Théorie des modèles

Feuille 4.

Exercice 1 Montrer qu'une théorie T qui a des modèles finis arbitrairement grands a un modèle infini.

Exercice 2 Soit L un langage, θ un énoncé de ce langage et T_1 , T_2 deux théories dans ce langage contenant θ . On suppose que tout modèle de θ est soit modèle de T_1 , soit modèle de T_2 mais jamais des deux théories. Montrer que T_1 et T_2 sont finiment axiomatisables.

Exercice 3 On considère le langage $L = \{E\}$ où E est une relation binaire.

- 1. Existe-t-il une théorie dans le langage L dont les modèles sont exactement les relations d'équivalence n'ayant que des classes finies sur un ensemble infini?
- 2. Existe-t-il une théorie dans le langage L dont les modèles sont exactement les relations d'équivalence n'ayant qu'un nombre fini de classes sur un ensemble infini?
- 3. La théorie des relations d'équivalences ayant une infinité de classes infinies est-elle finiment axiomatisable?

Exercice 4

- 1. Démontrer qu'il n'y a pas d'ensemble $\Phi(x)$ de L_{gp} -formules tel que dans tout groupe G un élément g satisfait $\Phi(x)$ si et seulement si l'ordre de g est fini.
- 2. Peut-on axiomatiser les groupes de torsion?

Exercice 5 Soit L un langage fini ou dénombrable et soit T une théorie dans le langage L.

- 1. Montrer que si T a un modèle infini alors T a un modèle de cardinalité κ pour tout cardinal infini κ .
- 2. Soit κ un cardinal infini. Montrer que si T a un unique modèle à isomorphisme près de cardinal κ alors T est complète. On dit qu'une telle théorie est κ -catégorique.
- 3. Montrer que la théorie des ordres totaux denses sans extrémité est \aleph_0 -catégorique. Est-elle α_1 -catégorique?
- 4. Soit $L_{\mathbb{Q}} = \{0, +, \lambda_q : q \in \mathbb{Q}\}$ le langage des \mathbb{Q} -espaces vectoriels et T la théorie des \mathbb{Q} -espaces vectoriels dans ce langage. Pour quels cardinaux κ , T est-elle κ -catégorique?
- 5. Soit p un nombre premier, $L_{\mathbb{F}_p} = \{0, +, \lambda_k : k \in \mathbb{F}_p\}$ le langage des \mathbb{F}_p -espaces vectoriels et T la théorie des \mathbb{F}_p -espaces vectoriels infinis dans ce langage. Pour quels cardinaux κ , T est-elle κ -catégorique?
- 6. Soit p un nombre premier ou soit p = 0. Pour quels cardinaux κ , la théorie CAC_p des corps algébriquement clos de caractéristique p est-elle κ -catégorique?
- 7. Pour quels cardinaux κ , la théorie des relations d'équivalences ayant une infinité de classes infinies est-elle κ -catégorique?

- 8. Soit $L = \{P_i : i \in \omega\}$ où les P_i sont des relations unaires. Soit T la théorie dans le langage L qui dit que les P_i sont deux à deux disjoints et que chaque P_i est infini.
 - (a) Vérifier que T n'est catégorique en aucun cardinal κ .
 - (b) La théorie T est-elle complète?

Exercice 6 Soit L un langage fini et T une théorie dans le langage L. Montrer que si dans tous les modèles de T les sous-structures engendrées par un nombre fini d'éléments sont finies, alors il y a une fonction $f: \omega \to \omega$ telle que pour tout n, une sous-structure engendrée par n éléments d'un modèle de T est de cardinal inférieur à f(n).

Exercice 7 Nous considérons un langage L comprenant une infinité dénombrable de symboles de relations binaires : $L = \{E_i | i < \omega\}$.

- 1. Ecrire les énoncés qui disent que pour tout $i < \omega$, E_i est une relation d'équivalence, que E_0 n'a qu'une seule classe et que les classes de E_{i+1} sont obtenues en divisant chaque E_i -classe en exactement deux classes infinies.
- 2. Montrer que la structure suivante est un modèle dénombrable des énoncés du premier point :

$$\mathcal{M}_0 = \langle \{ f \in 2^\omega : \text{il existe } i < \omega \text{ tel que pour tout } j \geq i, \ f(i) = f(j). \ \}; E_i(x_1, x_2) \ (i < \omega) \rangle$$
, où pour tout $i \in \omega$, $(\sigma_1, \sigma_2) \in E_i^{\mathcal{M}_0}$ si et seulement si $\sigma_1 \lceil i = \sigma_2 \rceil i$.

- Le point 2 montre que les énoncés du premier point forment un ensemble consistant. Ces énoncés et leurs conséquences seront notés T.
- 3. Nous dirons qu'un modèle \mathcal{M} de T est riche si pour tout $a \in M$ il existe une infinité de $b \in M$ tel que $\mathcal{M} \models E_i(a,b)$ pour tout $i < \omega$. Montrer que tout modèle de T a une extension élémentaire riche de même cardinal que lui.
- 4. Montrer que deux modèles riches sont ∞ -équivalents. En déduire que T est complète et \aleph_0 -catégorique.