Feuille 2

Exercice 1. 1. On définit par récurrence $\alpha_0 = \omega$, $\alpha_{n+1} = \omega^{\alpha_n}$ et $\varepsilon_0 = \sup\{\alpha_n : n < \omega\}$. Montrer que ε_0 est le plus petit ordinal satisfaisant $\omega^{\alpha} = \alpha$.

- 2. Quel est le développement de Cantor de l'ordinal ε_0 .
- 3. Soit $F: ON \to ON$ une relation fonctionnelle telle que F soit croissante et continue aux ordinaux limites, c'est-à-dire que si λ est limite alors $F(\lambda) = \sup_{\alpha < \lambda} F(\alpha)$. Montrer que pour tout ordinal α il existe un plus petit $\beta \geq \alpha$ tel que $F(\beta) = \beta$.

Exercice 2. On définit une suite de Goodstein faible de la façon suivante : étant donné un terme initial u_0 , on écrit u_0 en base $2: u_0 = a_n 2^n + \ldots + a_0$, et u_1 est l'entier obtenu en posant $u_1 = (a_n \cdot 3^n + \ldots a_0) - 1$; ensuite u_2 est obtenu en remplaçant la base 3 par la base 4, et ainsi de suite. Par exemple, avec $u_0 = 266$, on a successivement :

$$u_0 = 266 = 2^8 + 2^3 + 2^1$$
; $u_1 = 3^8 + 3^3 + 2 = 6590$; $u_2 = 4^8 + 4^3 + 1 = 65601...$

Et ainsi de suite (par exemple, toujours avec le même u_0 , on obtient $u_{10} = 429982475$)

- 1. Faire une conjecture sur le comportement de la suite (u_n) quand n tend vers $+\infty$.
- 2. Maintenant, on considère une suite d'ordinaux définie comme suit : α_0 est obtenu en remplaçant les 2^k dans le développement binaire de u_0 par des ω (dans notre exemple, $\alpha_0 = \omega^8 + \omega^3 + \omega$); de même α_n est obtenu en remplaçant chaque $(n+2)^k \cdot i$ dans le développement en base (n+2) de u_n par $\omega^k \cdot i$. Montrer que, si $\alpha_n > 0$, alors $\alpha_{n+1} < \alpha_n$; et que $u_n = 0$ si et seulement si $\alpha_n = 0$.
- 3. Qu'en concluez vous?

Note: une suite de Goodstein est obtenue de manière analogue à ce qui est décrit plus haut, mais à chaque étape on écrit u_n en base n de manière « héréditaire », conduisant à une croissance apparemment très rapide. Pourtant, la même idée que ci-dessus permet de montrer que ces suites sont nulles à partir d'un certain rang. Mais pour le démontrer on a besoin d'une "récurrence jusqu'à ε_0 " (dans le cas faible on n'a besoin d'aller que jusqu'à ω^{ω}) et l'arithmétique de Peano ne permet pas de conduire une telle récurrence. On 1 peut démontrer que ses axiomes ne suffisent pas pour prouver que les suites de Goodstein fortes tendent vers 0.

Exercice 3 (Axiome du choix). Une fonction de choix sur un ensemble X est une application $\varphi \colon \mathcal{P}(X) \to X$ telle que pour toute partie $A \subseteq X$ non vide, on ait $\varphi(A) \in A$. Montrer que les énoncés suivants sont équivalents :

- 1. Pour toute famille $(X_i)_{i\in I}$ d'ensembles non vides, le produit $\Pi_{i\in I}X_i$ de ces ensembles est non vide.
- 2. Tout ensemble X admet une fonction de choix.
- 1. Au sens de « des gens peuvent le faire », pas de « votre enseignant peut le faire » ...

- 3. Pour tous les ensembles X, Y et toute application surjective $g: X \to Y$, il existe une application $h: Y \to X$ telle que $g \circ h$ soit l'application identique de Y dans Y.
- Exercice 4. L'axiome des choix dépendants (ACD) est l'énoncé suivant : pour tout ensemble X et toute relation binaire sur X tels que pour tout $x \in X$ il existe $y \in X$ vérifiant xRy, il existe alors une suite $(x_n)_{n<\omega}$ de X telle que x_nRx_{n+1} pour tout n.
- L'axiome du choix dénombrable (ACden) est l'énoncé : tout produit dénombrable d'ensembles non vides est non vide.
 - 1. Montrer que (AC) implique (ACD).
 - 2. Montrer que (ACD) implique (ACden).

Exercice 5. On rappelle qu'un ensemble est fini s'il est équipotent à un ordinal fini (c.à.d. à un entier $n < \omega$) et qu'un ensemble est dénombrable s'il est équipotent à ω .

Un ensemble X est dit Dedekind-fini si toute injection de X dans X est surjective.

- 1. Montrer que tout ensemble fini est Dedekind-fini.
- 2. Montrer qu'un ensemble est Dedekind-infini si et seulement s'il contient un sous-ensemble dénombrable.
- 3. Montrer qu'un ensemble infini est Dedekind-infini.
- 4. Montrer la question précédente en utilisant (ACden) mais pas (ACD).