2013/2014 Semestre de printemps
Université Lyon | Calcul différentiel et intégral

Feuille de TD 4
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Exercice 1. Calculer lim dt, lim dz et lim exp(——)dz.
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Exercice 2. Déterminer lim T adr,oul<a<2
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Exercice 3. Calculer lim (1 — E) dr et lim (1 + E) e 2 dy.
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Exercice 4. Calculer lim e (sin(x))" dr et lim n/ e " dx.
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Exercice 5. Calculer lim —"2 dx .
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Exercice 6. Montrer que lim n/ e " dx :/ dx.
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Exercice 7. Soit f:[0,1] — R une application continue; calculer lim na” f(x)dx.
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Exercice 8. Pour chacune des suites suivantes, déterminer si elle converge et, le cas échéant, calculer
sa limite :
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Exercice 9. Soit f :[0,1] — R une fonction continue telle que f(0) = 0. Montrer que

1
lim [ f(t™)dt=0.
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Généraliser au cas ou f(0) est quelconque.
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Exercice 10. Donner un équivalent de / {1+ (1 — f) dx.
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Exercice 11. Soit f : [0,1] — R une application strictement croissante telle que f(0) =0, f(1) = 1.

Calculer : )

lim [ (f(t)"dt.
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Exercice 12. Pour tout entier n > 1 et tout réel x, on pose f,(x) = e~ "% — 2e~2n«
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1. Montrer que Z frn(x) est une série convergente pour tout 2 > 0 et calculer sa somme f(x).
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2. Comparer / f(z)dx et Z/ fn(x) dx. Commentaires ?
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Exercice 13. Montrer que/0 etfldt:;ﬁwzt /0 et—ldt:;nQJrl'

Exercice 14. Soit ¢ un nombre complexe de module différent de 1 et » un entier relatif. Calculer
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Exercice 15. Montrer que /0 T dy = kg_o m
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Exercice 16. 1. Montrer que / <Z (1 — x)) dz = In(2).
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2. En déduire la valeur de Z .
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Exercice 17. Montrer que / x C dx = Z —, puis que / dr =2 —.
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