UE : Analyse Fonctionnelle 2

Feuille d'exercices nº 6

Exercice 1. Soit X un espace de Banach.

- 1. Soit $(\varphi_n)_{n\in\mathbb{N}}$ une suite d'éléments de X^* qui converge pour $\sigma(X^*,X)$. Montrer que $(\varphi_n)_{n\in\mathbb{N}}$ est bornée.
- 2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de X qui converge faiblement. Montrer que $(x_n)_{n\in\mathbb{N}}$ est bornée.

Que peut-on dire si X n'est pas supposé complet?

Exercice 2. Soit X un espace de Banach, et $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de X qui converge faiblement vers $x \in X$. Montrer que $||x|| \le \liminf_{n \to +\infty} ||x_n||$.

Exercice 3. Soit X un espace de Banach et $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de X qui converge faiblement vers $x \in X$. Montrer qu'il existe une suite $(y_n)_{n \in \mathbb{N}}$ d'éléments de co $(\{x_n : n \in \mathbb{N}\})$ qui converge fortement vers x.

Exercice 4. Soit X un espace de Banach, $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de X, et $(\varphi_n)_{n \in \mathbb{N}}$ une suite d'éléments de X^* . Que pensez-vous des énoncés suivants?

- 1. Si $(x_n)_{n\in\mathbb{N}}$ converge fortement vers $x\in X$ et $(\varphi_n)_{n\in\mathbb{N}}$ converge fortement vers $\varphi\in X^*$ alors $(\varphi_n(x_n))_{n\in\mathbb{N}}$ converge vers $\varphi(x)$.
- 2. Si $(x_n)_{n\in\mathbb{N}}$ converge faiblement vers $x\in X$ et $(\varphi_n)_{n\in\mathbb{N}}$ converge fortement vers $\varphi\in X^*$ alors $(\varphi_n(x_n))_{n\in\mathbb{N}}$ converge vers $\varphi(x)$.
- 3. Si $(x_n)_{n\in\mathbb{N}}$ converge fortement vers $x\in X$ et $(\varphi_n)_{n\in\mathbb{N}}$ converge *-faiblement vers $\varphi\in X^*$ alors $(\varphi_n(x_n))_{n\in\mathbb{N}}$ converge vers $\varphi(x)$.
- 4. Si $(x_n)_{n \in \mathbb{N}}$ converge faiblement vers $x \in X$ et $(\varphi_n)_{n \in \mathbb{N}}$ converge *-faiblement vers $\varphi \in X^*$ alors $(\varphi_n(x_n))_{n \in \mathbb{N}}$ converge vers $\varphi(x)$.

Exercice 5. Soit E, F deux espaces de Banach et $T: E \to F$ une application linéaire; on suppose que T est continue de $(E, \sigma(X, X^*))$ dans $(F, \|\cdot\|)$.

- 1. Montrer qu'il existe $\varphi_1, \ldots, \varphi_n$ telles que $\bigcap_{i=1}^n \ker(\varphi_i) \subseteq \ker(T)$.
- 2. Montrer que T(E) est de dimension finie.
- 3. Que pensez-vous de la réciproque du résultat que l'on vient de démontrer?

Exercice 6. Soit X un espace de Banach et K une partie de X qui est faiblement compacte. On fixe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de K.

- 1. Soit E l'adhérence, pour la norme de X, de Vect $\{x_n : n \in \mathbb{N}\}$. Montrer que E est séparable, et qu'il existe une distance sur E induisant une topologie moins fine que $\sigma(E, E^*)$.
- 2. Montrer que $K \cap E$ est compact dans X pour la topologie $\sigma(X, X^*)$.
- 3. En déduire que $K \cap E$ est compact dans E pour la topologie faible $\sigma(E, E^*)$.
- 4. Montrer qu'on peut extraire de $(x_n)_{n \in \mathbb{N}}$ une sous-suite qui converge faiblement vers $x \in K$ (théorème d'Eberlien-Šmulian).

Exercice 7. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de ℓ_1 qui converge faiblement vers 0.

- 1. Montrer que pour tout $k \in \mathbf{N}$ la suite $(x_n(k))_{n \in \mathbf{N}}$ converge vers 0.
- 2. On identifie ℓ_{∞} au dual de ℓ_1 ; pour $u \in \ell_{\infty}$ et $x \in \ell_1$ on note $\langle u, x \rangle = \sum_{i=0}^{+\infty} u_i x_i$.

Soit B la boule unité fermée de ℓ_{∞} , que l'on munit de la topologie *-faible $\sigma(\ell_{\infty}, \ell_1)$.

- (a) Monter que B est un ensemble compact métrisable.
- (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers u dans $(B, \sigma(\ell_\infty, \ell_1))$ si, et seulement si, $u_n(k)$ converge vers u(k) pour tout $k \in \mathbb{N}$. On peut ainsi identifier B, muni de $\sigma(\ell_\infty, \ell_1)$, à un sous-ensemble de $[1, 1]^{\mathbb{N}}$ muni de la topologie produit.

Pour $n \in \mathbb{N}$ et $\varepsilon > 0$ on pose $F_{n,\varepsilon} = \{u \in B \colon \forall k \geq n \mid \langle u, x_n \rangle \mid \leq \varepsilon \}$. On fixe $\varepsilon > 0$.

- (c) Montrer qu'il existe n_0 tel que $F_{n_0,\varepsilon}$ est d'intérieur non vide dans B.
- (d) Montrer qu'il existe N tel que pour tout $u \in B$ vérifiant u(n) = 0 pour tout $n \leq N$ on a $u \in F_{n_0,\varepsilon}$.
- 3. Montrer que $(x_n)_{n \in \mathbb{N}}$ tend vers 0 dans $(\ell_1, \|\cdot\|_1)$.
- 4. Montrer que la topologie faible et la topologie forte de ℓ_1 ont les mêmes suites convergentes. Ces deux topologies ont-elles les mêmes ouverts?