remarquons aussi qu'une application différentiable
en x est nécessairement continue en x.

Le premier exemple d’application différentiable est donné par les applications linéaires : si f est une applica-
tion linéaire de R™ dans R™, alors pour tout z,y € R™ on a f(y) = f(z)+ f(y —x) +0 par linéarité, donc on voit
que f est différentiable et d,(f) = f pour tout x € R™. L’idée de la différentiabilité est en fait de s’intéresser aux
fonctions qu’on peut bien approcher localement par une fonction linéaire - en espérant montrer des théorémes
valables pour toutes les fonctions différentiables en commencant par les montrer pour les applications linéaires.
Souvent on a besoin d'une notion plus forte que la différentiabilité (fonctions de classe C) qu’on verra plus loin
dans ces notes.

Lemme 5.26. Soient n,m > 1 deux entiers, U un ouvert de R™ et f: U — R™ une fonction. Si f est
différentiable en x € U, alors l'application D définie ci-dessus est unique; on l’appelle différentielle de f au
point x et on la note df, ou df(x).

Démonstration. Fixons une norme N sur R". Soient D7, Dy deux applications linéaires de R™ dans R™ et &1, &9
deux fonctions de U dans R™ telles que, pour tout y € U, on ait

fly) = f@)+Dily —2) + Ny —w)er(y) avec lim e(y) =0 et
fly) = f@)+ D2y —2) + Ny — )ex(y) avec lim e(y) =0

Alors, pour tout y € U, on a

Di(y — ) — Da(y —x) = N(y — z)(e2(y) — e1(y)) -

Comme U est ouvert, il existe 7 > 0 tel que N(y —z) < r = y € U. Posons u = y — x; ’équation ci-dessus
devient, pour tout u tel que N(u) < r :

D;(u) — Da(u) = N(u)(e2(u+z) —e1(u + x)) .
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Pour X €]0, 1], on a alors, pour tout u tel que 0 < N(u) <r :
D1 ()\U) — DQ ()\U)
N(u)
Le vecteur de droite tend vers 0 quand A tend vers 0 tandis que, par linéarité de D1, D3, le vecteur de gauche
est constant égal a

=e(M+2a)—e1(Au+z).

Dy (u) = Dy(u)
N(u)
On en déduit que, pour tout u tel que 0 < N(u) < r on a Di(u) = Da(u). Encore par linéarité, cela entraine
que Dy = Dy : pour tout v € R™ on a N(\v) < r pour X assez petit, et donc Dq(Av) = Da(Av); par linéarité
on a donc AD;(v) = AD3z(v) pour tout A assez petit, autrement dit Dy (v) = Da(v). O

Comme pour les fonctions de R dans R, la différentiabilité se comporte bien par rapport aux combinaisons
linéaires et & la composition.

Proposition 5.27. Soient n,m > 1 deux entiers, U un ouvert de R™, f,g: U — R™ deux fonctions différen-
tiables et «, B deux réels. Alors af + Bg est différentiable sur U, et d(af + Bg) = adf + Bdg.

Démonstration. C’est une conséquence immédiate des définitions (donc un bon exercice si jamais ce résultat
n’est pas clair pour vous). O

Théoréme 5.28 (Regle de la chaine). Soient n,m,p > 1 trois entiers, U un ouwvert de R™, V' un ouvert de R™,
f:U—=Vetg: V—RP deux fonctions. Supposons que f soit différentiable en x € U et que g soit différentiable
en f(x). Alors go f est différentiable en x, et on a

d(g o f)(x) = dg(f(x)) o df (x) .

Avant de donner cette preuve, rappelons que, si f: R™ — R™ est une application linéaire, que R™ est muni
d’une norme N; et R™ est muni d’une norme Ny alors on définit la norme de f relativement a Ny, No par

HfHNth = Sup NQ(f(x)) :
N1(1)§1

La propriété fondamentale de cette norme est qu’on a, pour tout z € R,

No(f(z)) < | flIny No N1 ()

Preuve de la régle de la chaine. Fixons une norme Nj sur R™ et une norme Ns sur R™. On a :

Ve U fly) = f@)+dfaly—a)+ Ni(y—2)ei(y) avec limei(y) = 0 et
VeV g() = glf@)+daso(z = F@) + Nale = f(a))ea(s) avee lim o(z) =0

On a donc, pour tout y € U :
9(f) = g(f(x)+dfuly — ) + Ni(y — 2)e1(y))
= g(f(@) +dgs)(dfe(y —2)) + dgs@)(N1(y — 2)e1(y)) + Na(da(f)(y — ) + Ni(y — @)e1(y))e2(f(v))

Par linéarité de dgy (), on a

dgs(z)(N1(y — 2)e1(y)) = Ni(y — 2)dgs(x)(e1(y)) = Ni(y — )es(y),
ot e3(y) tend vers 0 quand y tend vers z. Ensuite, on a, en notant M la norme de d,.(f) relativement & Ny, No :
No(do(f)(y —2) + Ni(y —2)e1(y)) < Na(de(f)(y — 2)) + No(Ni(y — 2)e1(y))
< MNi(y— )+ Ni(y — z)Na(e1(y)) -

On a donc
No(de (f)(y — 2) + Ni(y — 2)er(y))ea(f(y)) = Nily — 2)ealy),
avec £4(y) qui tend vers 0 quand y tend vers x, et on a finalement obtenu :
9(f (W) = 9(f(2)) + dg () (de(f)(y — ) + N1y — 2)(e3(y) + £a(y)) -
Ceci montre que g o f est différentiable en x et que d(g o f)(z) = dg(f(z)) o df (z). O

i. qui mérite son nom de norme : c’est une norme sur ’espace vectoriel formé par les applications linéaires de R™ dans R™.
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Définition 5.29. Soient n,m > 1 deux entiers, U un ouvert de R™ et f: U — R™ une fonction différentiable

en x € U. On appelle matrice jacobienne de f en x € U la matrice de la différentielle de f en z relativement
aux bases canoniques de R™, R™. On la note M (f)(z) ou M, (f).

Pour 'instant, tout ce qu’on a fait est trés abstrait - par exemple, comment calculer la différentielle en un
point z de I'application de R? dans R? définie par f(r,6) = (rcos(f),rsin(f)) ? Comme pour la continuité, il
est utile de se ramener au cas des fonctions a valeurs réelles; dans ce cas, la différentielle en un point est une

application linéaire de R™ dans R, donc sa matrice est un vecteur ligne avec n entrées.

Lemme 5.30. Soient n,m > 1 deux entiers, U un ouvert de R™ et f: U — R™ wune fonction. On note

f=f1, ., fm). Alors f est différentiable en x € U si, et seulement si, chaque f; est différentiable en x, et on
a
M(f1)(x)
M(f)(z) = =
M(fn)(z)
La matrice ci-dessus est la matrice a m lignes et n colonnes dont la i-iéme ligne est égale & M (f;). Dans le cas
d’une application définie sur un intevralle ouvert de R et a valeurs dans R™, notée f(x) = (f1(z),..., fn(z)), le

résultat ci-dessus dit que f est différentiable en x si, et seulement si, chaque f; est dérivable en x, et la matrice
de la différentielle de f est le vecteur de R™ de coordonnées (fi(x),..., f(x)), que on note f’(x).

Démonstration. C’est une conséquence immédiate de la définition, et donc un bon exercice pour vérifier que
celle-ci est bien comprise... [

Définition 5.31. Soit n > 1 un entier, j € {1,...,n}, U un ouvert de R et f: U — R une fonction. On dit
que f admet une dérivée partielle par rapport a la variable x; en x = (21,...,2,) € U si application

gj: t— f($17 A ,$j,17t,$j+1, A ,.’En)
admet une dérivée en t = x;. Dans ce cas, on pose %(f)(x) = g;(x5).

Explicitement, ce que cette définition signifie est : on regarde I’application obtenue en ne faisant varier que
la j-iéme variable; si cette application a une dérivée au point ol on s’est placé, cette dérivée est la dérivée
partielle de f par rapport a la variable ;.

Exemple. Soit f: (r,0) — rcos(d). Cette application a des dérivées partielles selon la variable r et la variable
6 en tout point de R?, et on a
0 0
a—{(r, 0) = cos(0) et 8—£(f) = —rsin(f) .
Théoréme 5.32. Soient n,m > 1 deux entiers, U un ouvert de R™ et f: U — R™ wune fonction. On note
f = (f1, -, fm). Alors, si [ est différentiable en x € U, chaque f; admet des dérivées partielles en x par
rapport aux variables x1,...,x, et on a

Oi(z) ... i(y)
M(f)@)=| : ..
%fT’;(m) %’:(m)

La matrice ci-dessus est la matrice dont le coefficient sur la i-iéte ligne et la j-iéme colonne est donné par
la dérivée partielle de f; par rapport & la variable x;.

Démonstration. Le lemme [5.30] permet de supposer que m = 1, ce qu'on fait dans la suite. Supposons que
f soit différentiable en x € U; comme m = 1 la matrice de df, est un vecteur ligne de longueur n. Fixons
it € {1,...,n}, notons x = (x1,...,2,;,) et considérons 'application g définie au voisinage de x; par ¢t —
f(xl, N 7$i,1,t,$i+1, N ,xn).

Pour u € R, appelons u; le vecteur de R™ dont toutes les coordonnées sont nulles, sauf la i-iéme coordonnée
qui vaut u. Alors, pour tout u € R\ {0} suffisamment petit, x +u; € U et on a

g(wi +u) = flz+u;)
f(@) + dfe (wi) + ||willsoe(us)
g(xi) + dfi (i) + |ule’ ()
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ol ¢’ est une fonction qui tend vers 0 quand u tend vers 0. On vient de montrer que g est dérivable en x;, et

que

dfa(us)

! . x K3

g (x;) = lim ——~ = df.(0,...,0,1,0,...,0)
u—0 u
toutes les coordonnées nulles sauf la i-iéme

Ceci revient a dire que %(w) existe et est égal & la i-iéme coordonnée de la matrice de df,, ce qu'on voulait
démontrer. O]

Remarque 5.33. Il est trés tentant de supposer que, si toutes les dérivées partielles de f existent en un point
x, alors f est différentiable en ce point. Ce n’est pas le cas en général! Pour le voir, considérez par exemple la
fonction f: R? — R définie par

Ly si (z, 0,0
0 si (z,y) = (0,0)

Alors f admet des dérivées partielles en (0, 0), qui sont nulles. Donc si f était différentiable en 0 sa différentielle
serait la fonction nulle, et on aurait pour tout u € R? f(u) = ||ul|e(u), ol € tend vers 0 quand u tend vers 0.
On devrait donc avoir

u
lim & =0.
u=0 lullo
Puisque f(%, %) = %, on voit qu’on n’a pas lim,_q ﬁ =0, donc f n’est pas différentiable en 0.

Le probléme dans ’exemple ci-dessus est que les dérivées partielles de f ne sont pas continues en 0.

Théoréme 5.34. Soient n,m > 1 deux entiers, U un ouvert de R™ et f: U — R™ wune fonction. On note
f=(f1,--., fm). Si les dérivées partielles gﬂ{j existent sur un voisinage de x € U et sont continues en z

alors f est différentiable en x € U.

Démonstration. Comme précédemment, il suffit de traiter le cas des fonctions & valeurs dans R. Dans I’espoir
que l'idée de la preuve soit claire, on va se contenter de la donner pour des fonctions de deux variables. Soit
donc f: U — R une fonction de deux variables dont les dérivées partielles existent et sont continues au voisinage
d’un point (zg,y0) € U. Pour tout (s,t) suffisamment petit, (zo + s, 40 + t) appartient a ce voisinage et on a

f(ﬂf0+8,yo+t) = f($0+5,y0)+(f(l'0+8,yo+t)*f(l'oﬁ*s,yo))
= f(wo0,90) + (f(wo + 8,90) — f(x0,%0)) + (f(wo + 8,90 +t) — f(x0 + 5,70))

0 0
= f(wo,y0) + Sé(mo +¢s,90) thafz(ilfo + 5,90 + dt)

pour une certaine paire (c,d) d’éléments de ]0,1[ (la derniére égalité résulte du théoréme des accroissements
finis, appliqué a des fonctions d’une variable réelle a valeurs réelles). Par continuité de % et %’ on a

0 0 .
O (gt cs,90) = 2L (0,0) +21(5), 0 limer(s) = 0.

De méme, on a

%(mo +ecs,yo +dt) = %(mo,yo) + e2(s,t), on (Jggoag(s,t) =0.

Tout ceci nous donne finalement

f(xo+ 5,90 +t) = f(x0,90) + 3%(3«”07%) + t%(ﬂfo,yo) + se1(s) +tea(s, 1) .

L’application (s,t) — 5%(1:0, Yo) + t%(%, Yo) est linéaire, et on a

se1(s) + tea(s,t)

1 -0.
()00 [I(s:)]loc

On vient de démontrer que f est différentiable en (x9,%0), et que sa différentielle est I'application (s,t)
s%(xo,yo) + tg—ly‘(:vo,yo) ) o
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Exercice 5.35. Prouver le résultat précédent pour des fonctions de R™ dans R avec n > 2 un entier quelconque.

Définition 5.36. Soient n,m > 1 deux entiers, U un ouvert de R™ et f = (f1,..., fim): U — R™ une fonction.
Si toutes les dérivées partielles de chaque f; existent et sont continues sur U alors on dit que f est de classe C*
sur U.

Plus généralement, on définit par récurrence les applications de classe C* : f est de classe C**! sur U si
toutes les dérivées partielles des f; existent sur U et sont de classe C*.

Grace a la régle de la chaine, on vérifie facilement par récurrence qu'une composée d’applications de classe
CP est encore de classe CP.

Remarque 5.37. La définition d’une fonction de classe C! ci-dessus est équivalente au fait de dire que df (z)
existe en tout point de U et que l'application = +— df (x) est continue de U dans l'espace vectoriel formé par les
applications linéaires de R™ dans R™ (modulo l'identification d’une application linéaire & sa matrice dans les
bases canoniques, cet espace n’est autre que l'espace M, ,(R) des matrices & n colonnes et m lignes, qui est un
espace vectoriel de dimension nm).

Théoréme 5.38 (Théoréme de Schwarz). Soient n un entier, U un ouvert de R™ et f: U — R une fonction
de classe C? sur U. Alors on a, pour tout i,j € {1,...,n} et tout x € U :
0 of 0 of
—(z) = z— x) .
axi 8xj 8xj a{L‘Z

En d’autres termes, pour des fonctions de classe C2, 'ordre dans lequel on effectue les dérivations n’a pas

2
d’influence sur le résultat. On note alors af_ 8-’; - la fonction obtenue en dérivant une fois par rapport a x; et une
iOTj
foi t & a;; dans le cas ol i = j te 24 la fonction obt dérivant deux foi t
ois par rapport a z; ; dans le cas ou ¢ = j, on note 35 la fonction obtenue en dérivant deux fois par rapport a

ZT;.

Démonstration. On va donner la preuve pour une fonction définie sur un ouvert U de R?(le cas général s’en
déduit facilement : si on considére deux dérivées partielles en un point, il n’y a que deux variables qui ne sont
pas fixées!). Fixons (xg,y0) € U. Pour (s,t) proche de 0, (z¢ + s,y0 +t) € U, et on pose

F(s,t) = f(xo + 8,50 +1) — f(xo + 5,90) + (w0, %0) — f(w0, 90 + 1) .

A s,t fixés, on pose p(z) = f(x,yo+1t)— f(z,90). On a alors F(s,t) = p(xg+s) —p(xg). Alors, ¢ est dérivable,
de dérivée
of of

50/($> = %(1”7%3 + t) - %(‘T7y0> .

On peut appliquer le théoréme des accroissements finis (pour les fonctions de R dans R) a ¢ sur le segment
d’extrémités xg, xo + S, et obtenir ¢; €]0, 1] tel que

o(xo + 5) — @(x0) = 5¢'(z0 + c15)
c’est-a-dire

of of
F(s,t) =s(=(z c18 t) — —(z c18 .
(s,1) (ax(0+1,yo+) 8x(0+1’y0))
Le théoréme des accroissements finis, appliqué cette fois & y +— %(mo + ¢18,y) sur le segment d’extrémités yo,
Yo + t, nous donne un dy €]0, 1] tel que

00
F(s,t) = sta—ya—i(xo + c18,y0 + dit) .

En appliquant exactement le méme raisonnement avec la fonction 9: y — f(xg + s,y) — f(20,y), on obtient
Pexistence de cq,ds €]0, 1] tels que

00
F(s,t) = St%%(x() + 28, y0 + dat) .

On a donc (dés que s et ¢ sont tous les deux non nuls et suffisamment proches de 0) :

0 of

0@%( / zo + c28,Yo + dat)

xo + c18,y0 + dit) = %@(
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En faisant tendre (s,t) vers 0 et en utilisant la continuité de 3%% et de W{Ty (qui fait partie des hypotheéses

du théoréme!), on obtient finalement

2 (0,0 = 5 22 (a0, o)
dy O 0,Y) = 9z Oy 0; Yo

O
5.4 Inégalité des accroissements finis
Lemme 5.39 (Inégalité des accroissements finis pour les fonctions d’une variable réelle). Soit I = [a,b] un
segment de R, m > 1 un entier, f: I — R™ et g: I — R des fonctions continues sur [a,b] et dérivables sur

la,b[. Soit || - || une norme sur R™, et supposons que ||f'(z)]| < ¢'(x) pour tout x €a, b].
Alors on a ||f(b) — f(a)]] < g(b) — g(a) . En particulier,on a

1f(6) = fa)] < ( sup [[f"(x)])]b—al .

z€Ja,b|

Démonstration. Pour £ > 0, on définit ¢.: [a,b] — R par

pe(t) = £ () = fla)] —g(t) —et .

Pour tout z €]a, b[, . est continue sur [z,b] donc y admet un minimum. Montrons que ce minimum est atteint
en & = b; pour cela, il suffit de montrer que ¢, n’atteint pas son minimum en un ¢ € [z, b[. Si on prend ¢ € [z, b],
alors on a, pour s €]t, ] suffisamment proche de ¢ :

|FE=T0) - S <iron < o < L0200 2

Par conséquent, pour s € [t, b] suffisamment proche de ¢, on a || f(s) — f(t)]| < g(s) — g(t) + (s — t), donc
p=(s) —=(t) = g(s) —g(t) +e(s =) + £ (s) = fla)| = [ £ () = f(a)ll
< g(s) —g(t) +e(s —t) + £ (s) = FO)
< 0.

Ceci montre que ¢, n’atteint pas son minimum en ¢. Donc ce minimum est nécessairement atteint en b, ce dont
on déduit que, pour tout = €]a,b] et tout € > 0, on a

1f (@) = fla)ll — g(x) — et = || f(b) — f(a)|| — g(b) — &b .

En faisant tendre € vers 0 (a z fixé), ceci donne

1f(2) = fla)ll = g(z) > [I£(b) = fla)ll — g(b) -

Finalement, en faisant tendre x vers a, on obtient

—g(a) = [[f(b) — fla)| — g(b) .
C’est 'inégalité qu’on souhaitait démontrer. O

Définition 5.40. Soit n > 1 un entier et z,y deux éléments de R™. Le segment reliant a et b, noté [z, y], est
défini par
[,y ={te+ (1 —t)y: t € [0,1]} .
Théoréme 5.41 (Inégalité des accroissements finis pour des fonctions de plusieurs variables). Soient n,m > 1
deux entiers, U un ouvert de R™, et f une fonction de U dans R™. On fixe une norme Ny sur R™, une norme
Ny sur R™, et on note || f|| la norme d’une application linéaire f de R™ dans R™ subordonnée aux normes Ny,
Ns.
Supposons que f soit différentiable sur U. Alors, pour tout z,y € U tels que [x,y] C U, on a

No(f(z) = f(y)) < (sup [|df (1) )Ni(z —y) -

telx,y[
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Démonstration. Ce théoréme découle immédiatement de l'inégalité des accroissements finis pour les fonctions
d’une variable réelle : définissons une fonction ¢: [0, 1] — R™ en posant ¢(t) = f(tx+(1—t)y). Alors ¢(0) = f(y),
©(1) = f(x), ¢ est continue sur [z,y] et dérivable sur |z, y[, et la régle de la chaine donne

@' (t) = df (tx + (1 = t)y) (= — y)

En particulier, on a pour tout ¢ €]0, 1]

Na(¢'(t)) < (sup [ldf ()] )N1(z —y) -

t€]z,y|

En appliquant l'inégalité des accroissements finis & ¢ sur [0, 1], on obtient

Na(p(1) = ¢(0)) < ( Sup[lldf(t)l\ JN1(z —y) -

t€lz,y

C’est ce qu’on voulait démontrer. O

5.5 Gradient, hessienne et extrema

Définition 5.42. Soit n > 1 un entier, U un ouvert de R™ et f: U — R une fonction différentiable en z € U.
Le gradient de f en x est le vecteur

(o) = (L @) @)

Oz, 7 Oy,

Remarquons que grad(f)(x) est simplement la matrice jacobienne de f au point x, vue comme un vecteur
de R™; pour tout h € R™ et tout z € U on a

do(f)(h) = (grad(f)(z), h) -

(On utilise la notation (-,-) pour désigner le produit scalaire usuel sur R").
L’égalité ci-dessus montre aussi que, pour h de norme fixée, df,(h) est maximal quand h est colinéaire et de
méme sens que grad(f)(z) : grad(f)(x) donne la direction dans laquelle f « augmente le plus vite ».

Définition 5.43. Soit n > 1 un entier, A une partie de R" et f: A — R une fonction. On dit que f a un
extremum en x € A si f(z) est le maximum, ou le minimum, de f sur A. Si pour tout y € A\ {z} on a
f(y) < f(z) alors on dit que x est un maximum strict de f sur A. On définit de méme la notion de minimum
strict.

S’il existe un ouvert U contenant x et tel que fjyn4 admette un extremum en z, on dit que  est un extremum
local de f. On définit de méme la notion d’extremum local strict.

Proposition 5.44. Soit n > 1 un entier, U un ouvert de R™ et f: U — R une fonction différentiable en x € U.
Si f admet un extremum en x € U, alors grad(f)(x) = 0. On dit alors que x est un point critique de f sur U.

Démonstration. Pour tout vecteur u € R™, considérons la fonction f,,: t — f(z 4 tu). Cette fonction est définie
sur un intervalle ouvert contenant 0, et admet un extremum local en 0. Par conséquent, on doit avoir f (0) = 0.
Par la régle de la chaine, on a

£u(0) = dfu(u) = (grad(f)(z), u) .
Par conséquent, on a (grad(f)(z),u) = 0 pour tout u € R™, et ceci n’est possible que si grad(f)(z) = 0. O

La réciproque n’est pas vraie : on peut avoir grad(f)(z) = 0 sans que z soit un extremum local pour f;
c’était déja le cas pour des fonctions de R dans R, considérez par exemple f: x — 2. Alors f/(0) = 0 mais 0
n’est pas un extremum local pour f.

Si on cherche les extrema d’une fonction f sur un ouvert U, on peut donc commencer par chercher les
éléments z tels que grad(f)(x) = 0. Puisque les différentielles ne donnent qu’une information locale (elles ne
disent rien sur ce que fait f «loin »de x!), on ne peut de toute fagon pas espérer qu’elles nous suffisent a décider
si un point est un extremum sur U. Par contre, on peut essayer d’utiliser des dérivées pour savoir si x est un
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extremum local pour f; pour des fonctions de R dans R, on utiliserait un développement limité & 'ordre 2 : si
x est tel que f/(z) =0 et f est deux fois dérivable en z, alors on a, par la formule de Taylor-Young,
1"
flaeth) = 1) + Ty - )2 4ol - 2)?)
Ainsi, pour des fonctions de R dans R, si f'(z) = 0 et f’(z) > 0, alors f admet un minimum local strict en
x;si f'(z) =0et f(z) <0, alors f admet un maximum local strict en x. Si f'(z) = 0 et f”(z) = 0, alors le
développement limité & 'ordre 2 ne nous permet pas de conclure.

La situation est similaire pour les fonctions de plusieurs variables, mais la notion de dérivée seconde est plus
compliquée : il y a beaucoup de dérivées secondes possibles, puisqu’on peut d’abord dériver par rapport a la
variable x;, puis dériver une nouvelle fois par rapport & la variable ;... La bonne approche consiste & regrouper
toutes ces dérivées dans une matrice, et & étudier les propriétés de cette matrice.

Définition 5.45. Soit n > 1 un entier, U un ouvert de R" et f: U — R une fonction de classe C? sur U. On
deéfinit la matrice hessienne H(f)(x) de f en z € U comme étant la matrice dont le coefficient sur la i-iéme

ligne et la j-iéme colonne est égal & %g;j(x) :
AN e )
HNE = | g2 @) .. 22 (@)
Zh@) . P

C’est une matrice carrée nxn. Evidemment, quand n = 1, la matrice hessienne de f en x est une matrice 1x1,
dont le coefficient vaut f”(z), donc on ne fait que se compliquer la vie en y pensant comme étant une matrice
- mais en dimension supérieure, il faut bien prendre en compte toutes les dérivées secondes possibles. Grace au
théoréme de Schwarz, on sait que la matrice hessienne est symétrique ; par conséquent, elle est diagonalisable
sur R et est la matrice d’une forme bilinéaire symétrique. Ce sont les propriétés de la forme quadratique associée
qui jouent un role dans ’étude des extrema de f.

Théoréme 5.46. Soit n > 1 un entier, U un owvert de R, f: U — R une fonction de classe C? sur U, et
x € U tel que grad(f)(z) = 0. Alors :

1. Si la matrice hessienne de f en x est définie positive (i.e. si toutes ses valeurs propres sont strictement
positives) alors x est un minimum local de f.

2. Si la matrice hessienne de f en x est définie négative (i.e. si toutes ses valeurs propres sont strictement
négatives) alors x est un mazimum local de f.

3. Si la matrice hessienne de f en x a une valeur propre strictement positive et une valeur propre strictement
négative, alors T n’est pas un extremum local de f ; on dit alors que x est un point selle de f.

4. Si Uon n’est pas dans un des cas précédents, alors on ne peut pas savoir si x est, ou non, un extremum

local de f.

Réciproquement, si z est un minimum local de f alors H(f)(z) doit étre positive (mais pas forcément définie
positive), et si  est un maximum local de f alors H(f)(x) doit étre négative (mais pas forcément définie
négative).

Démonstration. Prenons notre courage & deux mains et appliquons une stratégie déja utilisée plus haut : fixons
w=(u1,...,up) € R™\ {0}, et considérons I'application ¢, : t — f(z + tu), qui est définie sur un voisinage de
0. Alors on a

o, (t) = (grad(f)(x + tu),u) = Z ag‘:i (T + tu)u; .

0

Le gradient de f en x est nul, donc on a ¢/,(0) = 0; comme f est de classe C?, on peut dériver une fois de plus

et obtenir
n

—~ 9*f
/! . .
oL (t) = E jil B2,00; (x +tw)u; | u; .

=1 =
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En 0, on a donc

n

A0 =3 | X gy | = ()

axjaxi

=1 =

En se souvenant du cas des fonctions de R dans R décrit plus haut, on voit que
(a) Si (H(f)u,u) > 0, alors = est un minimum local pour la fonction ¢,,.
(b) Si (H(f)u,u) < 0, alors  est un minimum local pour la fonction ¢,,.

On peut maintenant conclure : si la condition du théoréme est vérifiée, alors pour tout u on est dans le cas
(a) ci-dessus, donc pour tout u z est un minimum local de ¢, ce dont on déduit que x est un minimum local
pour f. De méme, si la condition [2] du théoréme est vérifiée alors x est un maximum local de f.

Si par contre on est dans le cas (3)), alors il existe u; (un vecteur propre pour une valeur propre strictement
positive) pour lequel x est un minimum local strict pour ,,,, et us (un vecteur propre pour une valeur propre
strictement négative) pour lequel z est un maximum local strict pour ¢,,. Ceci montre que x ne peut étre ni
un minimum local, ni un maximum local, pour f, donc x n’est pas un extremum local de f. O

Dans le cas des applications de R? dans R, nul besoin de calculer les valeurs propres pour savoir si une
matrice symétrique est définie positive (négative), comme le rappelle exercice suivant.

Exercice 5.47. Soit A € M3(R) une matrice symétrique, de valeurs propres A1, Ao. Montrer que det(A4) = A\ Ay
et tr(A) = A1 + A2. En déduire que :
1. A est définie positive si, et seulement si, det(A) > 0 et tr(A4) > 0.
A est définie négative si, et seulement si, det(A4) > 0 et tr(A4) < 0.
A est positive si, et seulement si, det(A) > 0 et tr(A) > 0.
A est négative si, et seulement si, det(A4) < 0 et tr(A4) <0.

AN e

A a une valeur propre strictement positive et une valeur propre strictement négative si, et seulement si,
det(A) < 0.

Exercice 5.48. Pour les applications de R? dans R, reformuler les conditions du Théoréme en utilisant le
déterminant et la trace de la différentielle de f au point z.
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5.6 Difféomorphismes de classe C*

Définition 5.49. Soient U,V deux ouverts de R™ et f: U — R"™ une fonction. On dit que f est un difféomor-
phisme de classe C* de U sur V si :

1. f est une bijection de U sur V (i.e. f est injective sur U, et f(U) =V)
2. f est de classe C* sur U.
3. f~! est différentiable sur U.

Le premier exemple de difféomorphisme de classe C'! est fourni par les applications linéaires inversibles, qui
sont des difféomorphismes de classe C! de R™ sur lui-méme.

Proposition 5.50. Soient U,V deuz ouverts de R,k > 1 et f: U — R™ un difféomorphisme de classe C' de
U sur V. Alors Uapplication inverse f~1 de f est un difféomorphisme de classe C* de V sur U, la différentielle
de f est inversible en tout x € U, et on a, pour tout x € U :

dF " (f(2) = (df ()" .

Démonstration. La formule permettant de calculer la différentielle de f~! est une conséquence immédiate de
la régle de la chaine : pour tout # € U on a, par définition de f~!, que f~! o f(z) = x. En différentiant cette
égalité, et en utilisant le fait que la différentielle de 'application = — x est ’application identité, on obtient,
pour tout x € U :

dF ' (f(x)) o df (x) = 1 .

On en déduit donc que df (z) est inversible, d’inverse df ~!(f(z), ce qui montre que df ~*(f(z)) = (df (z))~*.

Reste & vérifier que f~! est de classe C'. Pour cela, on rappelle que la comatrice ¢(A) d’une matrice carrée
A est la matrice dont le coefficient sur la i-iéme ligne et la j-iéme colonne est le déterminant de la matrice
obtenue en enlevant de A sa i-iéme ligne et sa j-iéme colonne; si A est inversible, alors 'inverse de A est égale
a #(A)C(A)T. Les coefficients apparaissant dans la matrice jacobienne de df ~*(y) sont donc des quotients de
fonctions continues dont le dénominateur ne s’annule pas; ce sont donc des fonctions continues, ce qui montre
que f~! est de classe C*.

Une autre fagon de montrer que f~! est de classe C! : si A est une matrice inversible & n lignes et n colonnes,
le théoréme de Cayley—Hamilton nous dit qu'on a P(A) = 0, pu P est le polynéme caractéristique de A, dont
le coefficient constant vaut (—1)™ det(A) et le coefficient dominant vaut 1. Par conséquent, on a une égalité de
la forme A" +a, A" ' +...+a1A = (—=1)"T1det(A)I, ; en mettant A en facteur a gauche, on voit que A"~!
vaut A" '+ a, 1+ A" 24+.. . 4a;11,; donc les coefficients de A" ! sont des fonctions continues des coefficients

de A, ce qu’on voulait démontrer.
O

Remarque 5.51. Si U est un ouvert non vide de R", et V est un ouvert de R™, alors il ne peut exister de
bijection différentiable et d’inverse différentiable de U sur V que si n = m : en effet, la différentielle de f en
un point x € U quelconque devrait étre une bijection linéaire de R™ sur R™, et une telle application ne peut
exister que si n = m.

Plus généralement, il est impossible qu’un ouvert U de R™ non vide soit homéomorphe a un ouvert V de R™
si n # m. C’est le théoréme d’invariance du domaine, beaucoup plus général que celui qu’on vient d’énoncer, et
hors de portée dans ce cours.

La section suivante est hors programme cette année.

5.7 Théoréme d’inversion locale

Théoréme 5.52 (Théoréme d’inversion locale). Soit U un ouvert de R™, et f: U — R™ une fonction de classe
Ct. Supposons que x € U soit tel que df (z) soit inversible. Alors il existe deuzx ouverts Uy, Vy tels que x € Uy,
f(x) € Vi, et fiy, soit un difféomorphisme de classe Cl de Uy sur V;.

Démonstration. On va utiliser le théoréme du point fixe de Picard. Pour cela, on se fixe une norme || - || sur R”,
et on note aussi || - || la norme sur les applications linéaires de R” dans R™ subordonnée & || - ||

Puisque la translation x — x + ¢ et df (xg) sont des difféomorphismes on peut, quitte & composer, supposer
que xzo = 0 et df (zg) = I, ce qu’on fait dans la suite.
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Définissons une application g sur U en posant g(x) = f(z) — 2. Alors g est de classe C! sur U, et dg(0) =
df(0) — I = 0. Par continuité de df en 0, il existe une boule ouverte B C U contenant 0 et telle que

Ve € B ||dg(z)] <

DN | =

Alors, en appliquant I'inégalité des accroissements finis, on voit que

1
Va,y € B llg(z) — gl < 5llz —yll -

Maintenant, on a, pour tout z,y € B :

o = oll = llg(w) — 9(@) + £(2) = £ < 5 lle =yl + 1£(2) — £

Donc $|lz —y|| < || f(z) — f(y)|| : ceci montre que f est injective sur B. Montrons maintenant que f(B) est
ouvert. Fixons zo = f(z¢) € f(B) et r > 0 tel que B(z,r] soit contenu dans B. Pour un z fixé, définissons une
fonction auxiliaire g, en posant g,(x) = z — g(x). On cherche & montrer que, pour z suffisamment proche de z,
il existe z € B tel que f(z) = z, autrement dit on cherche z € B tel que g,(x) = z, i.e. un point fixe de g,.

Notons que, si x,y € B on a

9:(z) — g:(W) Il = llg(z) — g(y)|| < lllw -yl -

En appliquant cela pour z = zp, on voit, puisque g.,(xo) = o, que g.,(B(xo,r]) € B(xo, 5]. Puisque g. =
g2, + 2 — 2o on a aussi

.
9=(B(w0,7]) = gz, (B(z0,7]) + 2 — 20 € B(o, 5t |z = 2oll] -

Tout ceci montre que, si ||z — zo| < §, g. est une contraction (de rapport 1/2) de B(z,r] dans lui-méme, donc
admet un unique point fixe (c’est ici qu’on utilise le théoréme du point fixe de Picard); par conséquent, pour
tout z tel que ||z — zo|| < § il existe x € B([wo,r] € B tel que f(z) = r. Autrement dit, la boule fermée de
centre zg et de rayon r/2 est contenue dans f(B), ce qui montre que f(B) est ouvert.

Pour l'instant, on a montré que f est injective de B sur f(B) et que f(B) est ouvert ; pour finir la preuve du
théoréme, il nous reste a prouver que f~! est différentiable sur f(B). Rappelons que 1|z —a'|| < | f(z)— f(2’)|
pour tout z,z’ de B, et donc

1, .- _
¥y, € F(B) S @W) = £ O < Ny = v/ll-
Fixons y € f(B), et posons z = f~1(y). Pour ¢/ € B, notons aussi 2’ = f~(¢’); on a

v —y=[f@") - f2) =df(2)(@" - 2) + ||l2 — ze(2’),

ou £(z') tend vers 0 quand z’ tend vers z. Puisqu’on sait que ||z — 2’| < 2|ly — ¢/'||, on peut réécrire cela sous
la forme :

v —y=df(@)@ —2) + Iy —yle(f(v)) -
En appliquant (df (z))~! & cette égalité, on obtient, en utilisant la linéarité (df (z))~

([df @)~y —y) =o' =2+ ly —ylldf (@) (f) -

Puisque 2’ = f~1(y/), x = f~1(y), ceci s’écrit aussi sous la forme :

PR = )+ (df @)y — o) + lly = yll(df ()7 e (F)) -

Comme (df (z))~(e(f(y"))) tend vers 0 quand 3’ tend vers y, on vient de montrer que f~! est différentiable en
y, de différentielle égale a (df (x))~!. Ceci conclut la démonstration.

1

)

O

49



5.8 Théoréme d’inversion globale

Corollaire 5.53 (Théoréme d’inversion globale). Soit U un ouvert de R™, et f: U — R™ une fonction de classe
C' et injective. Si la différentielle de f est inversible en tout point de U, alors f(U) est ouvert et f est un
difféSomorphisme de classe C! de U sur f(U).

Cet énoncé est au programme de I’U.E, mais sa démonstration, qui utilise le théoréme d’inversion locale, ne
) ) )
I’est pas.

Remarque 5.54. L’hypothése selon laquelle la différentielle de f est inversible en tout point de U est essentielle :
sans cela le théoréme est faux. Par exemple, lapplication z — 23 est une bijection de classe C! de R sur R,
mais sa fonction réciproque z — 2!/3 n’est pas dérivable en 0.

Démonstration. Montrons d’abord que f(U) est ouvert : siy € f(U), alors il existe 2 € U tel que f(z) = y. Par le
théoréme d’inversion locale, il existe un ouvert Uy 5 z et un ouvert Vi 3 y tels que fy, soit un difféomorphisme
de Uy sur V7. Alors V; est ouvert, contient y, et est contenu dans f(U). Ceci prouve que f(U) est ouvert.
Ensuite, le théoréme d’inversion locale nous assure que f~! est différentiable en f(z) pour tout x € U ; autre-
ment dit f~1 est différentiable en y pour tout y € f(U), et toutes les hypothéses définissant un difféomorphisme
sont vérifiées. O

5.9 Fonctions implicites

Théoréme 5.55 (Théoréme des fonctions implicites). Soient n,m > 1 deux entiers, U un ouvert de R x R™ et
f: U = R™ une fonction de classe Ct. Soit (zo,y0) € U tel que f(xo,y0) = 0, et la différentielle de ’application
y = f(zo,y) soil inversible en yo. Alors il existe un ouvert O contenant xg, un ouvert W contenant (xo,yo), et
une application p: Uy — R™ de classe C' tels que :

V(z,y) e W f(z,y) =0 x€ 0 et px)=y.

(en particulier p(xzo) = yo)
On dit alors que 'équation f(z,y) = 0 définit implicitement y en fonction de x au voisinage de (zg,yo)-

Ce théoréme se généralise aux fonctions de classe CP, c’est-a-dire qu’on peutremplacer « C'* »par « CP »dans
I’énoncé ci-dessus.

Rssayons d’expliquer ce que signifie ce théoréme : les deux premiéres lignes signifient que, au voisinage de
(z0,y0), équation f(z,y) = p(xo,yo) définit y comme une fonction de x (c’est la « fonction implicite »donnant
sont nom au théoréme). En utilisant la régle de la chaine, on peut calculer les différentielles successives de ¢ en
g, voir les exemples donnés aprés la preuve du théoréme.

Si I'on considére I'exemple de I'application f: (z,y) — 2% + y? — 1, on voit que, au voisinage de (1,0), cette
équation ne peut pas définir y comme une fonction de z : il y a deux solutions pour y. La raison pour laquelle
le théoréme ne s’applique pas est que la dérivée partielle de f par rapport & y en ce point vaut 0...

La preuve, qui utilise le théoréme d’inversion locale, est hors programme cette année.

Preuve du théoréme des fonctions implicites. Appelons g Papplication y — f(zg,y).
Il existe un ouvert Uy 3 zg de R™, et un ouvert Vy 2 yo de R™, tels que Uy x Vy C U. Sur Uy x Vj, on définit
F(z,y) = (x, f(x,y)). Alors F est de classe C, et sa matrice jacobienne en (zo,yo) vaut

I, 0
M (f) (o, yo) = <* M(g)(yo)) '

(Ci-dessus, on a écrit la matrice par blocs, I,, étant la matrice identité de taille n x n). Done M (f)(zq,yo) est
inversible (son déterminant est égal a celui de M(g)(yo)), et le théoréme d’inversion locale assure lexistence
d’un ouvert W contenant (xqg,yo) et tel que la restriction de F & cet ouvert soit un difféomorphisme de classe
C! sur ouvert F(W).

Notons que pour tout (z,y) € F(W)ona F~1(x,y) = (z,%(x,y)), et 1 est de classe C! sur F(W). Appelons
O Tensemble (ouvert) formé par tous les x tels que (z,0) € F(W) et définissons une fonction ¢ de classe C*
sur O par ¢(x) = 1(z,0). Alors, pour tout (z,y) dans W, on a

flz,y) =0 F(z,9) = (z,0) @z € Oet (2,9) = F (2,00 2 €0ety=op).
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Ce qu’on vient d’écrire revient a
V(z,y) e W f(z,y) =02 €0et px)=y .
O

Discutons maintenant quelques exemples. Commengons par considérer la fonction f: (z,y) — zy+In(zy)—1,
deéfinie sur U = {(x,y): > 0,y > 0}. Alors f est de classe C*° sur U, on a f(1,1) =0, et g—g(:v,y) = x—&—% donc
%(1, 1) = 2 #£ 0. Par conséquent, le théoréme des fonctions implicites nous permet d’affirmer que ’équation
2y + In(zy) = 1 définit implicitement y comme une fonction ¢ de x au voisinage de (1, 1). Si on doit calculer la
deérivée de ¢ en 1, on écrit : zp(z) + In(zp(z)) = 1, ce qui se dérive en

L ¢
olx) + 2o () + = + =0.
(@) o (e)+ 5 +
Comme ¢(1) = 1, l’équation ci-dessus donne 2 + 2¢'(1) = 0, donc ¢’(1) = —1. Ceci nous permettrait par

exemple de trouver I’équation de la tangente a la courbe définie par I'équation zy + In(xy) = 1 au voisinage de
(1,1).

Considérons maintenant 1’équation 2xy — z + 2223 = 5. Cette équation définit-elle implicitement z comme
une fonction de (x,y) au voisinage de (1,2,1)? Pour le savoir, on pose f(z,y,2) = 22y — z + 2123 — 5, et on
calcule la matrice jacobienne de f, qui vaut (2y+22° 2z —1+6x2%). En (1,2,1), cela donne (4 2 5).
Puisque 5 # 0, on voit que I’équation définit bien implicitement z comme fonction de (z,y) au voisinage de

(1,2,1). Notons z = p(z,y) et essayons de calculer o 72 (1,2). Pour cela on doit d’abord calculer les dérivées

partielles de ¢ en (1,2), ce qu'on fait en dérivant l’equatlon flx,y,p(x,y)) = 0, qui donne par la régle de la

chaine :
1 0

(2y +2¢%(z,y) 2z —1+629%(z,y)) ) 0 ) 1 =(0 0) .
% (a,y) %(ay)

On a donc le systéme suivant :
2y + 2p%(x) + (6xp*(x) — 1) GE(z,y) =0
2z + (6z¢”(z) — ) 52 (x,y) =0
On en déduit les formules suivantes :
8790(17 )= 2y + 2¢3(z) o Op ) = 2x
ar YT — 6xp?(x) oy 1 —6xp2(x)

2)=-2.

Ces deux équations nous donnent 3—“"(1 2)=—3et 3“"( 1,
En redérivant par rapport a y ’équation donnan 8—“"( y), on obtient :

327<p B 123:8“’(33 y)
32 Y = B g () 2

En (1,2), on obtient 327‘5(1,2) 48

Un dernier exemple, pour une fonction f de trois variables, & valeurs dans R%. On considére le systéme
d’équations suivant :

oy + 2wz +y+4y? =0
y+aztyz—z =0

Essaons de voir si ce systéme définit (y,z) comme une fonction de x au voisinage de (0,0,0). Pour cela, on
considére lapplication f: R3 — R? définie par

flz,y,2) = (dzy + 22z + y + 4y°, 2%y + 22 + yz — 2)
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Cette fonction est de classe C°, et sa matrice jacobienne en (x,y, z) vaut (349?2;—42-2 4x;; iz_/:_ 1 . +2;_ 1).
01 0
0 0 -1
Pour décider si cette équation définit implicitement (y, z) comme fonction de x au voisinage de (0,0,0), il

En (0,0,0), cette matrice vaut

. . . 1 0 . . . .
nous faut donc décider si la matrice <0 _1) est inversible ; son déterminant vaut —1, donc c’est bien le cas.

On peut donc écrire (y, z) = p(z) au voisinage de (0,0, 0).
Essayons maintenant de calculer la dérivée de ¢ en 0 : si on note ¢ = (91, p2) ; le fait que f(x, p1(x), p2(x)) =
0 donne, par la régle de la chaine, df 4 o, ()45 (2)) (1, ©1 (%), @5(z)) = 0, d’ott le systéme suivant :

{@’1(0) =0
©5(0) =0

Autrement dit, ¢} (0) = ¢5(0) = 0. S’il avait fallu calculer les dérivées de ¢ en 0 & un ordre supérieur, alors on
aurait da écrire le systéme suivant (toujours donné par la régle de la chaine) :

{4%@) + 200 () + (42 + 81 (x) + 1) (2) + 220 () =0
32201 (x) + pa(2) + (27 + 2(2)) ) () + (2 + @1 () — Dgh(z) =0

Pour calculer ¢”(0), par exemple, il aurait fallu dériver ce systéme, puis I’écrire en 0 en y substituant le fait que
©}1(0) = ¥5(0), pour obtenir un nouveau systéme de deux équations a deux inconnues ¢7(0), ¢4 (0).

Plutot que de continuer ces calculs, une derniére question : est-ce que I'équation f(z,y,z) = (0,0) définit
implicitement (z,y) en fonction de z au voisinage de (0,0,0)? Pour déterminer cela, il nous faut décider si la

. 0 1 . . . . .
matrice (O 0) est inversible. Ce n’est clairement pas le cas (une colonne ne contient que des 0), donc ’équation

ne définit pas implicitement (z,y) comme fonction de z au voisinage de (0,0, 0).
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Chapitre 6

Intégrale double

6.1 Intégration sur un domaine compact du plan

Dans tout ce chapitre, on ne considérera que des fonctions continues de deux variables. Commengons par
rappeler comment on intégre une fonction continue sur un rectangle de cotés paralléles aux axes de coordonnées.

Théoréme 6.1. Soit I = [a,b], J = [c,d] deuzx segments de R, et R = I x J. Soit f: R — C une fonction

continue. On a
/ab (/Cdf(w)dy) dx:/cd </abf(:v,y)dx> dy .

On appelle cette valeur commune Uintégrale de f sur R et on la note HRf(x,y) dxdy.

La formule figurant dans le théoréme ci-dessus est un cas particulier du théoréme de Fubini, qu’on reverra
plus loin.

Démonstration. Pour z € [a,b], t € [c,d], on définit g(x,t) = fct f(z,y)dy, et G(t) = f: g(x,t) dz. Comme
f est continue sur R, on peut vérifier que g est elle aussi continue sur R (en utilisant le fait que f doit étre
uniformément continue sur R); de plus, le théoréme fondamental de ’analyse appliqué a la fonction ¢ — g(z,t)
(& x fixé) permet de voir que

dg

a(xvt) = f(:L',t) :

Ainsi, g—i’ existe et et continue sur R. On peut appliquer le théoréme de dérivabilité des intégrales & paramétre
(fonction de deux variables continue et & dérivée partielle continue sur un produit de segments), et on obtient
que G est dérivable et

b b
G'(t):/ %(m,t)dx:/ flz,t)dz .

De méme, pour t € [¢,d], on peut définir H(t) = fct (f; flz,y) dw) dy. On commence par appliquer le théoréme

de continuité des intégrales & parameétre pour voir que y — f; f(z,y) dz est une fonction continue sur [c,d], &
laquelle on peut donc appliquer le théoréme fondamental de ’analyse et obtenir

b
H’(t):/ [z, t)dz

On voit donc que G'(t) = H'(t) pour tout ¢ € [c,d]; comme de plus on a G(¢) = H(c) = 0, on en conclut que
G(t) = H(t) pour tout t € [¢,d]; en particulier G(d) = H(d), et c’est I'égalité qu’on souhaitait démontrer. [

On sait maintenant comment intégrer des fonctions continues sur un rectangle [a, b] X [¢, d] ; on retrouve les
propriétés usuelles de I'intégrale, en particulier la linéarité et la positivité.

Comment faire pour intégrer sur un domaine plus général ? On est assez restreint par notre définition de
I’intégrale ; on ne va considérer que des domaines d’intégration trés particuliers.

53



Définition 6.2. On dit que A C R? est une partie élémentaire compacte s'il existe deux segments [a, b], [c, d] C R
et des fonctions continues ¢, ¢o: [a,b] = R, ¥y, 1¥s9: [¢c,d] — R telles que 'on ait a la fois

o Vx €la,b] ¢1(x) < Ppa(x) et A={(z,y): a <z <bet ¢1(x) <y < dao(x)}.

o Yy cle,d[Pi(y) <¢a(y) et A= {(z,y): c <y <det Pu(y) <c<a(y)}).

Remarquons qu’alors A est contenu dans le rectangle [a, b] X [c,d] ; de plus A est fermé, donc A est a la fois
fermé et borné, c’est-a-dire compact.

Intuitivement, la définition signifie que A est obtenu en tragant une courbe fermée dans le plan, qui ne se
recoupe pas, de telle fagon qu’une ligne horizontale passant par un point a l'intérieur de la courbe rencontre la
courbe en exactement deux points, et de méme pour toute ligne verticale (faites un dessin!).

On peut assez facilement étendre la définition des intégrales de fonctions continues sur un rectangle aux
parties élémentaires compactes.

Théoréme 6.3. Soit A C R? une partie élémentaire compacte (on reprend les notations de la définition ci-
dessus), et f: A — C une fonction continue sur A.

R . x, st (x,y) € A
Soit f la fonction définie sur [a,b] x [¢,d] par f(z,y) = f(@:y) ) (z,9)
0 sinon

Alors les intégrales fab (fj f(z,y) dy) dx et fj (f; f(x,y) dx) dy existent et sont égales; on appelle cette
valeur commune ’intégrale de f sur A, et on la note HA [z, y) dedy.

Une reformulation importante de ’égalité ci-dessus est la formule suivante, dite formule de Fubini : pour
une fonction f continue sur une partie élémentaire compacte A, toujours en utilisant les mémes notations que

ci-dessus, on a
b ¢2(z) d P2 (y)
{[ #@,y) dudy = / / fxy)dy | dr = / / fz,y) da | dy
A a ¢1(x) c P1(y)

Cette formule est trés importante en pratique, puisqu’elle permet de ramener le calcul d’une intégrale double &
deux intégrales simples successives.

Ebauche de preuwve. On commence par supposer que f est a valeurs réelles positives (le cas général se déduit
facilement de ce cas particulier). On peut étendre f & une fonction continue g: [a,b] X [¢,d] — R™ en posant,
pour (z,y) € [a,b] x [¢,d] :
flx,da(x)) siy> Pa(x)
9(z,y) = § f(z,y) si ¢1(z) <y < ¢a(2)
f(@,d1(z)) sty < u(z)
Ensuite, on fixe € > 0. On peut trouver deux fonctions continues a, 3 sur R? qui aient les propriétés suivantes :
o V(x,y) a(x,y) < 1a(z,y) < B(x,y) (ot 14 désigne la fonction caractéristique de A).
° fj (8 — a)(z,y)dzdy < e.
a,b]x[e,d]
(Prouver existence de ces deux fonctions n’est pas évident, c’est en cela en particulier que ce qui est présenté
ici n’est qu’une ébauche de preuve)
Puisque f = g x 14, nos définitions entrainent que, pour tout (z,y) € [a,b] x [¢,d], on a a(z,y)g(x,y) <
f(x, y) < B(x,y)g(x,y). En utilisant la positivité de l'intégrale simple, on en déduit les inégalités suivantes :

/ab (Zda(x,y)g(x,y) dy) g < /ab </Cd Fag) dy) < /ab (/cdg(x’y)g(m,y) dy) .
/cd (/aba(x,y)g(x,y)dx> dy < /cd (/abf(z,y)dx> dy < /Cd (/abﬂ(x,y>g(;p7y)dx> dy

Comme ag et Sg sont continues, les termes de gauche de chaque ligne sont égaux a H[a b [ed] a(z,y)g(z,y) dedy,et

ceux de droite sont égaux a H[a bx[e.d] B(x,y)g(x,y) drdy. On en déduit I'inégalité

/ab (/cdf(:v,y)dy> dfv/cd (/abf(:r,y)dx> dy
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Si 'on appelle M le maximum de la fonction continue g sur le compact [a,b] X [c,d], on obtient, grace a la
positivité de I'intégrale des fonctions continues sur un rectangle, que

b(/cdf(x,y)dy>dx—/ (/ f(z,y) dm)dy

Ceci étant vrai pour tout € > 0, les deux intégrales itérées doivent étre égales.

Le cas d’une fonction a valeurs réelles se déduit du résultat qu’on vient d’obtenir en posant f+ = max(f,0),
f~ = max(—f,0); alors f* et f~ sont continues, a valeurs positives, et f = fT — f~. Ensuite, le cas d’une
fonction a valeurs complexes s’obtient en décomposant en partie réelle et partie imaginaire. O]

< M- jf (8 — a)(z,y) dedy < Me .
[a,b]x[c,d]

Les parties sur lesquelles on voudrait pouvoir calculer des intégrales doubles ne sont pas toujours des parties
élementaires ; ceci motive la définition suivante.

Définition 6.4. A C R? est une partie simple compacte s’il existe des parties élémentaires compactes Ay, ..., Ay,
n

d’intérieurs deux a deux disjoints et telles que A = U A;.
i=1
Pour toute fonction continue f sur A, on pose alors

jffxy dxdy—Zj f(z,y) dzdy .

=1 A,

Remarquons qu’il n’est pas clair a priori que la définition ci-dessus soit indépendante de la décomposition
de A en réunion de parties élémentaires compactes ; on admet que c’est le cas. L’idée est que, du moment qu’on
peut découper A en une réunion finie de parties sur lesquelles on sait définir 'intégrale d’une fonction continue,
alors on sait aussi définir 'intégrale d’une fonction continue sur A.

On retrouve les propriétés habituelles de I'intégrale :

e Pour toute partie simple compacte A, et toute fonction f continue et & valeurs positives sur A, on a

JJa f(2,y) dedy > 0.. (positivité)
e Si A est une partie simple compacte, f,g: A — C sont des fonctions continues et «, 8 € C alors

fj(af + Bg)(z,y) dedy = « fj f(z,y)dxdy + 8 fj f(z,y) dzedy (linéarité)

A A A

En particulier pour toute fonction continue f: A — C on a [[, f(x,y)dedy = [[, Re(f)(x,y) dedy +

i, Im(f)(z,y) dedy .
e Pour toute partie simple compacte A et toute fonction f continue sur A et & valeurs complexes, on a

|4 [z, y) dady| < [[,|f(z,y)| dedy. (inégalité triangulaire)

Notons que, comme dans le cas des fonctions d’une variable, I'inégalité triangulaire est une conséquence de la
positivité et de la linéarité de 'intégrale. Notons également la croissance de l’intégrale par rapport au domaine :
si f est une fonction continue & valeurs positives sur un domaine simple compact A1, et As est un domaine
simple compact contenu dans Ay, alors [[, f(2,y)dedy < [f, f(z,y)dzdy.

Définition 6.5. Pour toute partie simple compacte A, on définit I’aire de A par la formule

aire(A) = j dzdy .
A

Ceci donne une définition formelle de Vaire, qui étend celle qui était déja connue pour les triangles, les
disques, les parallélogrammes, etc. Mais est-on capable de retrouver les formules connues pour les aires de ces
figures & partir de notre définition de I'intégrale ? Pour I'instant, le seul moyen qu’on connait pour calculer I'aire
d’un disque de rayon 1 est de calculer l'intégrale

Vi—z? 1
/ / dydacz/ 2v/1 — 22dx .
Vi—z?

Cette intégrale n'est & premiére vue pas évidente & calculer (c’est d’ailleurs un bon exercice ; un changement de
variables serait du meilleur effet) ; de méme, il n’est pas aisé de calculer, par exemple, 'aire d’un parallélogramme
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en utilisant des intégrales itérées. C’est pourquoi on utilise fréquemment des changements de variables, qui sont
une technique fondamentale : fréquemment, on est amené a faire un changement de variables pour ramener un
domaine d’allure compliquée & un domaine plus simple, typiquement un rectangle.

Théoréme 6.6 (Théoréme de changement de variables). Soit Dy, Dy deux parties simples compactes, et
p: D1 — Dy une bijection continue telle que ¢ soit un difféomorphisme de classe C' de lintérieur de D,
sur Uintérieur de Do. Alors, pour toute fonction continue f: Dy — C, on a

[[ f@,y) dedy = [[ £oea.y) |det(Tac(e)(w,y))] dady -
Do Dy

Démonstration. Admis. O

Remarque 6.7.

e Les hypothéses sont en particulier vérifiées quand ¢: U; — Us est un C'-diffeomorphisme défini sur un ouvert
contenant D; et ¢(D1) = Dy ; un cas particulier important est le cas oul ¢ est une application linéaire bijective.

e Le déterminant de la matrice jacobienne de ¢ s’appelle déterminant jacobien de ¢ ; on le notera Jy(z,y) dans
la suite.

e Il est important de ne pas oublier la valeur absolue dans la formule!

Un exemple important : le changement de variables en coordonnées polaires. On définit

~ J 10, +00[x[0, 27[— R?
o(r,0) = (rcos(8), rsin(6))

Alors ¢ est une surjection de classe C°° de [0, +o00[x[0, 27| sur R?, et ¢ est un C°°-difféomorphisme de

10, +00[x]0, 27[ sur R?\{0}. Son déterminant jacobien en (7, §) est le déterminant de la matrice (C.OS(H) - 3111(9)) ,
sin(d)  rcos(6)
c’est-a-dire r.

Utilisons ¢ pour calculer HD (x +y)? dxdy, ot D est le disque de centre 0 et de rayon 1. Pour étre rigoureux
lors de notre premiére application d'un changement de variables, écrivons D = DT U D™, ott D est la partie du
disque au-dessus de ’axe des abscisses et D~ la partie en-dessous de cet axe. Alors ¢ est un C'-difféomorphisme
de ]0, 1[x]0, 7| sur l'intérieur de DT, et un C'-difféomorphisme de ]0, 1[x]r, 27| sur I'intérieur de D~. On obtient
donc :

fj(m +y) dedy = jf(x + )2 dzdy + fj(:c + )2 dady
D D+ D-

= fj (r cos(6) + rsin())*r drdf + jf (r cos(0) + rsin(0))?r drdo
[0,1]x[0,m] [0,1] x [r,27]

= fj (r cos(#) + rsin(0))*r drdf
x[0,2

= / ( (cos?(6) + sin?(#) + 2sin(6) cos(h)) d9> dr
I

( / 1+sin(29))d9> dr
_ /12m~ dr

[0,1
T
2

[}

On n’a pas mis de valeur absolue autour de 7 dans le calcul ci-dessus (passage de dxdy a rdrdf), parce que
r est positif et donc |r| = 7.

Le calcul ci-dessus est trés détaillé, trop sans doute; en pratique, lors d’'un changement de variable en
coordonnées polaires, on pourra aller plus vite, en ne mentionnant pas I’étape de découpage de D en DT, D~
par exemple. Le méme calcul, rédigé de maniére plus rapide mais suffisamment détaillée, donnerait :
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jf(w +y) dedy = jf (1 cos() + rsin(8))?r drdf (passage en coordonnées polaires)
D 0,1]X[0,27]

= /01 ( OQW 73 (cos?(0) 4 sin?(#) + 2sin(6) cos(h)) d9> dr

_ /O1 e (/0%(1 + sin(29))d0> dr

1
2mr3 dr

|
O N S—0

Exercice 6.8. 1. Utiliser un changement de variables en coordonnées polaires pour calculer laire du disque
de centre 0 et de rayon R.

2. Soit f: R? — R? une application linéaire inversible de matrice M = (Z d

£([0,1]%). Montrer que l'aire de A est égale & | det(M)|. Que pensez-vous de cette formule dans le cas ol
f n’est pas inversible 7

) et A le parallélogramme

6.2 Intégrales doubles sur des ouverts du plan

On va finir ce cours en définissant, sans démonstrations, une notion d’intégrale double pour des fonctions
continues sur un ouvert du plan. Ces intégrales sont une extension au plan des intégrales généralisées. A cause de
I’absence d’une relation d’ordre « naturelle »sur R?, on ne peut pas avoir de théorie satisfaisante des intégrales
semi-convergentes (i.e. convergentes mais pas absolument convergentes), et on a seulement un analogue des
intégrales absolument convergentes. Ces intégrales doubles sont en particulier utiles pour calculer des intégrales
généralisées sur un intervalle de R (horresco referens).

Commengons par observer que tout ouvert O du plan peut s’écrire sous la forme O = |J, oy Rp, ot les
R,, sont des rectangles fermés (d’intérieurs deux a deux disjoints si on veut). Commengons par une définition
théorique qui ne nous servira pas en pratique.

Définition 6.9. Soit O un ouvert de R?, et f: O — R* une fonction continue et & valeurs positives. On dit
que f est intégrable si

M = Sup{fj f(z,y)dxdy: A C O est une réunion finie de rectangles fermés} < oo .
A

On pose alors [, f(z,y)dzdy = M.
Si f: O — C est une fonction continue, on dit que f est intégrable si |f| est intégrable.

Remarquons tout de suite que cela ne nous dit pas du tout comment calculer ﬂo flz,y) dedy!

Proposition 6.10. Si f est continue, intégrable et ¢ valeurs positives sur un ouvert O de R2, alors pour toute
suite croissante (Ay,) de parties simples compactes telles que UA,, = O, la suite HA f(x,y) dzdy converge vers

5 f(z,y) dedy.
Si f est continue et intégrable sur un ouvert O de R?, alors pour toute suite (A,) de parties simples compactes
telles que UA,, = 0, la suite HA f(z,y) dzdy converge ; cette limite ne dépend pas de la suite (A,), et on pose

jj f(z,y) dedy = liTILn fj f(z,y) dzedy .
0 A,

En particulier, dans le cas d’une fonction f continue et intégrable sur R? tout entier, on a par exemple
|| t@yydedy = tim [ f(a,y)dedy .
R2 n)2

—+oo
[—n
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Notons que les propriétés habituelles de l'intégrale (positivité, linéarité, croissance par rapport au domaine)
sont toujours vérifiées. On a maintenant un premier moyen de calculer des intégrales doubles sur des ouverts
du plan, mais ce critére ne s’applique que si 'on a d’abord vérifié que f est intégrable, ce qui peut se faire en
commengant par étudier |f].

Proposition 6.11. Si O est un ouvert de R?, g est une fonction continue & valeurs positives intégrable sur O,
et f: O — C est une fonction continue telle que |f(x)| < g(z) pour tout x € O, alors f est intégrable sur O.

Un cas particulier est particuliérement important : celui ou O est une « bande », i.e. un produit de deux
intervalles ouverts. Alors on peut appliquer la formule de Fubini.

Théoréme 6.12 (Théoréme de Fubini pour les produits d’intervalles ouverts). Soit I, J deuz intervalles ouverts
du plan.
— Soit f: I xJ — C une fonction continue. Si, pour tout x € I, la fonction y — g(z,y) est d’intégrale abso-
lument convergente sur J, et si la fonction g: x — fJ f(x,y)dy est continue par morceauzr et d’intégrale
absolument convergente sur I, alors f est intégrable sur I x J et on a

H f(x’y)dxdy:/l</]f($,y)dy> dx .

IxJ

— En particulier, si f est a valeurs positives, si pour tout x € I [’intégrale fJ f(z,y)dy converge et si
Vintégrale [, ([, f(z,y)dy) dz converge, alors f est intégrable et

JJ fay) dody = /I ( /J f(:c,y>dy> dz .

IxJ

On obtiendrait un énoncé similaire en échangeant les roles de x et y ci-dessus (c’est-a-dire en intégrant
d’abord par rapport & z puis par rapport & y). En particulier, si f est intégrable sur I x J, et toutes les
intégrales apparaissant dans la formule ci-dessous sont absolument convergentes, alors on a

/1(/Jf(x’y)dy>dx:/J(/lrf(%y)dx)dy.

Bien stir, tous les ouverts ne sont pas des produits d’intervalles ouverts : dans le cas d’'un ouvert plus
général, on peut soit essayer de I’écrire comme une réunion croissante de domaines simples compacts, soit
utiliser le théoréme de changement de variables, sous la forme suivante.

Théoréme 6.13 (Théoréme de changement de variables pour des ouverts de R?). Soit U,V deur ouverts de
R2, ¢: U — V un difféomorphisme de classe C' et f: V — C une fonction continue. Alors f est intégrable sur
V' si, et seulement si, (x,y) — foo(x,y)|Jo(z,y)| est intégrable sur U, et on a I’égalité

|[ £@,y) dedy = [[ flo@, )| o, y)| dedy -
14 U

(On rappelle que Jp(z,y) désigne le déterminant de la matrice jacobienne de ¢ en (z,y); remarquons que
ce déterminant est toujours non nul puisque ¢ est un difféomorphisme).
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