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The Steinhaus property and Haar-null sets

Pandelis Dodos

Abstract

It is shown that, if G is an uncountable Polish group and A ⊆ G is a universally measurable
set such that A−1A is meager, then the set Tl(A) = {µ ∈ P (G) : µ(gA) = 0 for all g ∈ G} is
co-meager. In particular, if A is analytic and not left Haar-null, then 1 ∈ Int(A−1AA−1A).

1. Introduction

The purpose of this paper is to show that there exists a satisfactory extension of the classical
Steinhaus theorem for an arbitrary Polish group. In order to get the extension, one needs,
first, to isolate the appropriate σ-ideal on which the result will be applied. For the class of
abelian Polish groups this is the σ-ideal of Haar-null sets, defined by Christensen [2]. However,
in non-abelian (and non-locally-compact) Polish groups this σ-ideal is no longer well behaved.
Actually, by the results of Solecki in [11], the Steinhaus property of Haar-null sets fails in
‘most’ non-abelian Polish groups. Notice also that the conclusion of the Steinhaus theorem is
rather strong. If A ⊆ R is of positive Lebesgue measure, then A − A contains a neighborhood
of 0. If we relax the conclusion to A − A is not meager, then this is valid in every abelian Polish
group.

Remark. We recall that a subset A of a topological space X is said to be meager (or of first
category) if A is covered by a countable union of closed nowhere dense sets. The complement
of a meager set is usually referred to as co-meager.

To state our result we need some definitions. Let G be a Polish group and let A ⊆ G be a
universally measurable set. The set A is said to be Haar-null if there exists μ ∈ P (G) (that is,
μ is a Borel probability measure on G) such that μ(g1Ag2) = 0 for all g1, g2 ∈ G. It is said to
be left Haar-null if there exists μ ∈ P (G) such that μ(gA) = 0 for all g ∈ G. By the results in
[9, 11], the notions of a Haar-null and a left Haar-null set are distinct (however, they obviously
agree on abelian groups). We let

T (A) = {μ ∈ P (G) : μ(g1Ag2) = 0 for all g1, g2 ∈ G}
and

Tl(A) = {μ ∈ P (G) : μ(gA) = 0 for all g ∈ G}.
It is easy to see that, if A is analytic, then both T (A) and Tl(A) are faces (that is, extreme
convex subsets) of P (G) with the Baire property. It follows, by [4, Theorem 4], that the sets
T (A) and Tl(A) are either meager, or co-meager. A set A is said to be generically Haar-null if
T (A) is co-meager. The set A is said to be generically left Haar-null if Tl(A) is co-meager.
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Remark. We recall that a subset A of a Polish space X is said to be analytic if there exists
a continuous map f : N

N → X with f(NN) = A. It is a classical result that every Borel subset
of a Polish space is analytic. It is also well known that an analytic set that is not meager is
actually co-meager in a non-empty open set.

For every Polish group G the class of generically left Haar-null subsets of G forms a σ-ideal.
Notice that, if A is not generically left Haar-null, then A should not be considered as a small
set (it is null only for a relatively small set of measures). This is indeed true, as the following
theorem demonstrates.

Theorem A. Let G be an uncountable Polish group and let A be a universally measurable
subset of G. Assume that A−1A is meager. Then Tl(A) is co-meager.

Thus, if A is analytic and not generically left Haar-null (in particular, not left Haar-null),
then A−1A is non-meager.

The locally compact abelian case of Theorem A can also be derived by the results of
Laczkovich in [7], who proved that, if A is not covered by an Fσ Haar-measure zero set,
then A−1A is co-meager in a neighborhood of the identity. To see that this implies Theorem
A, one invokes [3, Proposition 5] that states that, if G is locally compact and A ⊆ G is covered
by an Fσ Haar-null set, then Tl(A) is co-meager. Both Laczkovich’s result and the result of
Christensen [2] that Haar-null sets satisfy the Steinhaus property in abelian Polish groups are
heavily dependent on the classical Steinhaus theorem. The proof of Theorem A follows quite
different arguments. It is based on the fact that, if H is a dense Gδ and hereditary subset of
K(G), then this is witnessed in the probabilities of G.

1.1. Preliminaries

Our general notation and terminology follows [5]. By N = {0, 1, 2, . . .} we denote the natural
numbers. For any Polish space X, we denote by K(X) the hyperspace of all compact subsets
of X with the Vietoris topology and by P (X) the space of all Borel probability measures on
X with the weak∗ topology. Both are Polish (see [5]). If d is a compatible complete metric of
X, then by dH we denote the Hausdorff metric on K(X) associated to d, defined by

dH(K,C) = inf{ε > 0 : K ⊆ Cε and C ⊆ Kε},
where Aε = {x ∈ X : d(x,A) � ε} for every A ⊆ X. All balls in K(X) are taken with respect
to dH and are denoted by BH. In P (X) we consider the so-called Lévy metric ρ, defined by

ρ(μ, ν) = inf{ε > 0 : μ(A) � ν(Aε) + ε and ν(A) � μ(Aε) + ε

for every compact (or Borel) subset A of X}
(see [1] for more details). All balls in P (X) are taken with respect to ρ and are denoted by BP .
If G is a Polish group and μ, ν ∈ P (G), then by μ ∗ ν we denote their convolution, defined by

μ ∗ ν(A) =
∫
G

μ(Ax−1)dν(x).

A subset H of K(X) is said to be hereditary if for every K ∈ H and every C ∈ K(X) with
C ⊆ K then we have that C ∈ H. All the other pieces of notation that we use are standard.
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2. Hereditary, dense Gδ sets and measures

Throughout this section X will be a Polish space and H a hereditary, dense Gδ subset of K(X).
By d we denote a compatible complete metric of X.

Lemma 1. Let X and H be as above. Then there exists a sequence (Un) of open, dense
and hereditary subsets of K(X) such that H =

⋂
n Un.

Proof. Write H =
⋂

n Vn, where each Vn is open and dense but not necessarily hereditary.
Fix n and define

Cn = {K ∈ K(X) : ∃C ⊆ K compact with C /∈ Vn}.
It is easy to check that Cn is closed and Cn ∩H = ∅. Therefore, if we set Un = K(X) \ Cn, then
we see that the sequence (Un) has all the desired properties.

In what follows we will say that the sequence (Un) obtained by Lemma 1 is the normal form
of H. We need the following lemmas.

Lemma 2. Let U ⊆ K(X) be open, dense and hereditary. Also let x0, . . . , xn be the distinct
points in X and r1 > 0. Then there exist y0, . . . , yn distinct points in X such that d(xi, yi) < r1

for all i ∈ {0, . . . , n} and, moreover, {y0, . . . , yn} ∈ U .

Proof. We may assume that B(xi, r1) ∩ B(xj , r1) = ∅ for all i, j ∈ {0, . . . , n} with i �= j.
Let

V =

{
K : K ⊆

n⋃
i=0

B(xi, r1) and K ∩ B(xi, r1) �= ∅ ∀i = 0, . . . , n

}
.

Then V is open. As U is open and dense, there exists K ∈ V ∩ U . For every i ∈ {0, . . . , n} we
select yi ∈ K ∩ B(xi, r1). As U is hereditary, we see that {y0, . . . , yn} ∈ U . Clearly, y0, . . . , yn

are as desired.

Lemma 3. Let U ⊆ K(X) be open, dense and hereditary. Also let ε > 0. Then the set

GU,ε = {μ ∈ P (X) : ∃K ∈ U with μ(K) � 1 − ε}
is co-meager in P (X).

Proof. Fix U and ε > 0 as above. We will show that for every V ⊆ P (X) open there exists
W ⊆ V open such that W ⊆ GU,ε. This completes the proof (actually, it implies that GU,ε

contains a dense open set). Therefore, let V ⊆ P (X) be open. As finitely supported measures
are dense in P (X), we may select ν =

∑n
i=0 aiδxi

and r > 0 such that the following hold:
(1) ai > 0 for all i ∈ {0, . . . , n} and

∑n
i=0 ai = 1;

(2) BP (ν, r) ⊆ V .
By Lemma 2, there exist y0, . . . , yn distinct points in X with {y0, . . . , yn} ∈ U such that
d(xi, yi) < r/2 for all i ∈ {0, . . . , n}. We set μ =

∑n
i=0 aiδyi

. Then it is easy to see that we
have the following:

(3) ρ(μ, ν) � r/2.
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Let F = {y0, . . . , yn}. As U is open and F ∈ U there exists θ > 0 such that the following hold:
(4) θ < min{ε/3, r/3};
(5) BH(F, 2θ) ⊆ U .

Then W = BP (μ, θ) is as desired. Indeed, by (2)–(4) it is clear that W is a subset of V . We
only need to check that W is a subset of GU,ε. Let λ ∈ W be arbitrary. Then ρ(λ, μ) < θ and so

1 = μ(F ) � λ(Fθ) + θ,

which gives that λ(Fθ) � 1 − ε/3 by the choice of θ. By the inner regularity of λ, there exists
C ⊆ Fθ compact such that λ(C) � 1 − ε. We set K = C ∪ F . Then dH(K,F ) � θ and so,
by (5), K ∈ U . Moreover, λ(K) � λ(C) � 1 − ε. This implies that λ ∈ GU,ε and the proof is
completed.

Our aim in this section is to prove the following proposition.

Proposition 4. Let H be a hereditary, dense Gδ subset of K(X). Then the set

GH = {μ ∈ P (X) : ∀ε > 0 ∃K ∈ H with μ(K) � 1 − ε}
is co-meager in P (X).

Proof. Let (Un) be the normal form of H. For every n,m ∈ N let

Gn,m =
{

μ ∈ P (X) : ∃K ∈ Un with μ(K) � 1 − 1
m + 1

}
.

By Lemma 3, we have that Gn,m is co-meager. Hence, so is
⋂

n,m Gn,m. We claim that
GH =

⋂
n,m Gn,m. This completes the proof. It is clear that GH ⊆ ⋂

n,m Gn,m. Conversely,
fix μ ∈ ⋂

n,m Gn,m and let ε > 0 be arbitrary. Choose a sequence (εn) of positive reals such
that ∑

n∈N

εn <
ε

2
.

Choose also a sequence (mn) of natural numbers with 1/(mn + 1) � εn for every n ∈ N. As

μ ∈
⋂
n,m

Gn,m ⊆
⋂
n

Gn,mn
,

we may select a sequence (Kn) in K(X) such that the following hold:
(1) Kn ∈ Un;
(2) μ(Kn) � 1 − 1/(mn + 1) � 1 − εn.

For every n ∈ N we let Fn =
⋂n

i=0 Ki and we set F =
⋂

n Kn. Then Fn ↓ F . Notice that F ∈ Un

as F ⊆ Fn ⊆ Kn ∈ Un and Un is hereditary. Hence, F ∈ ⋂
n Un = H. Moreover, by (2) above,

we have

μ(Fn) = μ(K0 ∩ . . . ∩ Kn) � 1 −
n∑

k=0

εk.

As Fn ↓ F , we obtain that

μ(F ) = lim
n∈N

μ(Fn) � 1 −
∑
n∈N

εn � 1 − ε.

This shows that μ ∈ GH, as desired.
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3. Left Haar-null sets in Polish groups

Our aim is to give the proof of Theorem A stated in the introduction.

Proof of Theorem A. Let G be an uncountable Polish group and let A be a universally
measurable subset of G such that A−1A is meager. We select a sequence (Cn) of closed, nowhere
dense subsets of G with the following properties:

(i) 1 /∈ Cn for all n ∈ N;
(ii) A−1A \ {1} ⊆ ⋃

n Cn.
For every n ∈ N let

Un = {K ∈ K(G) : K−1K ∩ Cn = ∅}.
Clearly, every Un is hereditary. Moreover, as the function f : K(G) → K(G) defined by f(K) =
K−1K is continuous, we see that every Un is open.

Claim 5. For every n ∈ N the set Un is dense in K(G).

Proof. As finite sets are dense in K(G), it is enough to show that for every finite subset
{x0, . . . , xl} of G and every r > 0 there exist y0, . . . , yl distinct points in G with

{y−1
i yj : i, j ∈ {0, . . . , l} with i �= j} ∩ Cn = ∅

such that d(xi, yi) � r for all i ∈ {0, . . . , l} (here d is simply a compatible complete metric of
G). The points y0, . . . , yl will be chosen by recursion. We set y0 = x0. Assume that y0, . . . , yk

have been chosen for some k < l so that {y−1
i yj : i, j ∈ {0, . . . , k} with i �= j} ∩ Cn = ∅. For

every g ∈ G the functions x �→ gx−1 and x �→ gx are homeomorphisms. It follows that the
set Fk =

⋃k
i=0(yiC

−1
n ∪ yiCn) is a closed set with empty interior. Hence, there exists yk+1 ∈

B(xk+1, r) such that yk+1 /∈ Fk ∪ {y0, . . . , yk}. This implies that for every i ∈ {0, . . . , k} we
have y−1

k+1yi /∈ Cn and y−1
i yk+1 /∈ Cn. This completes the recursive selection and the proof of

the claim is completed.

It follows by the above claim that the set H =
⋂

n Un is a hereditary, dense Gδ subset of
K(G) and that (Un) is a normal form of H. Notice that, if K ∈ H, then K−1K ∩ A−1A = {1}.
By Proposition 4, we have that the set

B1 = {μ ∈ P (G) : ∀ε > 0 ∃K ∈ H with μ(K) � 1 − ε}
is co-meager. Our assumption that G is uncountable implies that the Polish group G viewed
as a topological space is perfect. Hence, the set of all non-atomic Borel probability measures
on G is co-meager in P (G) (see [6, 8]). It follows that the set

B2 = {μ ∈ P (G) : μ is non-atomic and μ ∈ B1}
is co-meager in P (G). We will show that B2 ⊆ Tl(A). This completes the proof. We need the
following fact (its easy proof is left to the reader).

Fact 6. Let μ ∈ P (G). Then μ ∈ Tl(A) if and only if for every ν ∈ P (G) we have ν ∗
μ(A) = 0.

Fix μ ∈ B2. By the above fact, in order to verify that μ ∈ Tl(A) we have to show that ν ∗
μ(A) = 0 for every ν ∈ P (G). Therefore, let ν ∈ P (G) be arbitrary. Also, let ε > 0 be arbitrary.
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As μ ∈ B2 ⊆ B1, there exists K ∈ H with μ(K) � 1 − ε. Then

ν ∗ μ(A) =
∫
G

ν(Ay−1)dμ(y) �
∫
K

ν(Ay−1)dμ(y) + μ(G \ K)

�
∫
K

ν(Ay−1)dμ(y) + ε.

We set I = {y ∈ K : ν(Ay−1) > 0}.

Claim 7. The set I is countable.

Proof. Notice that, if y, z ∈ I with y �= z, then Ay−1 ∩ Az−1 = ∅. For, if not, then we would
have that 1 �= y−1z ∈ K−1K ∩ A−1A, which contradicts the fact that K ∈ H. It follows that
the family {Ay−1 : y ∈ I} is a family of pairwise disjoint sets of positive ν-measure. Hence, I
is countable, as claimed.

The measure μ is non-atomic as μ ∈ B2. Hence, by Claim 7, we see that μ(I) = 0. It follows
that ∫

K

ν(Ay−1)dμ(y) =
∫
I

ν(Ay−1)dμ(y) � μ(I) = 0,

and so ν ∗ μ(A) � ε. Since ε is arbitrary, this implies that ν ∗ μ(A) = 0. The proof of Theorem
A is completed.

Combining Theorem A with Pettis’ theorem (see [5, Theorem 9.9]) we obtain the following
corollary.

Corollary 8. Let G be an uncountable Polish group and let A be an analytic subset
of G. If A is not generically left Haar-null (in particular, if A is not left Haar-null), then
1 ∈ Int(A−1AA−1A).

Clearly, Theorem A implies that, in non-locally-compact groups, compact sets are generically
left Haar-null. Another application of this form concerns the size of analytic subgroups of
Polish groups. Specifically, we have the following corollary that may be considered as the
non-locally-compact analog of Laczkovich’s theorem [7].

Corollary 9. Let G be an uncountable Polish group and let H be an analytic subgroup
of G with empty interior. Then H is generically left Haar-null.

What about Haar-null sets? We would like to remark on the possibility of extending Theorem
A to Haar-null sets, instead of merely left Haar-null. As it has been shown by Solecki in [11],
that the Steinhaus property of the σ-ideal of Haar-null sets fails in a large number of Polish
groups (in a sense, it fails for most non-abelian Polish groups). Precisely, by [11, Theorem
6.1], if (Hn) is a sequence of countable groups such that infinitely many of them are not FC
(see [11] for the definition of FC groups), then one can find a closed set A ⊆ ∏

n Hn that is
not Haar-null and A−1A is meager. Therefore, there is no analog of Theorem A for Haar-null
sets in arbitrary Polish groups. Yet there is one if we further assume that the group G satisfies
the following non-singularity condition.

(C) For every analytic and meager subset A of G, the conjugate saturation [A] = {x : ∃g ∈ G
∃a ∈ A with x = gag−1} of A is meager.
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Clearly, every abelian Polish group satisfies (C). Moreover, we have the following proposition.

Proposition 10. Let G1 and G2 be Polish groups. If both G1 and G2 satisfy (C), then so
does G1 × G2.

Proof. Let A ⊆ G1 × G2 be analytic and meager. By the Kuratowski–Ulam theorem (see
[5, Theorem 8.41]), we have that

∀∗x ∈ G1 the section Ax = {y ∈ G2 : (x, y) ∈ A} of A is meager.

As G2 satisfies (C), by another application of the Kuratowski–Ulam theorem we obtain that

A1 = {(x, z) : ∃g2, y ∈ G2 with (x, y) ∈ A and y = g2zg−1
2 }

is analytic and meager. With the same reasoning, we see that the set

A2 = {(w, z) : ∃g1, x ∈ G1 with (x, z) ∈ A1 and x = g1wg−1
1 }

is analytic and meager too. Noticing that A2 = [A], the result follows.

For groups that satisfy (C) we have the following strengthening of Theorem A.

Proposition 11. Let G be an uncountable Polish group that satisfies (C). If A is an
analytic subset of G such that A−1A is meager, then T (A) is co-meager.

Proof. The proof is similar to the proof of Theorem A, and so we shall only indicate the
necessary changes. Let A ⊆ G be analytic such that A−1A is meager. Notice that A−1A is
analytic. The group G satisfies (C). It follows that the set [A−1A] is meager too. Arguing as in
the proof of Theorem A, this implies that there exists a co-meager set B2 of non-atomic Borel
probability measures on G such that, for every μ ∈ B2 and every ε > 0, there exists K ⊆ G
compact with μ(K) � 1 − ε and K−1K ∩ [A−1A] = {1}. We claim that B2 ⊆ T (A). To this
end, it is enough to show that for every μ ∈ B2, every ν ∈ P (G) and every x ∈ G we have
ν ∗ μ(Ax) = 0. Let ε > 0 be arbitrary and choose K ⊆ G compact as described above. Then

ν ∗ μ(Ax) �
∫
K

ν(Axy−1)dμ(y) + ε.

We set I = {y ∈ K : ν(Axy−1) > 0}. Observe that, if y, z ∈ I with y �= z, then (Axy−1) ∩
(Axz−1) = ∅ (for, if not, then we would have that 1 �= y−1z ∈ K−1K ∩ [A−1A]). By the
countable chain condition of ν, we obtain that I is countable and the result follows.

Remark 1. The σ-ideal of generically left Haar-null sets is a quite satisfactory σ-ideal
of measure-theoretic small sets in arbitrary Polish groups. Besides Theorem A, this is also
supported by the results in [3] asserting that every analytic and generically left Haar-null
subset A of G can be covered by a Borel set B with the same property. The fact that this
ideal is well behaved is also reflected in the complexity of the collection of all closed generically
left Haar-null sets (in the Effros–Borel structure). It is much better than the one of closed
Haar-null sets, at least in abelian Polish groups. Specifically, it follows by the results of Solecki
in [10] that, in non-locally-compact abelian Polish groups, the σ-ideal of closed generically
Haar-null sets is Π1

1-complete. The corresponding collection of closed Haar-null sets is much
more complicated (it is both Σ1

1 and Π1
1-hard).
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