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ABSTRACT. We simplify a criterion (due to Ibarlucı́a and the author) which char-
acterizes dynamical simplices, that is, sets K of probability measures on a Cantor
space X for which there exists a minimal homeomorphism of X whose set of in-
variant measures coincides with K. We then point out that this criterion is related
to Fraı̈ssé theory, and use that connection to provide a new proof of Downarow-
icz’ theorem stating that any Choquet simplex is affinely homeomorphic to a dy-
namical simplex. The construction enables us to prove that there exist minimal
homeomorphisms of a Cantor space which are speedup equivalent but not orbit
equivalent, answering a question of D. Ash.

1. INTRODUCTION

In this paper, we continue investigations initiated in [IM] concerning dynamical
simplices, that is, sets K of probability measures on a Cantor space X such that there
exists a minimal (i.e. such that all orbits are dense) homeomorphism of X whose
set of invariant measures coincides with K. Dynamical simplices are natural in-
variants of orbit equivalence and, in fact, a famous theorem of Giordano–Putnam–
Skau [GPS] asserts that they are complete invariants of orbit equivalence for min-
imal homeomorphisms (see section 5 for details on orbit equivalence, speedups,
and the Giordano–Putnam–Skau theorem). The main theorem of [IM] is the fol-
lowing.

Theorem (Ibarlucı́a–Melleray [IM]). Let X be a Cantor space. A set K ⊂ P(X) is a
dynamical simplex if and only if:

(1) K is compact and convex.
(2) All elements of K are atomless and have full support.
(3) K satisfies the Glasner–Weiss condition: whenever A, B are clopen subsets of

X and µ(A) < µ(B) for all µ ∈ K, there exists a clopen C ⊆ B such that
µ(A) = µ(C) for all µ ∈ K.

(4) K is approximately divisible: for any clopen A, any integer n, and any ε > 0,
there exists a clopen B ⊂ A such that µ(A)− ε ≤ nµ(B) ≤ µ(A)

The first two conditions are obviously necessary for K to be the set of invari-
ant measures for a minimal action of any group by homeomorphisms of X; the
fact that the third one is necessary follows from a theorem of Glasner–Weiss [GW],
hence the terminology we adopt here. When [IM] was completed, the status of ap-
proximate divisibility was more ambiguous: on the one hand, it played a key part
in the arguments; on the other hand, this assumption seems rather technical, and
it is not hard to see that when K has finitely many extreme points approximate di-
visibility is a consequence of the three other conditions in the above theorem. Thus
it was asked in [IM] whether this assumption is really necessary; we prove here
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that it is in fact redundant, thus simplifying the characterization of a dynamical
simplex and giving it its final form.

Theorem. Let X be a Cantor space. Assume that K ⊂ P(X) is compact and convex;
all elements of K are atomless and have full support; and K satisfies the Glasner–Weiss
condition. Then K is approximately divisible (hence K is a dynamical simplex).

This theorem is obtained as a corollary of the following result, which is of inde-
pendent interest.

Theorem. Let X be a Cantor space, and G be a group of homeomorphisms of X such that
each G-orbit is dense. Then the set of all G-invariant Borel probability measures on X is
approximately divisible.

The proof of this result is similar in spirit to some of the arguments used in
[IM]. A more novel aspect of the work presented here is that we exploit a connec-
tion between dynamical simplices and Fraı̈ssé theory, which enables us to build
interesting examples. Along those lines, we obtain a new and rather elementary
proof of a well-known theorem of Downarowicz.

Theorem (Downarowicz [D]). For any metrizable Choquet simplex K, there exists a
minimal homeomorphism ϕ of a Cantor space X such that K is affinely homeomorphic to
the set of all ϕ-invariant Borel probability measures on X.

An interesting aspect of the construction used to prove this result is its flexibil-
ity; we exploit this to prove the following theorem.

Theorem. There exist two dynamical simplices K, L of a Cantor space X, and home-
omorphisms g, h ∈ Homeo(X) such that g∗K ⊂ L and h∗L ⊂ K, yet there is no
f ∈ Homeo(X) such that f∗K = L.

This answers a question recently raised by Ash [A] and shows that the relation
of speedup equivalence is strictly coarser than the relation of orbit equivalence.

The paper is organized as follows: we first prove that approximate divisibility
is redundant in the characterization of dynamical simplices. Then we outline some
basics of Fraı̈ssé theory and explain why this theory is relevant to the study of dy-
namical simplices. We exploit that connection to prove Downarowicz’s theorem
on realizability of Choquet simplices as dynamical simplices, and adapt this con-
struction to show that there exist minimal homeomorphisms which are speedup
equivalent but not orbit equivalent.

Acknowledgements. The research presented here was partially supported by
ANR project GAMME (ANR-14-CE25-0004). I am grateful to T. Ibarlucı́a for valu-
able corrections, comments and suggestions about the first draft of this paper.

2. APPROXIMATE DIVISIBILITY OF SIMPLICES OF INVARIANT MEASURES

Throughout this section X stands for a Cantor space, and P(X) denotes the
space of Borel probability measures on X, with its usual topology (induced by the
maps µ 7→ µ(A) as A runs over all clopen subsets of X). Our objective in this sec-
tion is to prove the following theorem, and then deduce from it that approximate
divisibility is redundant in the characterization of a dynamical simplex.
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Theorem 2.1. Let G be a group of homeomorphisms of a Cantor space X such that each
G-orbit is dense. Then the set KG of all G-invariant Borel probability measures on X is
approximately divisible.

For the remainder of this section, we fix G as above.

Definition 2.2. Fix an integer N, and a clopen set A. A N-dividing partition of A is
a finite clopen partition (Ui,j)i∈I,j∈{0,...,ni} of A such that ni ≥ N for all i and there
exists gi

1, . . . , gi
ni

in G such that gi
j(Ui,0) = Ui,j for all i and all j ∈ {1, . . . , ni}.

By analogy with Kakutani–Rokhlin partitions we say that {Ui,j : 0 ≤ j ≤ ni} is a
column of the partition, with base Ui,0 (though the actual ordering of the partition
does not matter here).

There are two operations on N-dividing partitions which will be useful to us.
Given an N-dividing partition U , a column C of U with base Ui,0, and a clopen par-
tition V1, . . . , Vk of Ui,0, we can form a new partition by replacing C with columns
(V1, gi

1(V1), . . . , gi
ni
(V1)), . . . , (Vk, gi

1(Vk), . . . , gi
ni
(Vk)). The other operation is that,

when U covers a clopen set A, V is a clopen subset disjoint from A, Ui,j is an atom
of U and there exists g ∈ G such that g(Ui,j) = V, then we may extend U to a
N-dividing partition that covers A ∪V by setting Ui,ni+1 = V and gi

ni+1 = ggi
j; we

say that we have added V on top of the i-th column of U .
If U ′ is obtained from U by applying these two operations finitely many times,

we say that U ′ refines U .

Lemma 2.3. Let U = (Ui,j)i∈I,j∈{0,...,ni} be a N-dividing partition of some clopen A,
and (V0, h1(V0), . . . , hm(V0)) be a N-dividing partition of some clopen set B. Then there
exists a N-dividing partition U ′ which refines U , W0 ⊆ V0 which is disjoint from all the
elements of U ′, and such that the union of U ′ and (W0, h1(W0), . . . , hm(W0)) still covers
A ∪ B.

Note that the only difficulty is that A and B may not be disjoint, and the two
N-dividing partitions may overlap, requiring a bit of care.

Proof. As above we denote by (gi
j) some elements of G witnessing that U is a N-

dividing partition. Let V = V0 ∩ A; if V = ∅ we have nothing to do as W0 = V0
works. Otherwise we set W0 = V0 \ V. We then let P denote the clopen partition
of V generated by V ∩ h−1

1 (A), . . . , V ∩ h−1
m (A). Note that for any atom C of P and

all j, hj(C) is either contained in A or disjoint from it. Then, using the maps gi
j, we

may refine U (by partitioning the base of each column and replicating the corre-
sponding partition along the column via gi

j) to form a new N-dividing partition V
which refines U and is finer than P ∪ {A \V}. This implies that, for any atom C of
V , either C is contained in V or is disjoint from V; and if C is contained in V then
each of C, h1(C), . . . , hm(C) is either contained in A or disjoint from it.

Given one of the columns of V which meets V, with base Vi,0, list the atoms
C1, . . . , Ck in this column that are contained in V; for each l ∈ {1, . . . , k} let Jl ⊆
{1, . . . , m} denote the set of all indices j such that hj(Cl) ∩ A = ∅. We add each
hj(Cl) for j ∈ Jl on top of our column (if Jl is empty the colum is not modified),
which is fine since these sets are pairwise disjoint, are also disjoint from all ele-
ments of V , and there is an element of G mapping Vi,0 onto hj(Cl).
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Once we have done this for all the columns of V which intersect V, we have
produced an N-dividing partition U ′ which refines U and covers V as well as each
hi(V). Hence the union of U ′ and (W0, h1(W0), . . . , hm(W0)) still covers A ∪ B, as
required. �

Lemma 2.4. Fix an integer N, and assume that A, B are clopen subsets such that there
exists a N-dividing partition of A and a N-dividing partition of B. Then there is a N-
dividing partition of A ∪ B.

Proof. By induction on the number of columns of the N-dividing partition of B, it
is enough to consider the case where it is of the form (V0, h1(V0), . . . , hm(V0)) for
some clopen V0 and some m ≥ N. Using the previous lemma m times, we produce
N-dividing partitions Ui which refine U, and clopen sets Wi contained in V0 such
that

• For all i < m, Ui+1 refines Ui and Wi+1 ⊆Wi;
• For all i ≤ m the elements of Ui do not intersect Wi, h1(Wi), . . . , hi(Wi);
• For all i ≤ m the union of Ui and (Wi, h1(Wi), . . . , hm(Wi)) covers A ∪ B.

In the end, Um is disjoint from (Wm, h1(Wm), . . . , hm(Wm)), so we may just add
(Wm, h1(Wm), . . . , hm(Wm)) as a new column to Um to obtain the desired N-dividing
partition of A ∪ B. �

Proposition 2.5. For any integer N and any clopen A there exists a N-dividing partition
of A.

Proof. Since by assumption the G-orbit of any x ∈ A is dense, its intersection with
A is infinite and we may find some clopen subset U0 3 x and elements g1, . . . , gN
of G such that U0, g1(U0), . . . , gN(U0) are disjoint and contained in A. Thus there
exists a covering of A by clopen sets which can each be covered by a N-dividing
partition, and by compactness there exists such a covering which is finite. Then
we obtain the desired N-dividing partition of A from Lemma 2.4. �

Proof of Theorem 2.1. Fix a nonempty clopen subset A of X, an integer n and ε > 0.
Then pick a N-dividing partition of A for some N > n

ε ; let us denote it as before by
(Ui,j)i∈I,j∈{0,...,ni} .For each i, we write ni + 1 = npi + qi for some qi ∈ {0, . . . , n− 1}
and then define, for all k ∈ {0, . . . , n− 1},

Bk =
⊔
i∈I

pi−1⊔
l=0

Ui,k+nl .

By construction, for all µ ∈ KG we have µ(B0) = µ(B1) = . . . = µ(Bn−1) (be-
cause there exists an element of G mapping B0 to Bi for all i ∈ {0, . . . , n − 1});
hence nµ(B0) ≤ µ(A) since B0, . . . , Bn−1 are disjoint and contained in A. Also by
construction, for any µ ∈ KG we have

µ(A \
n−1⊔
k=0

Bk) ≤∑
i∈I

qiµ(Ui,0) ≤ (n− 1)µ(
⋃
i∈I

U0,i)

In any N-dividing partition of A, the union of the bases of the columns must have
µ-measure less that µ(A)

N for all µ ∈ KG, so what we just obtained implies that

µ(A)− nµ(B0) ≤
n− 1

N
µ(A) ≤ ε .
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Thus, B = B0 is such that µ(A)− ε ≤ nµ(B) ≤ µ(A), proving that KG is approxi-
mately divisible. �

We are now ready to prove that the assumption of approximate divisibility in
the definition of a dynamical simplex is redundant.

Corollary 2.6. Assume that K ⊂ P(X) is compact and convex; all elements of K are
atomless and have full support; and K satisfies the Glasner–Weiss condition. Then K is
approximately divisible.

Proof. We pick K as above, and let H = {h ∈ Homeo(X) : ∀µ ∈ K h∗µ = µ}.
We first note that the argument used in the proof Proposition 2.6 in [GW] shows
that the action of H on X is transitive. Hence it follows from Theorem 2.1 that the
simplex KH of all G-invariant Borel probability measures on X is approximately
divisible. Since K is contained in KH , K is also approximately divisible (we note
that it then follows from the arguments of [IM] that K = KH but this is not needed
here). �

3. DYNAMICAL SIMPLICES AS FRAÏSSÉ LIMITS

In this section, we develop the connection between dynamical simplices and
Fraı̈ssé theory. We introduce the basic concepts of Fraı̈ssé theory in our specific
context. Since we do not assume familarity with this theory, we give some back-
ground details; we refer the reader to [H] for a more thorough discussion.

For the moment, we fix a set E (later, E will be a Choquet simplex), and the ob-
jects we consider are Boolean algebras endowed with a family of finitely additive
probability measures (µe)e∈E. We let BE denote the class of all these objects: an
element of BE is of the form (A, (µe)e∈E) where A is a Boolean algebra and each
µe is a finitely additive probability measure on A. Since there should be no risk of
confusion, we simply write A ∈ BE and use the same letter A also to denote the
underlying Boolean algebra of the structure we are considering.

Allow us to point out, for those who are used to Fraı̈ssé theory, that elements
of BE really are first order structures in disguise, in a language where each µe is
coded by unary predicates µr

e which are interpreted via µe(a) = r ↔ a ∈ µr
e; this

is for instance done in [KR] (with just one measure in the language but this makes
no essential difference). We adopt somewhat unusual conventions in the hope of
improving readability in our particular case.

Note that inside BE we have natural notions of isomorphism, embedding, and
substructure. Below, we call elements of BE E-structures.

Definition 3.1. Let K be a subclass of BE . One says that K satisfies :
(1) the hereditary property if whenever A ∈ K and B embeds in A then also

B ∈ K.
(2) the joint embedding property if for any A, B ∈ K there exists C ∈ K such that

both A and B embed in C.
(3) the amalgamation property if, for any A, B, C ∈ K and embeddings α : A →

B, β : A → C there exists D ∈ K and embeddings α′ : B → D, β′ : C → D
such that α′ ◦ α = β′ ◦ β.

All the classes we will consider contain the trivial boolean algebra {0, 1}, with
µe(0) = 0 and µe(1) = 1 for all e, which is a substructure of all elements of BE.
Thus the joint embedding property will be implied by the amalgamation property.
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The hereditary property is usually easy to check; the amalgamation property is
typically much trickier, and is intimately related to homogeneity.

Definition 3.2. Given A ∈ BE, we say that A is homogeneous if any isomorphism
between finite substructures of A extends to an isomorphism of A.

Here we recall that an isomorphism between E-structures is an isomorphism of
the underlying Boolean algebras which preserves the values of each µe.

Definition 3.3. Let A ∈ BE. The age of A is the class of all elements of BE which
are isomorphic to a finite substructure of A.

Note that the age of any E-structure satisfies the hereditary property and the
joint embedding property.

Proposition 3.4. Assume that M ∈ BE is homogeneous. Then its age satisfies the amal-
gamation property.

Proof. Let A, B, C belong to the age of M and α : A → B and β : A → C be em-
beddings. Given the definition of an age, we may assume that B, C ⊂ M. The
isomorphism αβ−1 : β(A) → α(A) extends to an automorphism f of M by ho-
mogeneity. Let D be the substructure of M generated by B and f (C) (which is
finite since a finitely generated Boolean algebra is finite), and α′ the inclusion
map from B to D, β′ the restriction of f to C. Then for all a ∈ A we have
β′β(a) = αβ−1β(a) = α(a) = α′α(a). �

There exists a form of converse to the previous result, which applies to count-
able E-structures (that is, the underlying Boolean algebra is countable).

Definition 3.5. A subclass K of BE is a Fraı̈ssé class if :
• All elements of K are finite
• K satisfies the hereditary property, the joint embedding property and the

amalgamation property.
• K contains countably many structures up to isomorphism.

We already know that the age of a countable, homogeneous structure is a Fraı̈ssé
class.

Theorem 3.6 (Fraı̈ssé). Given a Fraı̈ssé subclass K of BE, there exists a unique (up to
isomorphism) countable homogeneous E-structure whose age is equal to K. This structure
is called the Fraı̈ssé limit of K.

This E-structure can be built by repeated amalgamation of elements of K; to
prove both the existence and uniqueness, one can use the following characteriza-
tion, which follows from a back-and-forth argument.

Proposition 3.7. Given a Fraı̈ssé subclass K of BE, a E-structure M is isomorphic to the
Fraı̈ssé limit of K iff the age of M coincides with K and M satisfies the Fraı̈ssé property,
namely: whenever A ⊆ M, B ∈ K and α : A → B is an embedding, there exists an
embedding β : B→ M such that βα(a) = a for all a ∈ A.

The following lemma is an easy consequence of [IM, Proposition 2.7] and is
crucial for our purposes.

Lemma 3.8. For any two clopen partitions (Ai)i=1,...,n, (Bi)i=1,...,n of X such that µ(Ai) =
µ(Bi) for all i ∈ {1, . . . , n} and all µ ∈ K, there exists g ∈ G such that g(Ai) = Bi for
all i ∈ {1, . . . , n}.



DYNAMICAL SIMPLICES AND FRAÏSSÉ THEORY 7

Given a dynamical simplex K on a Cantor space X, we can see the clopen al-
gebra of X, endowed with all the measures in K, as a K-structure, and Lemma 3.8
states that any isomorphism between finite Boolean subalgebras extends to an au-
tomorphism of the whole structure, that is, this structure is homogeneous. Thus,
its age is a Fraı̈ssé class.

We are now concerned with the other direction: building dynamical simplices
from Fraı̈ssé classes of E-structures. We will use the fact that the clopen algebra
Clopen(X) of a Cantor space X is the unique (up to isomorphism) atomless count-
able Boolean algebra; and that the set of finitely additive probability measures on
Clopen(X) is naturally identified with the compact space P(X) of Borel probabil-
ity measures on X.

From now on, we only consider Fraı̈ssé subclasses K of BE which satisfy the
nontriviality condition that, given any A ∈ K, there is an embedding α : A→ B ∈
K such that for all atoms a ∈ A α(a) is not an atom of B. We call such classes
suitable.

Given any suitable Fraı̈ssé subclass K of BE, the underlying Boolean algebra of
the limit ofK is a countable atomless Boolean algebra, which we see as the algebra
of clopen sets of a Cantor space XK by Stone duality; then for any e ∈ E we see the
measure µe as a probability measure on XK. We denote by S(K) the closed convex
hull of {µe}e∈E inside P(XK).

Proposition 3.9. Let K be a Fraı̈ssé class of E-structures. Then S(K) is a dynamical
simplex if and only if the following conditions are satisfied:

(1) For any A ∈ K, and any nonzero a ∈ A, infe µe(a) > 0.
(2) For any A ∈ K, any a ∈ A and any ε > 0, there exists B ∈ K and a1, . . . , an, a′ ∈

B such that
∨

ai = a′, µe(ai) ≤ ε for all i and all e ∈ E, and µe(a′) = µe(a) for
all e ∈ E.

(3) For any A, B ∈ K and any a ∈ A, b ∈ B, if µe(a) ≤ µe(b)− ε for all e ∈ E and
some ε > 0 then there exists C ∈ K and a′, b′ ∈ C such that a′ is contained in b′

and µe(a) = µe(a′), µe(b) = µe(b′) for all e ∈ E.

Implicit in the above Proposition is that, under its assumptions, K is automat-
ically suitable: suitability directly follows from the combination of conditions (1)
and (2), and the amalgamation property of a Fraı̈ssé class.

Proof. The fact that (1) and (2) are necessary is well-known and easily checked (see
for instance Proposition 2.5 of [IM]); (3) directly follows from the Glasner–Weiss
property.

Conversely, assume that all three conditions above are satisfied. It is clear that
(3) (and homogeneity of a Fraı̈ssé limit) implies that S(K) satisfies the Glasner–
Weiss property. Now fix ν ∈ S(K). To see that ν has full support, pick some
nonempty clopen U in XK; then by (1) there exists ε > 0 such that µe(U) ≥ ε
for all e ∈ E, hence also ν(U) ≥ ε. Finally, the combination of (2) and (3) (and
homogeneity) implies that, given any clopen U ⊂ XK and any ε > 0 there exists
a covering of U by clopens U1, . . . , Un such that µe(Ui) ≤ ε for all i and all e ∈ E,
hence also ν(Ui) ≤ ε for all i, and this in turn implies that ν is atomless. �
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4. A FRAÏSSÉ THEORETIC PROOF OF DOWNAROWICZ’S THEOREM

Given a Choquet simplex Q, we denote by A(Q) the space of all real-valued
continuous, convex, affine maps on Q. For F ⊂ A(Q) we denote by F+ the ele-
ments of F taking nonnegative values, and by F+

1 the elements of A(Q) with values
in the half-open interval ]0, 1].

Definition 4.1. We say that a subset F of A(Q) satisfies the finite sum property
if, whenever f , f1, . . . , fn, g1, . . . , gm are elements of F+ such that f = ∑n

i=1 fi =

∑m
j=1 gj there exist hi,j ∈ F+ satisfying

∀j ∈ {1, . . . , n}
m

∑
k=1

hj,k = f j and ∀k ∈ {1, . . . , m}
n

∑
j=1

hj,k = gj .

It is an important fact that, when Q is a Choquet simplex, A(Q) satisfies the fi-
nite sum property, which is an equivalent formulation of the Riesz decomposition
property of A(Q) (see [L] or [E] and Theorem 2.5.4, Chapter I.2 of [FL]; [P] and
[FL] are good references for the facts we use here about Choquet simplices).

We need a version of the finite sum property for maps with values in ]0, 1],
which is easy to establish.

Lemma 4.2. Let Q be a Choquet simplex. Assume that F ⊆ A(Q) is a Q-vector subspace
which contains the constant function 1 and has the finite sum property. Assume also that
f , ( f j)i=1,...,n, (gk)k=1,...,m are elements of F+

1 such that
n

∑
j=1

f j = f =
m

∑
k=1

gk .

Then there exist elements hj,k of F+
1 such that

∀j ∈ {1, . . . , n}
m

∑
k=1

hj,k = f j and ∀k ∈ {1, . . . , m}
n

∑
j=1

hj,k = gj .

Proof. We first pick ε > 0 which is strictly smaller than min( f j) and min(gk) for
all j, k, and such that the constant function equal to ε belongs to F. Then, define
f ′ = f − ε, f ′j = f j − ε

n and g′k = gk − ε
m . Those maps still belong to F+

1 and

∑j f ′j = f = ∑k g′k; by the finite sum property we may then find h′j,k ∈ F+ of A(Q)

such that ∑k h′j,k = f ′j , ∑j h′j,k = g′k. Then hj,k = h′j,k +
ε

nm belongs to F+
1 and these

maps have the desired property. �

We now introduce the subclass KQ of all finite A ∈ BQ such that for all nonzero
a ∈ A the map q 7→ µq(a) belongs to A(Q)+1 . The previous lemma yields the
following property, which is the key fact in our construction.

Proposition 4.3. For any Choquet simplex Q, the class KQ satisfies the amalgamation
property.

Proof. Let A, B, C ∈ KQ and α : A → B, β : A → C be embeddings. We list the
atoms of A, B, C as (ai)i∈I , (bj)j∈J and (ck)k∈K. For all i ∈ I we let Ji (resp. Ki)
denote the set of all j such that bj ∈ α(ai) (resp. ck ∈ β(ai)). We first define
the underlying Boolean algebra of our amalgam, using the usual amalgamation
procedure for Boolean algebras (as is done for instance in [KR]): the atoms of D
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are of the form bj ⊗ ck for each pair (j, k) which belongs to Ji × Ki for some i. For
all i and all (j, k) ∈ Ji × Ki we will set

α′(bj) =
∨

k∈Ki

bj ⊗ ck and β′(ck) =
∨
j∈Ji

bj ⊗ ck .

The one thing that requires some care is to define each µq(bi ⊗ cj); and the con-
straint we have to satisfy is that, given i, (j, k) ∈ Ji × Ki and q ∈ Q we must have

µq(bj) = ∑
k∈Ki

µq(bi ⊗ cj) and µq(ck) = ∑
j∈Ji

µq(bi ⊗ cj)

The fact that this is possible is guaranteed by the previous lemma and the fact that

∀i ∑
j∈Ji

µq(bj) = µq(ai) = ∑
k∈Ki

µq(ck) .

Indeed, since each map q 7→ µq(bj), q 7→ µq(ck) and q 7→ µq(ai) belongs to A(Q)+1 ,
Lemma 4.2 allows us to find elements hj,k of A(Q)+1 such that

∀q ∈ Q ∀j ∈ Ji ∑
k∈Ki

hj,k(q) = µq(bj) and ∀k ∈ Ki ∑
j∈Ji

hj,k(q) = µq(ck) .

Setting µq(bj ⊗ ck) = hj,k(q), we are done. �

Theorem 4.4 (Downarowicz [D]). Given a metrizable Choquet simplex Q, there exists
a minimal homeomorphism of a Cantor space whose set of invariant measures is affinely
homeomorphic to Q.

Note that Downarowicz obtains a more precise result: the minimal homeomor-
phism that he obtains is a dyadic Toeplitz flow, while here we do not have control
over its dynamics (though maybe something could be extracted from the construc-
tion in [IM]).

Proof. We need to build a dynamical simplex which is affinely homeomorphic to
Q. A simple closure argument allows us to find a countable dense Q-vector sub-
space F of A(Q) which contains the constant function 1 and satisfies the finite sum
property: start from a countable dense Q-vector subspace of A(X) F0 containing
1, then add witnesses to the finite sum property as needed to form a countable
F1 ⊂ A(Q) containing F0, let F2 be the Q-vector subspace generated by F1, and
keep going :

⋃
i∈N Fi will have the desired property.

Then we consider the class L consisting of all A ∈ KQ such that for all nonzero
a ∈ A the map q 7→ µq(a) belongs to F+

1 . By the same argument as above, the
finite sum property of F ensures that L has the amalgamation property; clearly L
also satisfies the hereditary property, and has only countably many elements up
to isomorphism because F is countable, hence L is a Fraı̈ssé class.

The fact thatL satisfies condition (1) of Proposition 3.9 follows from the fact that
elements of A(Q)+1 are continuous and take values in ]0, 1], hence are bounded
below by some strictly positive constant; condition (2) is asily deduced from the
fact that for any f ∈ F and any N > 0 the function 1

N f also belongs to f . Finally,
condition (3) is deduced by noticing that if f , g ∈ F+

1 and f (q) < g(q) for all q ∈ Q
then g− f also belongs to F+

1 .
To sum up, we just built a dynamical simplex S(L). We now claim that the map

Φ : q 7→ µq is a affine homeomorphism from Q to S(L).
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Continuity of Φ is equivalent to the fact that for each U ∈ Clopen(XL) the map
q 7→ µq(U) is continuous, which is built into our definition of L since this map
belongs to A(Q). Similarly, Φ is affine because each map q 7→ µq(U) is affine. This
implies that Φ(Q) = {µq : q ∈ Q} is compact and convex, so its closed convex
hull S(L) is equal to it and Φ is onto. Finally, injectivity of Φ is ensured by the
density of F in A(X): if q, q′ are distinct elements of Q, there exists f ∈ F+

1 such
that f (q) 6= f (q′), and both f (q), f (q′) are different from 1. Then by definition of
L this yields U ∈ Clopen(XL) such that µq(U) = f (q) 6= f (q′) = µq′(U). Thus
Φ : Q→ S(L) is an affine homeomorphism and we are done. �

5. SPEEDUP EQUIVALENCE VS ORBIT EQUIVALENCE

Definition 5.1. Recall that two minimal homeomorphisms ϕ, ψ of a Cantor space
X are orbit equivalent if there is g ∈ Homeo(X) such that g maps the ϕ-orbit of x
onto the ψ-orbit of g(x) for all x ∈ X.

Definition 5.2. For ϕ ∈ Homeo(X), we denote by S(ϕ) the simplex of all ϕ-
invariant Borel probability measures on X.

The following theorem is a cornerstone of the study of orbit equivalence of min-
imal homeomorphisms of Cantor spaces.

Theorem 5.3 (Giordano–Putnam–Skau [GPS]). Whenever ϕ, ψ are two minimal home-
omorphisms of a Cantor space X, the following conditions are equivalent.

(1) ϕ and ψ are orbit equivalent.
(2) There exists g ∈ Homeo(X) such that g∗S(ϕ) = S(ψ).

We recall that for µ ∈ P(X) and g ∈ Homeo(X) one has g∗µ(A) = µ(g−1 A);
and for K ⊂ P(X) and g ∈ Homeo(X) we set g∗K = {g∗µ : µ ∈ K}.

Note that any g witnessing that ϕ and ψ are orbit equivalent must be such that
g∗S(ϕ) = S(ψ); the converse is false, and the dynamical content of the above
theorem is still somewhat mysterious to the author. The Giordano–Putnam–Skau
theorem admits a one-sided analogue, due to Ash [A], which we proceed to de-
scribe.

Definition 5.4. Let ϕ, ψ be minimal homeomorphisms. Say that ϕ is a speedup of ψ
if ϕ is conjugate to a map of the form x 7→ ψnx (x), with nx > 0 for all x.

Theorem 5.5 (Ash [A]). Whenever ϕ, ψ are two minimal homeomorphisms of a Cantor
space X, the following conditions are equivalent.

(1) ϕ is a speedup of ψ.
(2) There exists g ∈ Homeo(X) such that S(ψ) ⊂ g∗S(ϕ).

Again, one of the two implications above is easy; the hard part is building the
speedup from the assumption that one set of invariant measures is contained in
the other. Ash showed that this can be done using Kakutani–Rokhlin partitions.

Note that, if ϕ, ψ are minimal homeomorphisms such that each ϕ-orbit is con-
tained in a ψ-orbit, then the set of ϕ-invariant measures contains the set of ψ-
invariant measures; conversely, if the set of ϕ-invariant measures contains the set
of ψ-invariant measures then it follows from Ash’s result that one may conjugate
ϕ so that each ϕ-orbit is contained in a ψ-orbit (this is weaker than Ash’s theo-
rem cited above and admits a shorter proof). It is natural to wonder, as Ash did
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[A], whether speedup equivalence is actually the same notion as orbit equivalence,
which also corresponds to asking whether there is a Schröder-Bernstein property
for equivalence relations induced by minimal homeomorphisms. As pointed out
by Ash, one easily sees that such is the case when one of the homeomorphisms has
a finite-dimensional simplex of invariant measures.

Proposition 5.6 (Ash [A]). Assume that ϕ, ψ are minimal homeomorphisms and that
S(ϕ) has finitely many extreme points. If ϕ and ψ are speedup equivalent then they are
orbit equivalent.

The situation turns out to be very different for infinite-dimensional simplices.

Definition 5.7. We say that two dynamical simplices K, L on a Cantor space X are
biembeddable if there exists g, h ∈ Homeo(X) such that g∗K ⊆ L and h∗L ⊆ K.

Thus, biembeddability is the translation of speedup equivalence at the level of
dynamical simplices.

Theorem 5.8. Assume that Q, R are two metrizable Choquet simplices such that Q
affinely continuously embeds as a face of R and R affinely continuously embeds as a face of
Q. Then there exist dynamical simplices S(Q), S(R) on a Cantor space X such that S(Q)
is affinely homeomorphic to Q; S(R) is affinely homeomorphich to R; S(Q) and S(R) are
biembeddable.

In particular, given any Q, R as above which are not affinely homeomorphic,
and minimal homeomorphisms ϕQ, ϕR with sets of invariant measures equal to
S(Q), S(R) respectively, ϕQ and ϕR are speedup equivalent but not orbit equiva-
lent. Such examples exist: for instance, let Q be the Poulsen simplex, and R the
tensor product of Q and [0, 1] (see [NP]). Then Q embeds as a closed face of R,
and since any Choquet simplex is affinely homeomorphic to a closed face of the
Poulsen simplex this is in particular true for R. But Q and R are not homeomorphic
since the set of extreme points of R is not dense in R.

There is some work to do before we can prove Theorem 5.8; we need an addi-
tional property of Choquet simplices.

Proposition 5.9 (Edwards [E]). Let Q be a Choquet simplex, R be a closed face of Q and
f ∈ A(R). Assume that f1, f2 ∈ A(Q) are such that f1|R ≤ f ≤ f2|R. Then there exists
g ∈ A(Q) extending f and such that f1 ≤ g ≤ f2.

Definition 5.10. Assume that Q is a Choquet simplex, R is a closed face of Q and
F is a subset of A(Q). We say that F has the (R, Q)-extension property if for any
f , f1, . . . , fn ∈ F+

1 such that f|R = ∑n
i=1 fi |R there exist g1, . . . , gn ∈ F+

1 such that
gi |R = fi |R for all i ∈ {1, . . . , n}, and f = ∑n

i=1 gi.

The proof of the following lemma from Proposition 5.9 is straightforward.

Lemma 5.11. Assume that Q is a Choquet simplex and R is a closed face of Q. Then
A(Q) has the (R, Q)-extension property.

Proof. By induction, it is enough to prove that the property holds for n = 2. So,
take f , f1, f2 ∈ F+

1 such that f|R = f1|R + f2|R. By compactness we have some
ε > 0 such that ε ≤ f1|R ≤ f|R − ε, so we can apply Lemma 5.9 and extend
f1|R to g1 ∈ A(Q) such that ε ≤ g1 ≤ f − ε. These inequalities imply both that
g1 ∈ A(Q)+1 and that g2 = f − g1 ∈ A(Q)+1 . �
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We move on towards proving Theorem 5.8. Starting from Q, R as in the state-
ment of the theorem, we first assume that R is a closed face of Q and pick an affine
continuous injection g of Q into itself such that g(Q) is a closed face of R.

Note that, given any f ∈ A(Q)+1 , we may define h ∈ A(g(Q))+1 by setting
h(g(q)) = f (q). Then, using Proposition 5.9 we can extend h to A(Q)+1 . We just
proved that, for any f ∈ A(Q)+1 , there exists h ∈ A(Q)+1 such that h ◦ g = f .
Granting that, we may again apply a closure argument to find F ⊂ A(Q) such
that:

• F is a countable dense Q-vector subspace which contains the constant func-
tion 1.
• F satisfies the finite sum property.
• F satisfies both the (R, Q)-extension property and the (g(Q), Q)-extension

property.
• { f ◦ g : f ∈ F+

1 } = F+
1 .

We then run the same construction as in the proof of Theorem 4.4, considering
again the class L consisting of all A ∈ KQ such that for all nonzero a ∈ A the map
q 7→ µq(a) belongs to F+

1 . We denote by MQ the Fraı̈ssé limit of this class, view its
underlying Boolean algebra as the clopen algebra of a Cantor space XL and again
denote by Φ : Q→ S(L) the affine homeomorphism q 7→ µq.

We consider the classes LR (resp. Lg(Q)) obtained by taking restrictions of ele-
ments of L to R (resp. g(Q)); that is, whenever AQ = (A, (µq)q∈Q) is an element
of L, we obtain an element AR = (A, (µr))r∈R of LR, and all elements of LR are
obtained in this way (and, of course, similarly for Lg(Q)).

Lemma 5.12. The classes LR and Lg(Q) have the amalgamation property.

Proof. We only write down the argument for LR, the other one is identical. As
in the proof of Proposition 4.3, showing that the amalgamation property holds
reduces to proving that, whenever (A, (µr))r∈R belongs to LR, a ∈ A is a nonzero
atom and f1, . . . , fn, g1, . . . , gm ∈ F+

1 are such that

∀r ∈ R µr(a) =
n

∑
i=1

fi(r) =
m

∑
j=1

gj(r)

there exists hi,j ∈ F+
1 such that

∀i
m

∑
j=1

hi,j |R = fi |R and ∀j
n

∑
i=1

hi,j |R = gj |R .

To prove that this is true, first apply the (R, Q)-extension property of F to f , f1, . . . fn
and f , g1, . . . , gm, then use the fact that F has the finite sum property. �

Let MR, Mg(Q) denote the structures (Clopen(XL), (µr)r∈R) and (Clopen(XL), (µg(q))q∈Q).

Lemma 5.13. MR (resp. Mg(Q)) is the Fraı̈ssé limit of LR (resp. Lg(Q)).

Proof. The (R, Q)-extension property of F and the Fraı̈ssé property of MQ combine
to show that MR has the Fraı̈ssé property. Indeed, let A be a finite algebra of
clopen subsets of XL, and pick an embedding α : A → B ∈ LR. For each atom
a of A, we let (ba

i )i∈Ia denote the atoms of B which are contained in α(a). The
measures of each ba

i correspond to maps f a
i ∈ F+

1 such that ∑i∈Ia f a
i (r) = µa(r) for



DYNAMICAL SIMPLICES AND FRAÏSSÉ THEORY 13

all r ∈ R. Then, the (R, Q)-extension property lets us pick maps ga
i ∈ F+

1 such that
ga

i |R = f a
i |R and ∑i∈Ia ga

i (q) = µq(a) for all q ∈ Q.
Using the Fraı̈ssé property of MQ, we can then write each atom a of A as a union

of clopen sets Ua
i such that µq(Ua

i ) = ga
i (q) for all q ∈ Q; the map β : ba

i 7→ Ua
i is

then an embedding of B inside MR such that β ◦ α(a) = a for all a ∈ A.
The argument for Mg(Q) is similar.

�

Since LR, Lg(Q) are both suitable and satisfy the conditions of 3.9, we now have
three dynamical simplices S(Lg(Q)) ⊂ S(LR) ⊂ S(LQ). Our last remaining task is
to prove that there exists h ∈ Homeo(X) such that h∗S(LQ) = S(Lg(Q)). Indeed,
then the dynamical simplices S(R) = S(LR), S(Q) = S(LQ) satisfy the desired
conditions.

End of the proof of Theorem 5.8. We define NQ = (Clopen(XL), (νq)q∈Q)) by setting
νq = µg(q); NQ is a homogeneous Q-structure since Mg(Q) is homogeneous, hence
NQ is the Fraı̈ssé limit of its age. The condition { f ◦ g : f ∈ F+

1 } = F+
1 , combined

with the (g(Q), Q) extension property of F, says that the ages of NQ and MQ are
the same; thus, MQ and NQ are isomorphic. Hence there is an automorphism h of
Clopen(XL), equivalently a homeomorphism h of XL, such that

∀A ∈ Clopen(XL) νq(h(A)) = µq(A) .

This amounts to stating that h∗µq = νg(q) for all q ∈ Q, and in particular h∗(S(LQ)) =

S(Lg(Q)). �
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UNIVERSITÉ CLAUDE BERNARD – LYON 1, INSTITUT CAMILLE JORDAN, CNRS UMR 5208, 43
BOULEVARD DU 11 NOVEMBRE 1918, 69622 VILLEURBANNE CEDEX, FRANCE


	1. Introduction
	2. Approximate divisibility of simplices of invariant measures
	3. Dynamical simplices as Fraïssé limits
	4. A Fraïssé theoretic proof of Downarowicz's theorem
	5. Speedup equivalence vs orbit equivalence
	References

