Feuille 6 - Types.

Exercice 1. Soit \mathfrak{M} une L-structure, T la théorie de \mathfrak{M} et $p \in S_n(T)$. Supposons que pour chaque extension élémentaire \mathfrak{N} de \mathfrak{M} , il y a au plus un nombre fini de réalisations de p dans \mathfrak{N} (un tel type est dit algébrique).

- 1. Montrer qu'il existe une formule $\phi(\bar{x})$ qui n'est satisfaite que par un nombre fini d'éléments dans \mathfrak{M} .
- 2. Montrer que toute réalisation de p dans une extension élémentaire de \mathfrak{M} est nécessairement dans \mathfrak{M} .
- 3. Soit $\phi(\bar{x}) \in p$ ayant un nombre fini m de réalisations dans \mathfrak{M} , et telle que m soit minimal. Montrer que ϕ isole p, c'est-à-dire que p est l'unique type de $S_n(T)$ contenant ϕ .

Exercice 2. 1. Pourquoi la théorie des relations d'équivalence ayant une infinité de classes toutes infinies est-elle complète?

- 2. Montrer que cette théorie élimine les quantificateurs.
- 3. Combien cette théorie a-t-elle de 1-types, de 2-types, de 3-types?

Exercice 3. Soit $L = \{P_i : i \in \mathbb{N}\}$ où les P_i sont des relations unaires. Soit T la théorie dans le langage L qui dit que les P_i sont deux à deux disjoints et que chaque P_i est infini.

- 1. Montrer que T est complète et élimine les quanteurs.
- 2. Décrire $S_1(T)$. Les types de $S_1(T)$ sont-t-ils réalisés dans chacun des modèles de T?

Exercice 4. On considère la théorie T de \mathbb{R} en tant que corps. Montrer que $|S_1(T)| = 2^{\aleph_0}$.

Exercice 5. Soit T la théorie des ordres totaux discrets sans extrémités dans le langage $\{<\}$.

- 1. Donner une axiomatisation de T.
- 2. Combien T a-t-elle de modèles dénombrables?
- 3. Montrer que T n'élimine pas les quantificateurs.
- 4. On considère le langage $L = \{<, S\}$ où S est une fonction unaire et dans ce langage, la théorie $T' = T \cup \{\forall x \ x < S(x) \land \neg \exists y (x < y < S(x))$. Montrer que T' est complète et élimine les quantificateurs.
- 5. En déduire que T est également complète et décrire les n-types de T.
- 6. Une théorie est dite modèle-complète si pour tous modèles \mathfrak{M} et \mathfrak{N} de cette théorie, si \mathfrak{M} est sous-structure de \mathfrak{N} alors \mathfrak{M} est sous-structure élémentaire de \mathfrak{N} . Montrer que T' est modèle-complète mais que T ne l'est pas.

Exercice 6. Soit T une théorie complète dans un langage dénombrable, et n un entier naturel. Montrer que si $|S_n(T)| > \aleph_0$ alors on a nécessairement $|S_n(T)| \ge 2^{\aleph_0}$, et que dans ce cas on a en fait $|S_n(T)| = 2^{\aleph_0}$.

Exercice 7. Soit T une théorie complète, \mathfrak{M} un modèle de T et $a, b \in M$. Montrer que $\operatorname{tp}_{\mathfrak{M}}(a,b)$ est uniquement déterminé par $\operatorname{tp}_{\mathfrak{M}}(a)$ et $\operatorname{tp}_{\mathfrak{M}}(b/a)$.

Exercice 8. Dans cet exercice on considère le langage $\mathcal{L} = \{<\}$, où < est une relation unaire, et la \mathcal{L} -structure $(\mathbb{Q}, <)$, où < est l'ordre usuel sur les rationnels.

1. On définit

$$A = \{1 - \frac{1}{n} : n \in \mathfrak{N}^*\} \cup \{2 + \frac{1}{n} : n \in \mathfrak{N}^*\}.$$

Montrer que $\operatorname{tp}_{(\mathbb{Q},<)}(1/A) = \operatorname{tp}_{(\mathbb{Q},<)}(2/A)$, mais qu'il n'existe pas d'automorphisme de \mathbb{Q} qui fixe A et envoie 1 sur 2.

- 2. Soit r un nombre réel irrationnel. On considère deux suites adjacentes (a_i) et (b_i) dans $\mathbb Q$ tendant vers r. Montrer que $(\mathbb Q,<)$ a une extension élémentaire $\mathbb Q$ dans laquelle le type déterminé par $\{a_i < x | i < \omega\} \cup \{x < b_i | i < \omega\}$ est réalisé par une infinité d'éléments.
- 3. Soit maintenant c_1, \ldots, c_n, x des réalisations de ce type dans \mathcal{Q} et $\phi(x; c_1, \ldots, c_k, d_1, \ldots, d_l)$ une formule satisfaite par x dans \mathcal{Q} avec les a_i dans la base de \mathcal{Q} et d_j dans \mathbb{Q} . Montrer qu'il existe $c'_1, \ldots, c'_k \in \mathbb{Q}$ tels que

$$Q \models \phi(c, a'_1, \dots, c'_k, d_1, \dots, d_l)$$

Exercice 9. Soit $\mathcal{L} = \{E_i : i < \omega\}$ le langage comprenant une infinité dénombrable de symboles de relations binaires.

- 1. Ecrire une \mathcal{L} -formule qui exprime que E_0 et E_1 sont des relations d'équivalence et que E_0 raffine E_1 (c'est-à-dire que toute E_0 -classe est contenue dans une E_1 -classe)
- 2. Soit $p \geq 2$ un entier. Axiomatiser la théorie T_p qui exprime que, pour tout n, E_n est une relation d'équivalence n'ayant que des classes d'équivalence infinies, et que pour tout $n \geq 1$ E_{n-1} raffine E_n et chaque E_n -classe est réunion d'exactement p E_n -classes.
- 3. Soit $M=\omega\times\omega$. On cherche à munir M d'une \mathcal{L} -structure en faisant un modèle de T_p . On interprète E_0 par

$$\mathcal{M} \models E_0((a,b),(c,d)) \Leftrightarrow a=c$$
.

Trouver des interprétations de E_n permettant de faire de M un modèle de T_p .

- 4. Montrer que T_p est une théorie complète qui élimine les quanteurs.
- 5. Est-ce que T_p est κ -catégorique pour un cardinal κ infini ? (On pourra justifier, et utiliser judicieusement, le fait que pour tout ensemble infini X les ensembles X et $X \times \omega$ sont équipotents).
- 6. Donner une description de tous les 2-types $p(x,y) \in S_2(T_p)$. En déduire qu'il n'existe qu'un 2-type isolé.