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Remerciements

Let me begin by thanking the referees for finding time in their busy schedules to
write a report on this memoir. I was fascinated by Alekos Kechris’ book about de-
scriptive set theory as an undergraduate, and it is an honor for me to see him show
interest in my work. Ilijas Farah’s work at the borders of set theory, model the-
ory and analysis is an inspiration; his enthusiasm and interesting comments and
suggestions after reading this text are very much appreciated. Sławomir Solecki
played an important part in the evolution of my research, especially because of
conversations and suggestions while I was a postdoc in Urbana–Champaign; I am
grateful to him for that, for his valuable remarks on this memoir, for doing me the
honor of being a member of the jury, and for tolerating my sense of humor better
than most (this might be as good a place as any for me to promise that I will from
now on spell his first name correctly).

Je suis également reconnaissant aux membres du jury pour l’honneur qu’ils
me font. Bachir Bekka est une des rares personnes en France à s’intéresser depuis
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ner m’a fait l’amitié d’être le représentant de l’Université Claude Bernard dans
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Fedor Petrov, Todor Tsankov et Vladimir Vershik. Merci à eux.
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Être né sous le signe de l’Hexagone...

Sur le choix de la langue

Il n’échappera pas aux lecteurs francophones de ce texte que celui-ci n’est pas écrit
dans leur langue, mais en anglais (ce fait sera peut-être moins immédiatement
évident pour les anglophones, mais là n’est pas la question). Cela pose bien sûr
plusieurs problèmes: tout d’abord, l’auteur est fonctionnaire, et on pourrait souhai-
ter que les contribuables qui ont financé ce travail puissent le lire sans avoir besoin
d’apprendre une langue étrangère. Cette objection me paraı̂t un peu fallacieuse,
dans la mesure où je doute de l’existence d’un contribuable suffisamment intéressé
par les mathématiques pour pouvoir lire ce mémoire, mais n’ayant pas acquis
une connaissance minimale de la langue de Cayley et Hamilton. Un problème
autrement plus sérieux est lié à la défense de la langue française, et au refus de
l’hégémonie d’une seule langue; il y a beaucoup de bonnes raisons de souhaiter
préserver autant que possible la diversité linguistique. Je suis en particulier con-
vaincu du fait qu’on ne réfléchit pas de la même façon en anglais et en français, et
que la pensée humaine est plus riche quand elle a plus de moyens de s’exprimer.
Après une assez longue période d’hésitation, j’ai néanmoins fait le choix d’écrire
ce texte en anglais, qui est la langue commune de ses lecteurs potentiels et parti-
culièrement de ses rapporteurs. J’espère que les membres de l’équipe de Logique
Mathématique de l’ICJ, fervents défenseurs de la langue française, me pardon-
neront ce choix.
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I saw the book fall from your hands
As you slowly died of boredom

Introduction

Writing one’s habilitation thesis is an oddly narcissistic endeavour, the theme of
the text being the author’s work over a number of years which might be some-
what awkward to gather in one place. In my case, the closest thing to a common
thread is provided by the use of Baire category methods and questions. When I
first learned about the Baire category theorem, I thought it was remarkable that
such a simple statement, with such a simple demonstration, could be used to es-
tablish the existence of apparently complicated mathematical objects. But that, to
me, is not the main interest of Baire category notions; they are also particularly
useful for instance as substitutes for measure-theoretic concepts in contexts where
no natural measure is present. This phenomenon is particularly striking when
one studies properties of Polish groups, which are the main subject of interest of
this memoir. These groups appear in many places: infinite combinatorics, func-
tional analysis, topological dynamics, ergodic theory... Isometry groups, homeo-
morphism groups, permutation groups can often be endowed with a Polish group
structure and Baire category, or more generally descriptive-set-theoretic methods
prove useful. The aim of this text is to present, in a way that I hope to be fairly
accessible, my work since the end of my Ph.D, at the interface of some of the do-
mains mentioned above.

In the first chapter, we recall some definitions and concepts of Baire category
theory, then present a panorama of Polish groups; we also discuss an interest-
ing example of a group which (unfortunately?) cannot be endowed with a Polish
group structure.

Next, we discuss the Urysohn space U and some of its siblings; this space,
built by Urysohn in 1924, is characterized by the fact that it is both universal (it
contains an isometric copy of any separable metric space) and homogeneous (any
isometry between finite subspaces extends to an isometry of the whole space).
These properties make the isometry group of U an interesting and rich object, for
instance it contains an isomorphic copy of any Polish group. The Urysohn space
was my gateway drug into Polish group theory, and these notions of homogene-
ity and universality make sense in a variety of contexts and provide interesting
problems. Before moving on to some of these, we discuss isometric embeddings
of U into Banach spaces, which are surprisingly rigid: Holmes proved that there is
essentially one way of embedding U isometrically into a normed vector space, as
soon as one has decided which point gets mapped to 0. We will investigate which
spaces share this rigidity property.

Then we move on to actions of countable groups on some homogeneous struc-
tures, mainly the separable Hilbert space, the standard atomless probability alge-
bra, and the Urysohn space. We study Baire category in the space of actions of
some countable group Γ on one of these structures; this space has a natural Polish
topology, and understanding generic properties of isometric actions, unitary rep-
resentations and measure-preserving actions of countable groups also has some
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2 INTRODUCTION

consequences on the structure of the ambient Polish group. This is a classic theme
of research in ergodic theory, originally considered by Halmos in the case when
the acting group is Z and much-studied since.

The next-to-last chapter, which is also the longest, bears the title “First order
logic and Polish groups”. This chapter actually contains little (or no?) logic, but the
language and notions of first-order logic, and its metric avatar sometimes called
“metric model theory”, play a crucial role. Wittgenstein famously wrote that “the
limits of my language are the limits of my world”; the limits of my language were
pushed when I learned about metric model theory, and consequently the limits
of my mathematical world were redefined by this new language. My hope in this
chapter is to convince the reader, whom I imagine to be somewhat skeptical, of the
interest of considering Polish groups using a point of view influenced by model
theory. It is certainly not new that this interaction is fruitful and natural in the
context of automorphism groups of countable structures, which are exactly the
closed subgroups of the permutation group of the integers; but it is only more
recently that it appeared that model theory was relevant to the study of general
Polish groups, and I believe some of the work presented here played a part in this
realization.

We close the text by discussing some questions; there may seem to be many
of them, but those presented here are merely the tip of the iceberg. Some of these
problems I spent a lot of time trying to solve; others awoke my interest some time
ago without my knowing where and how to start working on them; still others
came up when I was writing this memoir. All seem natural to me in the context of
the work presented here.

I chose to use a relatively informal writing style, and to present few complete
proofs; often a sketch of proof is proposed, sometimes a complete argument is
given when it seems particularly enlightening to me or is not easily found in the
literature. I tried to make this text accessible and interesting for a reader who is not
a specialist of Polish groups; I hope that the experts will nevertheless find some
food for thought.



It’s a friend, and it’s a companion,
And it’s the only product you will ever need

1
Baire category

1. The basics of Baire category

We begin by recalling the statement of the Baire category theorem.

THEOREM 1.1 (Baire). Let X be a completely metrizable topological space, and (On)n<ω

be a countable family of dense open subsets of X. Then the intersection
⋂

n<ω On is dense
in X.

DEFINITION 1.2. Let X be a topological space. A subset of X is meager if it is
contained in a countable union of closed sets, each of which has empty interior. A
subset is comeager, or generic, if it contains a countable intersection of dense open
sets.

Thus, the Baire category theorem is the assertion that comeager subsets of
completely metrizable spaces are dense. Countable intersections of open sets are
called Gδ sets; countable unions of closed sets are called Fσ sets. It is important to
keep in mind that Baire’s theorem is a topological theorem as opposed to a metric
one: what matters is that there exists a compatible complete metric, even though
the metric one “naturally” considers on X may not be complete. For instance, the
usual distance on ]0,+∞[ is certainly not complete; however, the distance defined

by d(s, t) = |s − t|+ | 1
s − 1

t | is, and it induces the usual topology on ]0,+∞[. This
is part of a broader phenomenon.

THEOREM 1.3 (Alexandrov). Let (X, d) be a metric space. There exists a complete
metric compatible with the topology of X if, and only if, X is a Gδ subset of the completion
of (X, d).

This is easily seen to be equivalent to X being a Gδ subset of any metrizable
space containing it. What matters most for us is that the Baire category theorem is
true in any Gδ subset of a completely metrizable space.

Baire category notions are useful as notions of largeness: a comeager set may be
thought of as being large, and a meager set as being small. The union of countably
many small sets is still a small set; dually, the intersection of countably many large
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4 1. BAIRE CATEGORY

sets is still a large set. Of course, one is reminded of measure theory, where small
sets are those which have measure zero, and large sets those with full measure.
We will often work in contexts where there is no natural measure (something that
will be made precise in the discussion at the beginning of the next section), so we
have to content ourselves with category notions, cruder than measure-theoretic
tools but which can be used in different contexts.

We say that a topological space X in which the Baire category theorem holds
is a Baire space; any Gδ subset of a completely metrizable space is a Baire space,
and any open subset of a Baire space is a Baire space. This gives rise to a local
notion of largeness: given an open subset O of a topological space X and a subset
A ⊆ X, we say that A is comeager in O if A ∩ O is a comeager subset of O. The
local and global notions of largeness get along reasonably well: if A is globally
large, then it is locally large everywhere; if A is large in an open set O, then A ∩ O
is the intersection of O and a globally large subset of X.

We would want these local and global notions of largeness to get along even
better; namely, a natural assumption would be that, if a set is not globally small,
then it is locally large somewhere. This is not necessarily true (at least, not if one

uses the usual axioms of Zermelo–Fraenkel set theory (ZF)i). The analogy with
measure leads us to introduce a class of sets which behave well with regard to our
notion of largeness; in measure theory, the measurable sets are those who differ
from a Borel set by a negligible set. The same definition makes sense here.

DEFINITION 1.4. Let X be a topological space. A subset A of X is Baire-
measurable if there exists an open set O such that the symmetric difference A∆O
is meager.

It might be a bit surprising that the definition requires an open set rather than
a Borel set; actually this does not matter: any Borel set is equal to an open set
modulo a meager set, which is a consequence of the fact that the family of Baire-
measurable subsets of a topological space X is a σ-algebra. Pursuing the analogy
with measure, one could think of this as a strong form of regularity: if µ is an
(outer) regular Borel measure on a topological space X, then any measurable set is
equal to a Gδ set modulo a set of µ-measure 0.

REMARK 1.5. The standard terminology for the above property is “A has the
property of Baire”. I always found it confusing, because my intuition is that a set
with the property of Baire should satisfy the Baire category theorem, and this is
obviously not always the case. For instance, the space of rational numbers has
the property of Baire yet is a textbook example of a topological space failing to
satisfy Baire’s theorem. This is why I use the less standard, but to my mind more
evocative, “Baire-measurable” terminology.

Note that from the definition of Baire-measurability it follows that if A is Baire-
measurable and non-meager in a Polish space X then there exists a nonempty open
subset O of X such that A is comeager in O. This is what we wanted: if a set is well-
behaved (i.e. Baire measurable) and not small, then it is locally large somewhere.

Most of the time, we will not be working with general completely metrizable
spaces, but merely with separable spaces.

iThroughout this text we work, as usual, in ZF + (Dependent Choice); the reader may safely

assume that we work with the usual set theoretic axioms, and that we accept the axiom of choice.



1. THE BASICS OF BAIRE CATEGORY 5

DEFINITION 1.6. A Polish space is a completely metrizable and separable topo-
logical space.

In particular, the topology of a Polish space is second countable, i.e. it admits
a countable basis of open sets. We will often use the fact that any such space
satisfies the Lindelöff property: from any open covering one can extract a countable
subcovering. Note that being a Polish space is a topological condition, not a metric
one; often we will need to manipulate Polish spaces with noncomplete metrics.
We use the terminology Polish metric space when we are concerned with complete
separable metric spaces.

REMARK 1.7. The term “Polish space” is often credited to Bourbaki, who were
supposedly honoring the pioneering work of Polish topologists and set theorists
during the first half of the twentieth century. In some papers, mostly from the
fifties and sixties, one can find the term “polonais space” in articles written in
English (for instance [Eff65]). Using the French word for “Polish” was an inter-
esting way to capture the influence of mathematicians of both countries on this
notion, but it does not seem to have caught on.

We already saw that all Borel subsets of Polish spaces are Baire-measurable,
which is useful but not sufficient for our purposes. The problem is that many
naturally-defined subsets of Polish spaces turn out not to be Borel; an underlying
issue is that the continuous image of a Borel set need not be Borel in general.

DEFINITION 1.8. Let X be a Polish space. A subset A ⊆ X is analytic if there
exists a Polish space Y, a Borel mapping f : Y → X and a Borel subset B of Y such
that f (B) = A. A subset A of X is coanalytic if its complement is analytic.

Actually, the condition above is equivalent to saying that there is a Polish
space Y, and a continuous mapping from Y to X such that f (Y) = A.

THEOREM 1.9 (Lusin-Sierpinski). Let X be a Polish space and A be an analytic
subspace of X. Then A is Baire-measurable.

Any Borel subset of a Polish space is analytic; one can use a diagonal argu-
ment to show that there exist analytic non Borel subsets of Polish spaces (any un-
countable Polish space contains one). The following fundamental result may be
considered as the starting point of descriptive set theory.

THEOREM 1.10 (Lusin). Let X be a Polish space, and A be a subset of X. Then A is
Borel if, and only if, A is both analytic and coanalytic.

This result has the following spectacular consequence.

THEOREM 1.11. Let X, Y be Polish spaces, and f : X → Y be a function. Then f is
Borel if, and only if, its graph is a Borel subset of X × Y.

I will not give proofs of these classical results here; we use [Kec95] as a general
reference for descriptive-set-theoretic facts and theorems. The following fact is
used in the classical proof of Theorem 1.9 and will be useful to us later.

THEOREM 1.12. Let X be a topological space, and let A be a subset of X. Denote
by U(A) the union of all open subsets of X in which A is comeager. Then U(A) \ A is
meager, and A is Baire-measurable if, and only if, A \ U(A) is meager.

The definition of U(A) will play a role in the next section (in the proof of Pettis’
lemma) as well as in the last chapter.
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2. Polish groups

DEFINITION 1.13. A topological group is a group endowed with a topology for

which the group operations (g, h) 7→ gh and g 7→ g−1 are continuous.
A Polish group is a topological group whose topology is Polish.

Polish groups are abundant in analysis but also, as we shall see, in ergodic
theory and model theory. Below we will discuss important examples in some de-
tail; for now, let us simply note that any countable discrete group is Polish, as is
any locally compact metrizable group, any separable Banach space (the group op-
eration being addition of vectors), etc. In locally compact groups, one can use the
Haar measure to provide a notion of largeness which is well-behaved with respect
to the group operations; while one cannot in general hope that the Haar measure
is translation-invariant on both sides, it is invariant on one side (e.g. under the left
translation action of the group on itself), and translates of subsets of measure zero
always have measure zero.

The Haar measure was used by Weil in the thirties, generalizing a result of
Steinhaus for G = (R,+), to prove that a discontinuous homomorphism defined
on a locally compact group must be fairly wild.

THEOREM 1.14 (Weil). Let G be a locally compact topological group, and A be a

non-negligible Haar-measurable subset of G. Then AA−1 contains a neighborhood of the
neutral element 1G.

Consequently, any Haar-measurable homomorphism from a locally compact group to
a second-countable topological group must be continuous.

SKETCH OF PROOF. The first statement is proved using the regularity of the
Haar measure; the second sentence is an easy exercise: let G be a locally compact
group, H a second-countable topological group and ϕ : G → H a Haar-measurable
homomorphism. Pick a nonempty open neighborhood V of 1H ; the Lindelöff
property of ϕ(G) implies that there exists a countable family hn of elements of
ϕ(G) such that ϕ(G) =

⋃
hn(V ∩ ϕ(G)), from which one obtains a countable fam-

ily (gn) of elements of G such that G =
⋃

gn ϕ−1(V).
Hence ϕ−1(V) is not negligible, so ϕ−1(V)(ϕ−1(V))−1 ⊆ ϕ−1(VV−1) con-

tains a neighborhood of 1G whenever V is an open neighborhood of 1H . Given
any open neighborhood W of 1H , continuity of group operations implies that one

can find an open neighborhood V of 1H such that VV−1 ⊆ W. Hence ϕ−1(W) has
nonempty interior; we just proved that ϕ is continuous at 1G, hence continuous
everywhere. �

Unfortunately, as soon as one gets out of the class of locally compact groups,
one loses the Haar measure, in the worst way possible: by a result of Weil (see Ap-
pendix B of [GTW05] for a proof, coming from [Oxt46] and attributed to Ulam),
a Polish group which admits a left-translation invariant measure class (i.e. a mea-
sure µ such that all its left translates are absolutely continuous with respect to µ)
must be locally compact. Thus one must make do with Baire category methods.

THEOREM 1.15 (Pettis [Pet50]). Let A, B be subsets of a Baire topological group;
then U(A)U(B) ⊆ AB. In particular, if A is a Baire-measurable non meager subset of G

then AA−1 contains a neighborhood of 1G.
Consequently, any Baire-measurable homomorphism from a Baire topological group

to a second-countable topological group must be continuous.
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We recall that U(A) denotes the union of all open subsets of X in which A is
comeager, that A is comeager in U(A), and that A is Baire measurable if, and only
if, A \ U(A) is meager. The fact that Baire-measurable homomorphisms between
Polish groups are continuous was first proved by Banach [Ban55].

PROOF. Let A, B be two subsets of X, and pick g ∈ U(A)U(B). Equivalently,

U(A) ∩ g(U(B))−1 = U(A) ∩ U(gB−1) is nonempty; this is an open set in which

A and gB−1 are both comeager, hence the fact that open subsets of Baire spaces are

Baire implies that A ∩ gB−1 6= ∅, i.e. g ∈ AB.

Now, if A is Baire-measurable and nonmeager, then U(A)U(A−1) is a nonempty

open neighborhood of 1G which is contained in AA−1; the automatic continuity
of Baire-measurable homomorphisms with range in a second countable group is
deduced from this exactly as in the case of Haar-measurable homomorphisms. �

Let us point out a few structural facts about Polish groups.

THEOREM 1.16. Let G be a Polish group, and H be a subgroup of G. Then H,
endowed with the relative topology, is a Polish group iff H is closed in G.

PROOF. One implication is obvious. Assume that H is a subgroup of G which

is Polish when endowed with the relative topology. Then H is a Gδ subset of H;

thus, for any k ∈ H, H and kH are dense Gδ subsets of H, so the Baire category

theorem implies that H ∩ kH is nonempty for all k ∈ H, so H = H. �

THEOREM 1.17. Let G, H be Polish groups, and ϕ : G → H be a Baire-measurable
isomorphism (of abstract groups). Then ϕ is an isomorphism of topological groups.

PROOF. Being Baire-measurable, ϕ is automatically continuous. So its graph

is closed, and so is the graph of ϕ−1; hence ϕ−1 is Borel, hence Baire-measurable,
hence continuous. �

Thus, if (G, τ) is a Polish group and τ̃ is a Polish group topology on G such
that each τ-open set is τ̃-Baire-measurable, then necessarily τ = τ̃.

We now turn to a quick panorama of the Polish groups we will encounter in
this memoir, as well as an example of a seemingly nice group which cannot be
made Polish.

2.1. Isometry groups. Whenever (X, d) is a Polish metric space, one can con-
sider its isometry group Iso(X); it is tempting to turn it into a topological group by
endowing it with the metric of uniform convergence. While this is a perfectly rea-
sonable thing to do, the resulting topology will often have too many open sets to
be useful - an extreme example of this is obtained when one considers the isometry
group of the space of natural integers endowed with the discrete metric or, equiv-
alently, the group of all permutations of N. Then any two distinct permutations
are at (uniform) distance 1, so the topology of uniform convergence is discrete in
that case.

If uniform convergence is too much to ask, then the next best thing is point-
wise convergence. When endowed with the topology of pointwise convergence,
Iso(X) is a Polish group whenever X is a Polish metric space. Given a countable
dense subset A of X, Iso(X) equipped with this topology is homeomorphic (via

the map that associates to an isometry its restriction to A) to a subset of XA, so
the topology is metrizable and separable. It is easy to check that group operations
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are continuous on Iso(X); an abstract way to see that Iso(X) is a Polish group is

to notice that the image of the restriction map from Iso(X) to XA is the set of all

elements g ∈ XA which satisfy:

• ∀a, b ∈ A d(a, b) = d(g(a), g(b))
• ∀ε > 0 ∀a ∈ A ∃b ∈ A d(a, g(b)) < ε.

The first condition expresses that g preserves the distance, and defines a closed

subset of XA; the second condition means that g(A) is dense in X, and is a Gδ

condition. Hence Iso(X) is homeomorphic to a Gδ subset of XA, thus is a Polish
topological space.

A more down-to-earth way to show the same thing goes as follows: let A =
{an}n<ω, and define a metric ρ on Iso(X) by setting

ρ(g, h) =
∞

∑
n=0

min(2−n, d(g(an), h(an)))

This metric induces the topology of pointwise convergence on Iso(X), and is left-
invariant; unfortunately it is not complete in general, but the metric ρ̃ defined by

ρ̃(g, h) = ρ(g, h) + ρ(g−1, h−1) is complete. This is a general phenomenon: while
any Polish group, and indeed any first-countable Hausdorff topological group,
admits a compatible left-invariant metric by the Birkhoff–Kakutani theorem, most
Polish groups do not admit a compatible left-invariant complete metric.

In a sense, isometry groups are all there is when it comes to Polish groups:
Gao and Kechris [GK03a] proved that, given any Polish group G, there exists a
Polish metric space X such that G is isomorphic, as a topological group, to Iso(X)
equipped with the topology of pointwise convergence.

2.2. The unitary group. Consider an infinite-dimensional, separable Hilbert
space H and denote by U(H) its unitary group, i.e. the set of all C-linear bijections
of H whose inverse coincides with their adjoint. Equivalently, a map is unitary
if it is a C-linear isometry of H onto itself. As above, the first idea that comes to
mind might be to endow U(H) with the topology induced by the operator norm:
d(g, h) = ‖g − h‖. This is the topology of uniform convergence on the unit ball of
H and, not unexpectedly, is “almost” discrete: letting (ei)i<ω denote a Hilbert basis
of H, any permutation σ of the set of natural integers induces a unitary operator

uσ : ei 7→ eσ(i), and whenever σ 6= τ one has ‖uσ − uτ‖ =
√

2. Thus the topology

induced by the operator norm is certainly not separable (it will play a role later on,
though).

The example of isometry groups discussed above shows that, when endowed
with the pointwise convergence topology with regard to the norm topology on H,
the isometry group of H is a Polish group; being C-linear is closed under point-
wise convergence, so this is a Polish topology on U(H), called the strong topology.
One could equip U(H) with the topology of pointwise convergence with regard
to the weak topology on H; when it comes to unitary operators, the difference is
immaterial since both topologies coincide. This is a hint of a broader phenome-
non: there exists a unique Polish group topology on U(H), a fact first proved by
Atim and Kallman [AK12] and generalized by Tsankov [Tsa13], who proved that
U(H) has the automatic continuity property: any homomorphism from H to a Pol-
ish group is continuous. This is very much related to our concerns, and we will
discuss this phenomenon in some detail in the fourth chapter.
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From now on, H will denote an infinite-dimensional, separable Hilbert space,
and U(H) will be its unitary group.

2.3. Measure-preserving automorphisms. The notation (X, µ) will stand for
a standard atomless probability space throughout the text. This is a fancy way of
speaking of the unit interval endowed with the Lebesgue measure; the reason the
more abstract notation (X, µ) is useful is that standard atomless probability spaces
occur in many different guises, for instance any infinite compact metrizable group
endowed with its Haar measure is one.

The group we are concerned with here is made up of all measure-preserving
bijections of (X, µ), identified if they coincide outside of a set of measure 0; thus one
should really speak of classes of measure-preserving bijections. This abuse of ter-
minology must be kept in mind, but will not cause us any significant trouble, and
we will simply ignore sets of measure 0 whenever it does not cause confusion -
these sets are called negligible for a reason, after all. We denote this group by
Aut(X, µ), or simply Aut(µ). Again there seem to be several reasonable choices of
topology: one could consider the uniform topology, induced by the metric

du(S, T) = µ({x : S(x) 6= T(x)}).
This metric is bi-invariant; unfortunately, it is again far from separable - for in-
stance, see (X, µ) as the unit circle with its usual measure; then two rotations with
different angles are at distance 1. One could do even worse: embedding Aut(X, µ)
into the unitary group U(L2(X, µ)) and endowing it with the operator norm, one
obtains a discrete group.

Of course, we know what went wrong: we considered uniform metrics, which
should not be separable; the right choice if one wants to obtain a Polish group is to
consider pointwise convergence. The measure algebra MALGµ of all measurable
subsets of (X, µ) (identified if their symmetric difference has measure 0) is a com-
plete separable metric space when endowed with the distance d(A, B) = µ(A∆B);
and measure-preserving bijections are the same as isometries of MALGµ which
fix ∅ (Sikorski, see [Kec95]* Theorem 15.9). Thus one obtains a Polish topology by
considering the topology of pointwise convergence relative to this metric, which
is the topology induced by the maps g 7→ µ(g(A)∆A) as A ranges over all mea-
surable subsets of X.

As in the case of the unitary group, this is the unique Polish topology on
Aut(µ) which is compatible with its group structure; one of the results presented
in a latter chapter is the fact that Aut(µ) satisfies the automatic continuity prop-
erty which, combined with a result of Glasner [Gla12] and the simplicity of Aut(µ)
[Fat78], shows that there are only two second-countable topologies on Aut(µ): the
coarse topology, and the Polish topology we just defined. The fact that there is a
unique compatible Polish group topology on Aut(µ) is due to Kallman [Kal85].

As a general reference regarding Aut(µ), [Kec10] is particularly well-suited to
our purposes.

2.4. Permutation groups. Both U(H) and Aut(µ) are connected, indeed they
are both homeomorphic to an infinite-dimensional separable Hilbert space. Since
both groups have the automatic continuity property, they cannot act nontrivially
on a countable set: the action would have to be continuous with respect to the
discrete topology on the countable set, so by connectedness the action must be
trivial.
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Still, groups acting on countable sets are interesting objects. The first example
is the permutation group of the integers, denoted by S∞; we already met it when
discussing isometry groups, and know that it is a Polish group when endowed
with the topology of pointwise convergence relatively to the discrete topology on
N - equivalently, this is a group topology such that the family of subgroups of the
form {σ : ∀x ∈ F σ(x) = x}, where F ranges over all finite subsets of N, is a basis
of open neighborhoods of 1.

Again, this topology is the unique second-countable group topology on S∞

(Kechris–Rosendal [KR07], extending a theorem of Gaughan [Gau67]); a Polish
group is isomorphic, as a topological group, to a (necessarily closed) subgroup
of S∞ if, and only if, it admits a basis of neighborhoods of 1 made up of open
subgroups. When this happens, we say that the group is a permutation group.

These groups naturally appear in model theory; we will discuss this in some
detail later on. For now, we simply note that when encountering a countable
“structure”, one can consider its automorphism group, which is made up of all
bijections preserving the structure; identifying the universe of the structure with
N, its automorphism group is then a closed subgroup of S∞. Conversely, all Polish
permutation groups are automorphism groups of countable structures. As exam-
ples, one can cite the automorphism group of the random graph, the automor-
phism group of a countable free group...

The topology of the permutation group comes from its action on the structure;
in some cases, knowing the topology is enough to recover a lot of information
about the structure (we will also come back to this later). One is then led to won-
dering when it is possible to reconstruct the topology when knowing only the
algebraic structure of the group, motivating the study of the automatic continuity
properties of permutation groups.

2.5. Full groups. To close this chapter, we discuss full groups; in this memoir
we present some new results and questions about full groups of minimal home-
omorphisms of Cantor spaces. To motivate them, we begin by recalling the more
classical notion of full group of a countable measure-preserving equivalence re-
lation; these equivalence relations are those that arise from a measure-preserving
action of a countable group on a standard probability space (X, µ); as usual when
dealing with measures, we ignore sets of measure 0.

Given such an action of a countable group Γ, we denote by RΓ the associated
equivalence relation; its full group, denoted by [RΓ], is the group of all measure-
preserving bijections g ∈ Aut(X, µ) such that g(x)RΓx for (almost) all x ∈ X.
These groups were introduced by Dye ([Dye59], [Dye63]); the full group com-
pletely remembers the relation, in a way made precise by the following definition

and theorem i.

DEFINITION 1.18. Consider two countable groups Γ1, Γ2 acting by measure-
preserving bijections on a standard probability space (X, µ). We say that the asso-
ciated equivalence relations are orbit equivalent if there exists g ∈ Aut(X, µ) such
that

∀x, y ∈ X
(

xRΓ1
y
)
⇔

(
g(x)RΓ2

g(y)
)

iThe definition of orbit equivalence actually appeared after Dye’s work, in work of Mackey

[Mac66] so Dye’s theorem is formulated differently than the original.
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Orbit equivalence is the natural notion of isomorphism of measure-preserving
equivalence relations: up to an isomorphism of the space, the relations coincide.
Recall that a measure-preserving action is ergodic if it does not admit any nontrivial
invariant sets.

THEOREM 1.19 (Dye). Assume that Γ1, Γ2 be two countable groups acting by measure-
preserving transformations on a standard probability space (X, µ), and that there exists
an isomorphism Φ :

[
RΓ1

]
→

[
RΓ2

]
. Then there exists g ∈ Aut(X, µ) such that for all

h ∈
[
RΓ1

]
one has Φ(h) = ghg−1.

In particular, g must realize an orbit equivalence between RΓ1
and RΓ2

- thus RΓ1
and

RΓ2
are orbit equivalent iff their full groups are isomorphic (as abstract groups).

Thus, full groups are complete invariants for orbit equivalence. Dye’s theorem
is also related to considerations of automatic continuity; to explain this we need to
discuss topologies on full groups of ergodic, probability measure-preserving ac-
tions of countable groups. The first that comes to mind is the topology induced
from the Polish topology of Aut(X, µ); of course this is a second-countable group
topology, but it is never Polish for ergodic relations: indeed, ergodicity of the ac-
tion Γ y X is equivalent to the fact that [RΓ] is dense in Aut(X, µ). Not being a
closed subgroup, it cannot be Polish for the induced topology; still, it is never too
complicated a subset of Aut(X, µ): Wei [Wei05] proved that full groups of ergodic
actions of countable groups are always countable intersections of countable unions
of closed subsets of Aut(X, µ), in particular they are Borel subsets of Aut(X, µ).

What about the topology induced from the uniform topology? It is easy to
see that [RΓ] is closed in Aut(X, µ) with respect to the uniform topology; per-
haps more surprisingly, [RΓ] is also separable, so it is a Polish group (see e.g.
[Kec10]*Proposition 3.2). Then, Dye’s theorem implies that an isomorphism be-
tween two full groups is necessarily continuous with respect to their Polish topolo-
gies; given the examples discussed above, the reader will probably not be sur-
prised to learn that Kittrell and Tsankov [KT10] proved that full groups of relations
induced by an ergodic action of a countable group have the automatic continuity
property.

We turn to full groups in topological dynamics, which for us means the study
of actions of countable groups by homeomorphisms of a Cantor space X. The
analogue of ergodicity in that context is minimality.

DEFINITION 1.20. Let Γ be a countable group acting by homeomorphisms on
a Cantor space X. The action is said to be minimal if all orbits are dense.

Then one can define the full group of an action Γ y X in the natural way: it
is made up of all the homeomorphisms of X which map each Γ-orbit onto itself.
Similarly, two actions of countable groups Γ1, Γ2 by homeomorphisms of a Cantor
space X are orbit equivalent if there exists a homeomorphism of X which maps
each orbit of the first group’s action onto an orbit of the second group’s action.
The natural analogue of Dye’s theorem holds in that context.

THEOREM 1.21 (Giordano–Putnam–Skau [GPS99]). Assume that Γ1, Γ2 are two

countable groups acting minimallyi by homeomorphisms of a Cantor space X, and that
Φ :

[
RΓ1

]
→

[
RΓ2

]
is an isomorphism. Then there exists a homeomorphism g of X which

is such that for all h ∈
[
RΓ1

]
one has Φ(h) = ghg−1.

iThe minimality assumption is stronger than what is needed, see [Med11].
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This g must realize an orbit equivalence between RΓ1
and RΓ2

- thus RΓ1
and RΓ2

are
orbit equivalent iff their full groups are isomorphic (as abstract groups).

Now, given an action by homeomorphisms of a countable group Γ on a Can-
tor space X, we would like to turn [RΓ] into a Polish group; first, what kind of
topologies can one put on the homeomorphism group Homeo(X)? As with the

homeomorphism group of any compact metric spacei, one can use the uniform
topology: given a compatible metric d on X, this topology is induced by the uni-
form metric du, defined by

du(g, h) = sup({d(g(x), h(x)) : x ∈ X}) .

This metric is not complete, but the metric d̃u defined by d̃u(g, h) = du(g−1, h−1) +
du(g, h) is complete and induces the same topology on Homeo(X). It was proved
by Rosendal and Solecki [RS07] that Homeo(X), with this topology, has the au-
tomatic continuity property; thus this is the unique Polish group topology on
Homeo(X). Actually, it follows from the simplicity of Homeo(X) [And58] and a
result of Gamarnik [Gam91] that this is the unique second-countable group topol-
ogy on Homeo(X) besides the coarse topology. It is actually a permutation group
topology; Homeo(X) naturally acts on the countable set of all clopen subsets of X,
and the permutation group topology induced by that action is the same as the one
we just described; a basis of neighborhoods of 1 is given by sets of the form

{g ∈ Homeo(X) : ∀A ∈ A g(A) = A}
where A ranges over all finite clopen partitions of X.

Unsurprisingly, the full group of a minimal action of a countable group is
not closed in Homeo(X); in the case of a minimal Z-action, one can describe its
closure. Below we say that an homeomorphism ϕ of a Cantor space X is minimal
if the associated Z-action is minimal, and we denote by [ϕ] the associated full
group. The following is a consequence, pointed out in [GPS99], of a result of
Glasner–Weiss [GW95].

THEOREM 1.22 (Glasner–Weiss). Let ϕ be a minimal homeomorphism of a Can-
tor space X. Denote by Mϕ the set of all Borel probability measures on X which are ϕ-
invariant. Then the closure of [ϕ] inside Homeo(X) is equal to {g ∈ Homeo(X) : ∀µ ∈
Mϕ g∗µ = µ}.

This is somewhat analogous to what happens in the measure-theoretic setting
(i.e. the closure of the full group is as large as possible); things already appear to be
more complicated in the topological setting, however: two measure-preserving er-
godic Z-actions are always orbit equivalent (Dye [Dye59]), while the above result
can be used to see that there are continuum many pairwise non-orbit equivalent

minimal actions of Zii. As far as I know, the closure of the full group of a mini-
mal action of a countable group is not understood in general, even if the group is
abelian.

iAn open problem (as far as I know): which Polish groups are isomorphic, as a topological group,

to the homeomorphism group of a compact metric space?
iiActually, in the sense of Borel equivalence relations, the relation of orbit equivalence of minimal

homeomorphisms is S∞-universal, which follows from a combination of results of Giordano–Putnam–
Skau [GPS95] and Camerlo–Gao [CG01]; OE for minimal homeomorphisms is already not essentially

countable as it is bireducible to =+.
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As in the measure-theoretic context, one might expect that there exists a Polish
topology on the full group; however, if such a topology existed, it should have a
natural definition and none is to be found. This motivated the following result,
obtained in collaboration with T. Ibarlucia.

THEOREM 1.23 ([IM13]). Let Γ be a countable group acting by homeomorphisms on
a Cantor space X; assume that for any nonempty open subset U of X there exists x ∈ U
such that Γ · x intersects U in at least two points. Then [RΓ] does not admit a compatible
Baire, Hausdorff, second-countable group topology.

SKETCH OF PROOF. The idea behind the proof is fairly standard, see for in-
stance [Ros05]. Assume that Γ y X satisfies the assumption above, and that τ
is a Baire, Hausdorff group topology on [RΓ]. Then, given any clopen U, one can
check that g ∈ [RΓ] is equal to the identity on U if and only if g commutes with all
elements which coincide with the identity on X \ U; thus

{g : g↾U = id↾U} =
⋂

h↾X\U=id↾X\U

{g : gh = hg}

is an intersection of closed subsets of [RΓ], hence it is closed.

Now, given any clopen U and g ∈ [RΓ], one has g(U) ⊆ U iff g−1hg coincides
with the identity on U for any h which coincides with the identity on U; thus
{g : g(U) ⊆ U} is τ-closed by the same reasoning as above. This means that each
set {g : g(U) = U} is τ-closed, thus the inclusion map from ([RΓ] , τ) to Homeo(X)
endowed with its usual Polish topology is Borel, hence continuous since ([RΓ] , τ)
is assumed to be Baire. We just proved that τ extends the topology induced from
the Polish topology of Homeo(X).

So far, we are in the same situation as in the measure-theoretic context; now, fix
x ∈ X and consider the orbit map g 7→ g(x) from ([RΓ] , τ) to the countable set Γ · x,
which induces a homomorphism from ([RΓ] , τ) to the group Hx of permutations
of Γ · x. What we proved above shows that this homomorphism is Borel when Hx is
endowed with its permutation group topology; using again the fact that τ is Baire,
we obtain that this homomorphism is continuous. Equivalently, each subgroup
{g : g(x) = x} is τ-clopen. With a bit of work one can check that this causes
the existence of too many clopen subgroups for τ to be Lindelöff, so τ cannot be
second-countable.

�

It is then tempting to study the properties of the closure of ([RΓ] , τ); we will
get back to this topic later on, in the case when Γ = Z. Given Wei’s result com-
puting the Borel complexity of full groups of measure-preserving equivalence rela-
tions mentioned above, which shows in particular that those are always Borel sub-
sets of Aut(µ), it is also natural to wonder how complicated a subset of Homeo(X)
[RΓ] is; I do not know the answer in general, but for minimal Z-actions the answer
is that it is as complicated as possible.

THEOREM 1.24 ([IM13]). The full group of a minimal Z-action on a Cantor space
X is a coanalytic non Borel subset of Homeo(X).

Let me try to give an idea of our approach. First, recall that a tree on a count-
able set A is a subset T of the set A<ω of all finite sequences of elements of A which
is closed under taking initial segments. In particular, any nonempty tree must
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contain the empty sequence. The space T (A) of all trees on A may be identified

with a subset of 2A<ω
(identifying each tree with its indicator function); endowing

2A<ω
with the product topology, we obtain a compact topology on T (A). A tree is

well-founded if it has no infinite branches; one can then define inductively the rank
(relative to T) ρT(s) of an element s ∈ A<ω as follows:

ρT(s) = sup{ρT(s a a) + 1 : s a a ∈ T}

In particular, if s does not belong to T or is a terminal node of T, then ρT(s) = 0.
The rank of T, ρ(T), is the supremum of the ranks of all elements s ∈ A<ω ; when
T is nonempty this is equal to ρT(∅). The rank of a countable well-founded tree is
a countable ordinal.

The reason why this is relevant for our purposes is the following observation.
Fix (for the remainder of this chapter) a minimal homeomorphism ϕ of a Can-
tor space X and define, for any g ∈ Homeo(X), a tree T(g) on the countable set
Clop(X) of clopen subsets of X by the following condition:

((U0, . . . , Un) ∈ T(g)) ⇔
(
∀i ≤ n − 1 Ui+1 ⊆ Ui and ∀i ≤ n ∀x ∈ Ui g(x) 6= ϕ±i(x)

)
.

The map g 7→ T(g) is Borel (for the compact topology on the space of trees on
Clop(X) described above), and g ∈ [ϕ] iff T(g) is well-founded.

Note that T(g) has finite rank if, and only if, there exists a finite clopen parti-
tion U0, . . . , Un of X such that g coincides with a fixed power of ϕ on each Ui or,
equivalently, if g belongs to [ϕ] and {n : ∃x ∈ X g(x) = ϕn(x)} is a finite subset
of Z. The set of all elements satisfying these conditions is a countable subgroup
of [ϕ], which is known as the topological full group of ϕ. Topological full groups
of minimal homeomorphisms are important objects in their own right, though we
will not say much about them (and not prove any results concerning them); let us
simply point out the fact that the rank of T(g) captures whether g belongs to the
topological full group of ϕ as evidence that this rank is a natural and potentially
useful invariant.

It is clear from the definition that [ϕ] is co-analytic: g ∈ Homeo(X) does not
belong to [ϕ] iff

∃x ∈ X ∀n ∈ Z g(x) 6= ϕn(x).

This shows that the complement of [ϕ] is the projection of a Gδ subset of the Polish
space Homeo(X)× X. By Suslin’s theorem, [ϕ] being Borel is then equivalent to it
being analytic, in which case the set Tϕ = {T(g) : g ∈ [ϕ]} is an analytic subset of
the set of all well-founded trees. This is only possible if the ranks of elements of Tϕ

are bounded above by a common countable ordinal (this is a classical, non-trivial
result of descriptive set theory, see [Kec95]*35.23).

So we need to prove that the ranks of trees of the form T(g) are not bounded
above by a countable ordinal. The usual, simple technique to construct well-
founded trees of arbitrarily large rank is to build them “from the root” - for in-
stance, to obtain a tree of rank α + 1 from a tree T of rank α, just copy T below a
node that is linked to the root of the tree, as in the picture below.
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Similarly, to obtain a tree of rank greater than sup(αn) from a countable family
of trees of rank αn, just link the root to countably many vertices, each of which is
the root of a tree of rank αn.

This procedure is not adapted to the way our trees T(g) are defined, because
changing something high up in the tree (i.e. modifying g on some clopen set U)
forces one to also change everything below (g also is modified on any clopen sub-
set contained in U) , thus completely modifying the tree, so one cannot simply
copy things easily. This makes the work a bit painful, but also points to our sal-
vation: it is, at least intuitively, possible to modify a tree of the form T(g) “from
the bottom” - namely, take a terminal node, and change what g does on the corre-
sponding clopen set to make it as complicated as g is on the whole space. Roughly
speaking, this corresponds to replacing a well-founded tree T with a new tree such
that any terminal node of T is now the root of a new copy of T - thus increasing
the rank. The corresponding picture now looks like this.

Note that just adding a vertex below each terminal node of T would not be
enough: it would create a new tree of rank 1+ ρ(T), which might be equal to ρ(T)
if ρ(T) is infinite, for instance 1 + ω is equal to ω. The set of countable ordinals
α such that β + α = α for all β < α is unbounded, as is easy to see. So one really
needs to copy a tree of rank at least ρ(T) below each terminal node to be sure to
increase the rank of T.

This intuitive idea can be turned into a (somewhat messy) proof, thus showing
that [ϕ] is not analytic. The sketch of proof we discussed seems to adapt easily to
any countable group (only the definition of the trees T(g) must be adapted, and
this is is not hard), but I do not know if the actual proof can be made to work: our
main technical tool to do the “copying” is a result of Glasner–Weiss stating that if
A, B are clopen subsets of X such that µ(A) < µ(B) for any ϕ-invariant measure µ,
then there exists an element g in the topological full group of ϕ such that g(A) ⊂ B
(this is also what one needs to prove Theorem 1.22). No analogue of this is known
in general, even for countable amenable groups.

This concludes our panorama of Polish groups, with the exception of one im-
portant example: the isometry group of the Urysohn space (and its variants). This
was the main object of study of my Ph.D thesis, and I kept working on it in the
years that immediately followed. That is the topic of the next chapter.





But now it’s come to distances ...

2
Urysohn spaces

1. Construction of Urysohn spaces

After proving that ℓ∞(N) contains an isometric copy of any separable met-
ric space [Fré10], Fréchet [Fré25] asked the following question: does there ex-
ist a separable metric space with the same property? This provided the impetus
for Urysohn’s research and subsequent discovery of the space which now bears
his name, published in the posthumous paper [Ury25]. Right after finishing the
construction of this space, Urysohn drowned while on vacation in France with
Alexandrov; [Ury25] was written by Alexandrov, who along with Brouwer wrote
down a large part of Urysohn’s work after his untimely death (see the introduction
of [Huš08] for a detailed history of the discovery of the Urysohn space, Urysohn’s
death, and subsequent events; the special volume [LPR+08] is a good general ref-
erence about the Urysohn space).

Banach and Mazur [Ban55] shortly thereafter found another space showing
that the answer to Fréchet’s question is positive: they proved that C([0, 1]), the
space of continuous functions on the unit interval, is isometrically universal. They
even proved more, namely, every separable Banach space embeds linearly isomet-
rically in C([0, 1]), and this might have played a part in keeping the Urysohn space
out of the spotlight, as a nearly-forgotten curiosity. But this space has another re-
markable property: it is characterized up to isometry as being the unique Polish
metric space which is both

• universal, i.e. U contains a copy of every separable metric space (that is
the property Fréchet was interested in).

• homogeneous, i.e. any isometry between two finite subsets of U extends to
a surjective isometry of U.

We will not present Urysohn’s original construction; instead we discuss quickly
a more recent one, due to Katětov [Kat88]. This construction played a large part in
reviving interest in the study of the Urysohn space.

17
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We begin with a convention: by an isometry between two metric spaces X, Y,
we mean a surjective, distance-preserving map from X to Y. Distance-preserving
maps which are not necessarily surjective will be called isometric embeddings.

DEFINITION 2.1. Let (X, d) be a metric space. A Katětov map on (X, d) is a map
f : X → R+ such that

∀x, y ∈ X | f (x)− f (y)| ≤ d(x, y) ≤ f (x) + f (y).

We let E(X) denote the set of all Katětov maps on X.

These maps correspond to one-point metric extensions X ∪ {z} of X, via the
correspondence f (·) ↔ d(z, ·). This correspondence was already known to Haus-
dorff.

One may check that U is characterized among Polish metric spaces by the
following property, commonly known as finite injectivity:

∀A finite ⊆ U ∀ f ∈ E(A) ∃z ∈ U ∀a ∈ A d(z, a) = f (a).

In words: any abstract one-point metric extension of a finite subset of U is realized
inside U.

As a way to get used to back-and-forth constructions, let us see why a finitely
injective Polish metric space is homogeneous: assume that X is such a space, and
that ϕ : A → B is an isometry between finite subsets of X. Let {xi}i<ω be a count-
able dense subset of X. Using finite injectivity, one can build inductively finite sets
An, Bn and isometries ϕn : An → Bn with the following properties:

• A0 = A, B0 = B, ϕ0 = ϕ.
• For all n, An ⊆ An+1, Bn ⊆ Bn+1 and ϕn+1 extends ϕn.
• For all n, xn ∈ A2n+1 (“forth”) and xn ∈ B2n+2 (“back”).

Indeed, assume that the process has been carried out up to some rank n, say
n = 2k + 1 (the case n even is essentially the same). If xk ∈ An we have nothing
to do; else we may set An+1 = An ∪ {xn}. The one thing we need is to define
ϕn+1(xn); this must be an element x ∈ X which satisfies

∀y ∈ An d(y, xn) = d(ϕn(y), x) .

Finite injectivity of X ensures that such an element exists; pick one, call it bn+1,
and set Bn+1 = Bn ∪ {bn+1}.

After ω steps, ∪ϕi : ∪ Ai → ∪Bi is a densely-defined isometry with dense
range which extends ϕ, and completeness of X ensures that ∪ϕi extends to an
isometry of X onto itself. As is often the case, the “forth” step ensures that the
map we build is defined everywhere, while the “back” step (which, in this case, is

just the “forth” step applied to ϕ−1) ensures that the map is onto.
Using similar ideas, it is not hard to prove that a finitely injective Polish metric

space is also universal (here only the “forth” step of the construction is needed),
and that any two finitely injective Polish metric spaces must be isometric. Thus,
if such a space exists, it is unique up to isometry. It is also not hard to show that
homogeneity and universality together imply finite injectivity.

All this reduces the proof of existence of the Urysohn space to the construc-
tion of a finitely injective Polish metric space. Katětov’s approach is based on the
existence of a natural metric on E(X). Before introducing this metric, we note that
X naturally embeds in E(X) via x 7→ d(x, ·) (this is the degenerate case where we
“extend” X by adding a point that was already inside it).
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DEFINITION 2.2. The metric on E(X) is defined by the formula

d( f , g) = sup{| f (x)− g(x)| : x ∈ X}.

This is indeed a metric (in particular, it takes only finite values); in geomet-
ric terms, d( f , g) is the smallest possible distance d(z f , zg) in a two-point metric

extension X ∪ {z f , zg} such that d(z f , x) = f (x) and d(zg, x) = g(x) for all x ∈ X.

The map x 7→ d(x, ·) is an isometric embedding from X to E(X) and in what
follows we identify X with the corresponding subspace of E(X). Then, one has
the remarkable relation

∀ f ∈ E(X) ∀x ∈ X d( f , x) = f (x).

Unfortunately, E(X) need not be separable even when X is (see [Mel08] for a
detailed discussion of the conditions on X which ensure that E(X) is separable).
Still, all is not lost: to obtain a finitely injective space, we only care about one-point
extensions of finite subspaces; and if Y ⊆ X and f ∈ E(Y), then f may be extended

to an element f̂ of E(X) via the following formula (“shortest path through Y”):

∀x ∈ X f̂ (x) = inf{ f (y) + d(x, y) : y ∈ Y}
This leads to the following definitions.

DEFINITION 2.3. Let (X, d) be a metric space and f ∈ E(X). We say that f is
supported by A ⊆ X, or that A is a support of f , if one has

∀x ∈ X f (x) = inf{ f (a) + d(x, a) : a ∈ A}.

DEFINITION 2.4. We denote by E(X, ω) the subspace of all f ∈ E(X) which
have a finite support.

By definition, for any finite A ⊆ X and any f ∈ E(A), there exists f̂ ∈ E(X, ω)
extending f . Hence, if one wants to find an element having prescribed distances
to a finite subset of X, then one might do so inside of E(X, ω). It is straightforward
to check that E(X, ω) is separable; the natural embedding from X into E(X) takes
its values in E(X, ω), and any isometry ϕ of X uniquely extends to an isometry of
E(X) defined by

∀ f ∈ E(X, ω) ∀x ∈ X ϕ̃( f )(x) = f (ϕ−1(x)).

Then ϕ̃ uniquely extends to the completion ̂E(X, ω) (we take the completion
here to stay inside the domain of Polish metric spaces, but this is inessential), and

the homomorphism ϕ 7→ ϕ̃ is continuous from Iso(X) to Iso( ̂E(X, ω)).
Katětov’s construction of the Urysohn space [Kat88] proceeds as follows: start

from a given Polish metric space (X, d) and set X0 = X. Then define inductively
an increasing sequence of metric spaces Xi by setting Xi+1 = E(Xi, ω). Finally,
denote by X∞ the union of the Xis, and let Y be the completion of X∞.

Then Y is a Polish metric space, and the construction ensures that Y is approx-
imately finitely injective - that is, for any finite subset A of Y, any ε > 0 and any
f ∈ E(Y), there exists y ∈ Y such that |d(y, a) − f (a)| ≤ ε for all a ∈ A. Using
completeness and an approximation process, one can prove that Y must actually
be finitely injective, and we have built a Urysohn space.

This construction is fairly flexible, which is why the title of this section men-
tions Urysohn spaces, plural (see [DLPS07] for a full discussion of this flexibility):
for instance, one could have done the previous construction using only metric
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spaces of diameter at most 1, obtaining in the limit the so-called Urysohn sphere,
which is the unique Polish space of diameter 1 which is both universal for Polish
metric spaces of diameter at most 1 and homogeneous.

We could have also stayed in the countable realm, considering only finite met-
ric spaces whose metric takes only rational values, and used Katětov’s tower con-
struction (without taking a completion at the end!) to build the rational Urysohn
space UQ; this space is the unique countable metric space with rational distances
which is homogeneous and universal for countable rational metric spaces. It was
originally built by Urysohn, who then proved that its completion is isometric to
the Urysohn space; whenever we mention UQ we think of it as sitting densely
inside U.

Here we see our first example of a phenomenon that will play an important
role later on: a “continuous” structure (in this case, the Urysohn space) is well-
approximated by a countable substructure (the rational Urysohn space); further,
the automorphism group of the structure is well approximated by the automorphism
group of the countable substructure, which is a Polish permutation group; for
instance in this case, given any isometry ϕ of U and any ε > 0, there exists an
isometry ψ of UQ such that d(ϕ(x), ψ(x)) < ε for all x (see for instance [CV06]).

2. Isometry groups of Urysohn spaces

Uspenskij [Usp90] was the first to put to use a very nice property of Katětov’s
construction (the notations of which we keep here): any isometry of X = X0 ex-
tends to an isometry of X1 = E(X0, ω), which extends to an isometry of X2 =
E(X1, ω), etc., eventually defining an isometry of

⋃
Xi, which in turn extends to

its completion, that is as we know isometric to the Urysohn space.
In this way, we obtain an isometric copy of X embedded in the Urysohn space

U, with the property that any isometry of X extends naturally to an isometry of
U, and the mapping that assigns to a isometry of X its natural extension to U is
a continuous homomorphism from Iso(X) to Iso(U). Since any Polish group is a
subgroup of the isometry group of some Polish metric space (actually, any Polish
group is the isometry group of some Polish metric space, see [GK03a]), this shows
that any Polish group embeds, as a topological group, into the isometry group
Iso(U). We just sketched the proof of the following theorem.

THEOREM 2.5 (Uspenskij [Usp90]). Iso(U) is a universal Polish group, i.e, it con-
tains an isomorphic copy of any Polish group.

This result rekindled interest in the Urysohn space, which is now a relatively
well-known object, at least among logicians. Uspenskij [Usp04] subsequently proved
that U is homeomorphic to the Hilbert space; many results have been proved over
the past decade or so, and rather than try to sum all of these up I will simply refer
the reader to the special volume [LPR+08] and references therein.

For constructions involving U, one is often led to manipulating enumerated
finite metric spaces; given two such spaces {a1, . . . , an}, {b1, . . . , bn}, we say that
they are isometric, and write {a1, . . . , an} ∼= {b1, . . . , bn}, if the map ai 7→ bi is an
isometry, i.e. d(ai, aj) = d(bi, bj) for all i, j ∈ {1, . . . , n}. It is possible to handle
extensions of metric spaces by a given finite metric space in much the same way
that Katětov’s construction deals with points (i.e. extensions by a single point),
which is made precise by the following lemma from [Mel10b].
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LEMMA 2.6. Let X be a metric space, and {a1, . . . , an} be an enumerated finite metric
space. Then there exists a metric space Y ⊃ X and subsets Y1, . . . , Yn ⊂ Y such that
Y = ∪Yi, X = Yi ∩ Yj for all i 6= j and

(a) For each abstract metric extension X ∪ {a′1, . . . , a′n} of X by an enumerated
set isometric to {a1, . . . , an}, there exist yi ∈ Yi such that X ∪ {y1, . . . , yn}
identifies with X ∪ {a′1, . . . , a′n} in the natural way.

(b) ∀i ∀y, y′ ∈ Yi d(y, y′) = sup{|d(y, x)− d(y′, x)| : x ∈ X} .

This lemma is not difficult to prove: form an abstract space Y as the union
of n copies Yi of E(X), such that Yi ∩ Yj = X for all i 6= j. Then define a partial
function ω on Y that coincides with the natural metric on each Yi, and is such that,
if y ∈ Yi, z ∈ Yj (i 6= j), then ω(y, z) is defined, and equal to d(ai, aj), if and only if

this is compatible with the triangle inequality for the restriction of ω to X ∪ {y, z}.
Then, for any y, y′ ∈ Y, define d(y, y′) = inf{∑

n
i=0 ω(yi, yi+1)} where the infimum

is taken over all finite sequences such that y0 = y, yn = y′, and ω(yi, yi+1) is
defined for all i. Then, after chasing inequalities for a while, one can check that
this distance satisfies the conclusion of the lemma.

I used this lemma in [Mel10b] to show, via a back-and-forth construction, the
following result.

THEOREM 2.7 ([Mel10b]). Iso(U) is homeomorphic to a separable Hilbert space.

This is a common feature in large infinite-dimensional groups. Due to a re-
sult of Toruńczyk and Dobrowolski [DT81], proving this reduces to showing that
Iso(U) is an absolute retract, which in turn follows from the fact that its topology
admits a basis which is stable under taking finite intersections, contains the whole
space, and is such that all its elements have trivial homotopy type (see [vM89]).
The proof is technical and I will not try to explain it here; allow me to simply men-
tion that Lemma 2.6 enables one to work within some fixed basic open subset of
Iso(U): such a subset is defined by the behavior of isometries on a finite subset of
U up to a fixed error, and Lemma 2.6 is what is needed to handle all points of a
subset at the same time (instead of one after the other as in the back-and-forth con-
structions we saw above, which would cause compatibility issues in an inductive
construction and make the proof problematic).

It was recently proved by Tent–Ziegler [TZ13a] that Iso(U1) is a simple group;
actually, using model-theoretic methods inspired by stability theory, they proved

that if g ∈ Iso(U1) is such that d(a, g(a)) ≥ 1
n for some n, then any element of

Iso(U1) can be written as a product of at most n · 29 conjugates of g and g−1.
In the unbounded case, it is clear that Iso(U) is not simple: the group of

bounded isometries, i.e. all isometries g ∈ Iso(U) such that d(g(x), x) ≤ M for some
M and all x, is a nontrivial normal subgroup. Tent and Ziegler [TZ13b] showed
that the quotient of Iso(U) by the subgroup of bounded isometries is simple: for
any unbounded isometry g ∈ Iso(U), every other element of Iso(U) is a product
of at most 8 conjugates of g. As far as I know, it is an open problem whether the
group of bounded isometries is simple; it is not very hard to see that Iso(U) is
topologically simple, i.e. has no nontrivial closed normal subgroups. I believe that
this fact was first pointed out by K. Tent; at least, I heard it from her.
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An interesting, and poorly understood so far, object is the uniform metric on
Iso(U) (or its bounded counterpart U1), defined by

du(g, h) = sup{d(g(x), h(x)) : x ∈ U}

Of course this might take the value +∞; replace this du by du
1+du

(with the conven-

tion ∞/∞ = 1) if that causes a philosophical problem. This uniform metric was
studied in the last part of [BM13] (joint work with D. Bilge, part of his Ph.D the-
sis for which E. Jaligot and I were the advisors), the results of which were partly
superseded by Tent–Ziegler’s work. It was proved in that paper, using Baire cat-
egory methods, that any element of Iso(U) (or Iso(U1)) is a commutator and that
for all n ≥ 2 there exists an element gn of order n in Iso(U) such that any other
element of Iso(U) is a product of (at most) four conjugates of gn. In the case of U1,
we proved that there is a 2-Lipschitz homomorphism F : (R, | · |) → (Iso(U1, du)
which maps 1 to g2; as an immediate corollary, one obtains that (Iso(U1), du) is
path-connected (which of course also directly follows from simplicity of Iso(U1)).

I should point out here that I do not know what the path-connected com-
ponent of the identity in (Iso(U), du) is; I would expect the group of bounded
isometries to be simple, in which case it would be the connected component of the
identity.

3. Linearly rigid metric spaces

We devote this last section to the study of a surprising property of the Urysohn
space; we are concerned here with isometric embeddings of metric spaces into Ba-
nach spaces. This type of problem goes back at least to Fréchet; as we saw above,
he proved in [Fré10] that every separable metric space embeds isometrically in the
Banach space ℓ∞(N). We also mentioned Banach–Mazur’s theorem which states
that C([0, 1]) is isometrically universal. They even proved that any separable Ba-
nach space linearly isometrically embeds in C([0, 1]); this fact actually follows from
the existence of an isometric embedding, but this was proved much later by Gode-
froy and Kalton [GK03b].

A result analogous to Fréchet’s theorem, due to Kuratowski, states that ev-
ery metric space X embeds in Cb(X), the Banach space of all continuous bounded
functions on X endowed with the supremum norm. Such an embedding (often
called Kuratowski embedding) is easy to describe: fix a basepoint x0 ∈ X, and con-
sider the map from X to Cb(X) defined by

x 7→ ( fx : y 7→ d(y, x)− d(y, x0)) .

The Kuratowski embedding above depends in a nontrivial way on the choice
of basepoint x0. Another possibility to define an embedding, which was appar-
ently considered first by Kantorovitch [Kan42] in the context of compact metric
spaces, and then in general by Arens-Eells [AE56], is to embed X in the so-called
Lipschitz-free Banach space over X. Let us quickly recall one possible definition of
this space. It depends formally on a choice of basepoint x0 ∈ X; to simplify the
notation below, denote by Lip0(X, x0) (or just Lip0(X) when there is no danger of
confusion) the space of all Lipschitz maps f on X such that f (x0) = 0, and denote
by K( f ) the Lipschitz constant of f ∈ Lip0(X, x0) (note that K( f ) is a complete
norm on Lip0(X, x0)).
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Given z1, . . . , zn ∈ X and a1, . . . , an ∈ R, define

‖
n

∑
i=1

aizi‖L = sup{
n

∑
i=1

ai f (zi) : f ∈ Lip0(X, x0), K( f ) ≤ 1}

This is indeed a seminorm on the vector space of all (formal) combinations
of elements of X, identifying x0 ∈ X with the origin of that vector space. Taking
the completion of that space, we obtain the Lipschitz-free Banach space F (X, x0).
This space is a predual of Lip0(X, x0). Note that, in this case, the dependence on
the choice of basepoint is inessential: if y0 is another choice of basepoint, then
the spaces Lip0(X, x0) and Lip0(X, y0) are isometric via the map f 7→ f (·)− f (y0),
and this induces a canonical isometry of the predual spaces F (X, x0) and F (X, y0).
Accordingly, in the following we shall denote this space simply by F (X).

For information about Lipschitz-free Banach spaces, we refer the reader to
Weaver’s book [Wea99] and Godefroy–Kalton’s article [GK03b]. Even though it
is only tangentially related to our concerns here, let us explicitly state the beauti-
ful result of Godefroy and Kalton [GK03b] alluded to above, the proof of which
uses Lipschitz-free Banach spaces: consider a separable Banach space X and a Ba-
nach space Y, and assume that there exists an isometric embedding from X into Y.
Then there must exist a linear isometric embedding from X into Y. This theorem
becomes false if one no longer assumes X to be separable.

A curious mind may then ask: can there exist a space X such that all these em-
beddings coincide? That is, do there exist metric spaces which can be embedded
in a Banach space in a unique way (modulo a choice of basepoint)?

DEFINITION 2.8. Let (X, x0) be a pointed metric space. We say that X is linearly
rigid if, whenever B, B′ are Banach spaces and ϕ : X → B, ϕ′ : X → B′ are isometric
embeddings mapping x0 to 0, one has:

∀a1, . . . , an ∈ R ∀y1, . . . , yn ∈ X ‖
n

∑
i=1

ai ϕ(yi)‖B = ‖
n

∑
i=1

ai ϕ
′(yi)‖B′

Note that, if X is linearly rigid, then any Banach space generated by X must
coincide with F (X) under the natural identification, so the choice of basepoint is
again inessential.

The question of existence of linearly rigid spaces does not seem to have been
considered until an example was found by M. Randall Holmes [Hol92]. Work-
ing on a question of Sierpinski [Sie45] concerning isometric embeddings of the
Urysohn space in C([0, 1]), he proved the following remarkable result (reformu-
lated to fit our terminology).

THEOREM 2.9 (Holmes [Hol92]). The Urysohn space is linearly rigid.

The original proof of that result is rather intricate and difficult to follow, in
large part because Holmes was concerned with Sierpinski’s question, and not lin-
ear rigidity. The curious reader may consult [Hol08] to read Holmes’ account of
his proof, how it came about, and the intuition behind it; his result seems to have

gone largely unnoticed for fifteen years or so i. Then, as interest in the proper-
ties of the Urysohn space grew, Holmes’ paper was finally noticed and studied
(L. Nguyen Van Thé seems to have played a major part in popularizing Holmes’

iat the time of writing, there are 13 papers citing [Hol92] in the MathSciNet database. The earliest

of those was published in 2007.
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result; it is he who told me about it. I think he is also the originator of the termi-
nology Holmes space to denote the unique Banach space spanned by an isometric
copy of the Urysohn space) and a natural question appeared: can one give a char-
acterization of linearly rigid metric spaces?

Such a characterization was obtained, simultaneously and independently, by
F. Petrov and V. Vershik on one side, and myself on the other side; this led to the
publication of a joint paper [MPV08], where our two proofs are presented. Below,
I will quickly discuss “my” version of this proof (improved by an anonymous
referee). That proof came about by analyzing and simplifying the arguments of
[Hol92].

DEFINITION 2.10. Let (X, x0) be a pointed metric space and f ∈ Lip0(X, x0).
Let F = {x0, x1, . . . , xn} ⊆ X, and f in the unit ball BF of Lip0(F, x0). We say that
f is extremal if f is an extreme point of BF.

REMARK 2.11. To understand what this means in terms of metric geometry,
note that extremality of f is equivalent to the fact that, up to reindexing F, there
exists j ≤ n such that one of the following things happens:

• f (xi) = d(x0, xi) for all i ≤ j, and f (xi) = sup{d(x0, xk)− d(xi, xk) : k ≤
j} for all i > j.

• f (xi) = −d(x0, xi) for all i ≤ j, and f (xi) = inf{−d(x0, xk)+ d(xi, xk) : k ≤
j} for all i > j.

The first line means that f takes values that are as large as possible (given
that f is 1-Lipschitz and f (x0) = 0) on x1, . . . , xj, and then as small as possible
(given the first j values) on xj+1, . . . , xn; the second line means that − f satisfies
that condition.

We are ready to state our characterization of linearly rigid metric spaces.

THEOREM 2.12 ([MPV08], Theorem 2). A pointed metric space X is linearly rigid
if and only if it satisfies the following condition:

For all finite F ⊆ X, and all extremal f ∈ Lip0(F), there exist c ≥ 0 and z ∈ X
such that

∀x ∈ F d(z, x) = c + f (x) .

It it immediate from the above theorem that U is linearly rigid, indeed we see
that linear rigidity has a Urysohn-type flavor. We also see, however, that there
are many different examples besides U: for instance, the integer-valued Urysohn
space UZ is also linearly rigid, and one can cook up many different examples using
the above characterization and a Katětov-inspired construction.

Let us mention a curious byproduct of the proof. Recall that for x ∈ X we
denote by fx the 1-Lipschitz map defined by fx(y) = d(x, y)− d(x, x0). Then, we

let fx,y =
fx− fy

2 . These maps are again 1-Lipschitz, and one may define another
isometric embedding of X in a Banach space by first setting

‖∑ aixi‖ = sup{∑ ai fx,y(xi) : x, y ∈ X}
and then taking the completion of that normed space. We call this embedding
the two-point embedding, and the corresponding norm the two-point norm. Clearly,
if X is linearly rigid, then the two-point norm and the Lipschitz-free norm must
coincide. Surprisingly, the converse turns out to be true (this is a corollary of the
proof of Theorem 2.12 which we present below).
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THEOREM 2.13 ([MPV08]). A metric space X is linearly rigid if, and only if, the
two-point norm and the Lipschitz-free norm coincide.

Hence, to show that all possible norms coincide, one simply must show that
two of them, explicitly defined, coincide. Since the Lipschitz-free norm ‖ · ‖L is
the largest possible norm defining an isometric embedding of X in a Banach space
(this is clear from the Hahn–Banach theorem), its appearance is not surprising.
The role of the two-point norm is more mysterious; in particular, it does not seem
to be a “minimal” compatible norm in any reasonable sense of the word.

A word to the wise: there exist spaces such that the norm corresponding to the
Kuratowski embedding x 7→ fx and the Lipschitz-free norm coincide, yet are not
linearly rigid. This is why we had to consider the two-point norm above; actually
it is obvious that any 3-point metric space is an example of this phenomenon. My
co-authors also built a family of examples on 4 points, and we conjectured that
there are no other finite examples, which has since been confirmed by Zatitskiı̌
[Zat10].

The referee of [MPV08] gave a very nice interpretation of the argument I used
to prove Theorem 2.12. The following version of the statement is due to him (her?),
as is the functional-analytic proof below, most notably the use of Milman’s theo-
rem instead of a cumbersome computation. I am very grateful to the referee for
that nice argument; not knowing his/her name it is unfortunately impossible to
give proper credit. Unfortunately, this argument did not make it into the pub-
lished paper, which is part of the reason why I decided to discuss linearly rigid
spaces in detail here: I feel that this is the “right” proof of the result, and to my
knowledge it was never made publicly available.

THEOREM 2.14. Let B denote the unit ball of Lip0(X), and D denote the weak*
closure of { fx : x ∈ X}. Then the following statements are equivalent:

(i) X is linearly rigid.
(ii) B is the weak* closed convex hull of D.

(iii) The extreme points of B are contained in D.

It is not hard to see, using the Milman and Krein-Milman theorems, that (ii)
and (iii) are equivalent, and that both are equivalent to the criterion appearing in
Theorem 2.12 (so the theorem above is really a reformulation of 2.12; it is worth
noting here that each fx is an extreme point of B).

PROOF. The proof uses in an essential way the fact that Lip0(X) is the dual of
F (X) (via the natural identification : 〈 f , ∑ aixi〉 = ∑ ai f (xi)).

Let us begin by proving that (i) implies (iii). Since X is linearly rigid, the norm
on F (X) must coincide with the two-point norm. Then we must have, for all
ϕ ∈ F (X), that

sup{〈 f , φ〉 : f ∈ B} = sup{〈 fx − fy

2
, φ〉 : x, y ∈ X}

This means (via a standard application of the Hahn–Banach theorem) that the

closed convex hull of 1
2 (D − D) is equal to B, and then Milman’s theorem (see

e.g [Die84]*p.151) implies that the set of extreme points of B must be contained in
1
2 (D − D). Since each fa is an extreme point, we see that fa ∈ −D, hence 1

2 (D − D)
is a subset of the convex hull of D, and (iii) holds.
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Now, let us see why (ii) implies (i). To that end, let X be isometrically embed-
ded in a Banach space Z in such a way that x0 is mapped to 0 and Z is the closed
linear span of X. We identify X with its image in Z (and x0 with 0 ∈ Z).

Denoting by δx the element corresponding to x in the natural embedding of X
in F (X), we must show that the map T : δx 7→ x is an isometry. This is equivalent
to showing that its adjoint map is a surjective isometry; in other words, we want
to prove that every 1-Lipschitz map f on X such that f (x0) = 0 is the restriction
to X of some z∗ belonging to the unit ball of Z∗. Since we are assuming that (ii)
holds, we must simply show that this is true for every fx, x ∈ X.

Fix x ∈ X. Since − fx is extremal, we must have − fx ∈ D. Fix some finite
F ⊆ X containing 0, and ε > 0; we may find y ∈ X such that

∀z ∈ F ∪ {x} | fx(z) + fy(z)| ≤ ε.

Applying this to z = x, we obtain ‖x‖ + ‖y‖ ≤ ‖x − y‖ + ε (recall that fx(z) =
‖z − x‖ − ‖x‖).

Hence we have, for all z ∈ F:

‖z − x‖+ ‖z − y‖ ≤ ε + ‖x‖+ ‖y‖ ≤ ‖x − y‖+ 2ε.

Consequently,
∀z ∈ F ‖z − x‖+ ‖z − y‖ − ‖x − y‖ ≤ 2ε.

Using the Hahn–Banach theorem, we may pick ϕF ∈ Z∗ such that ‖ϕF‖ = 1 and
ϕF(y − x) = ‖x − y‖.

We claim that |ϕF(z)− fx(z)| ≤ 2ε for all z ∈ F. To see this, we use the fact
that ϕF is 1-Lipschitz, linear, and that points of F look like they are “between” x
and y. We have ϕF(z) ≤ ϕF(x) + ‖z − x‖, which yields

ϕF(z)− fx(z) ≤ ϕF(x) + ‖x‖.

Similarly, ϕF(z) ≥ ϕF(y)− ‖y − z‖, and this gives

ϕF(z)− fx(z) ≥ ϕF(y)− ‖z − y‖+ ‖x‖ − ‖z − x‖.

Hence we have

ϕF(z)− fx(z) ≥ (ϕF(y − x)− ‖z − y‖ − ‖z − x‖) + ‖x‖+ ϕF(x)

= (‖y − x‖ − ‖z − y‖ − ‖z − x‖) + ‖x‖+ ϕF(x)

≥ ‖x‖+ ϕF(x)− 2ε

We have obtained the following inequalities, valid for any z ∈ F:

‖x‖+ ϕF(x)− 2ε ≤ ϕF(z)− fx(z) ≤ ‖x‖+ ϕF(x) .

This is in particular true for z = 0, so that 0 ≤ ‖x‖ + ϕF(x) ≤ 2ε, and we
have proved as promised that, for any finite F ⊆ X and any ε > 0, we may find
ϕF ∈ Z∗ with ‖ϕF‖ = 1 and such that |ϕF(z)− fx(z)| ≤ 2ε for all f ∈ F. Using
the compactness of the unit ball of Z∗ for the weak topology, we obtain ϕ ∈ Z∗ of
norm 1 and such that ϕ↾X = fx. �

The unique Banach space spanned by an isometric copy of the Urysohn space
seems to be known now as the Holmes space, in honor of M.R Holmes. A con-
sequence of the Godefroy–Kalton theorem mentioned above is that this space is
linearly isometrically universal for all separable Banach spaces; it would be inter-
esting to know more about its geometry, but the definition makes it hard to ap-
proach, and Lipschitz-free Banach spaces are notoriously difficult to understand.
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One can use our characterization to show that no bounded metric space can
be linearly rigid; as a consequence, the Urysohn sphere is not linearly rigid. Still,
from the explicit computations from my original proof, one sees that it is in some
sense “locally” rigid: given any finite set A of sufficiently small diameter (an ex-
plicit constant can be computed, 1/10 works, for instance), the norm of any linear
combination of elements of A is uniquely determined.





Oooh maybe you’re not invited
To my action adventure
My action adventure dream

3
Baire category in the space of actions

Answering a question of Halmos, Ornstein proved in [Orn72] that there exist el-
ements of Aut(µ) without a square root. The proof involved the construction of
aperiodic transformations which only commute with their powers; it is clear that
such transformations cannot have roots of any order. Different examples, with
uncountable centralizer, were subsequently found [FGK88]. Still the question re-
mained: is this a generic phenomenon? Or does a generic element of Aut(µ) admit
a square root? King [Kin00] provided a positive answer to that question; his proof
is fairly long and technical, but was made considerably more accessible shortly
thereafter by de la Rue and de Sam Lazaro [dlRdSL03], who built on King’s ideas
to show that a generic element of Aut(µ) embeds in a flow.

The search for n-th roots is part of a more general type of problems. Indeed,
consider a countable group Γ, and a subgroup ∆ ≤ Γ. It is natural to wonder
whether a ∆-action on (X, µ) (or any other mathematical structure) can be ex-
tended to a Γ-action. If Γ = Z and ∆ = 2Z, this is the same question as ask-
ing whether the generator of a given 2Z-action admits a square root. The Baire-
category version of that question also makes sense once one has introduced the
right definitions, which we recall now.

Given a Polish group G, and a countable group Γ, the space Hom(Γ, G) of all

homomorphisms from Γ to G is a closed subspace of GΓ, thus is a Polish space in its
own right. When G is the automorphism group of some mathematical structure,
Hom(Γ, G) coincides with the space of actions of Γ on that structure. One can con-
sider Baire category notions inside this space; it is important that G acts naturally
on Hom(Γ, G) by conjugacy:

(g · π)(γ) = gπ(γ)g−1 .

When Γ = Fn is a free group on n generators, Hom(Γ, G) may be identified

with Gn; when Γ = Zd, Hom(Γ, G) may be identified with the set Cn(G) of all
commuting n-tuples of elements of G:

Cn(G) = {(g1, . . . , gn) ∈ Gn : ∀i, j gigj = gjgi} .

29
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Under these identifications, the conjugacy action of G on Hom(Γ, G) coincides
with the diagonal conjugacy action of G on Gn and Cn(G):

g · (g1, . . . , gn) = (gg1g−1, . . . , ggng−1) .

Below, we will use the notation C(G) to denote C2(G), i.e. the set of commuting
couples of elements of G. We also denote by C(g) the centralizer of an element
g of G; whenever A is a subset of a Polish group G, we let 〈A〉 denote the closed
subgroup generated by A.

Before discussing questions related to extensions of generic actions, and generic
properties of monothetic subgroups, we need to expand our Baire category tool-
box.

1. Some more Baire category notions

DEFINITION 3.1. Let X be a topological space, and G be a group acting on
X by homeomorphisms. The action is said to be topologically transitive if, for any
nonempty open subsets U, V of X, there exists g ∈ G such that gU ∩ V 6= ∅.

When X is a second-countable Baire space, topological transitivity of the ac-
tion G y X is equivalent to the existence of a dense G-orbit: indeed, the assump-
tion of topological transitivity is the same as saying that, for any nonempty open
U ⊆ X, the set {x : G · x ∩ U 6= ∅} is dense, and this set is open since the action
is by homeomorphisms. Thus, taking the intersection of all these sets as U ranges
over a basis for the topology of X, one obtains a dense Gδ set, each element of
which has a dense orbit.

Using the fact that a Baire-measurable, non meager subset of a Polish space X
must be comeager in a nonempty open set, one obtains the following fact.

THEOREM 3.2 (first 0− 1 topological law). Let X be a Polish space, and G y X be
a topologically transitive action. Then, any Baire-measurable, conjugacy-invariant subset
A of X is either meager or comeager.

Whenever G is a topological group acting on a topological space X, we will
make the assumption that the maps g 7→ g · x and x 7→ g · x are continuous; when
G and X are Polish, this is equivalent to the map (g, x) 7→ g · x being continuous
(see e.g. [Kec95]*9.14). From the first 0 − 1 topological law, we see that if G is a
Polish group acting continuously and topologically transitively on a Polish space
X, then the G-orbits are either meager or comeager (orbits are clearly analytic, thus
Baire-measurable; actually orbits are Borel but we do not need this here).

Now seems like a good time to mention an important result of Effros [Eff65].

THEOREM 3.3 (Effros [Eff65]). Let X be a Polish space, and G be a Polish group
acting continuously on X. Then the following are equivalent, for any x ∈ X:

(1) G · x is comeager in G · x.
(2) G · x is a Gδ subset of X.
(3) The map g 7→ g · x is an open map from G to G · x.

The fact that the third item above implies the second is a consequence of a
theorem of Hausdorff stating that a continuous, open, metrizable image of a Polish
space is also Polish.

Now, let us come back to our first concern in this section: given countable
groups ∆ ≤ Γ and a Polish group G, does a generic ∆-action extend to a Γ-action?
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In the cases we will consider, the action G y Hom(∆, G) has a dense orbit; we are
asking whether the image of the restriction map Res : Hom(Γ, G) → Hom(∆, G) is
comeager and, since this set is analytic and conjugacy-invariant, this is equivalent
to proving that it is not meager.

A common approach, popularized by King [Kin86], is via the so-called Dougherty
lemma.

DEFINITION 3.4. Let X, Y be topological spaces, and f : X → Y be a contin-
uous map. An element x ∈ X is said to be a point of local density for f if, for any

neighborhood U of x, f (x) belongs to the interior of f (U)

LEMMA 3.5 (“Dougherty’s lemma”). Assume that X, Y are Baire topological spaces,
f : X → Y is continuous and the set of elements of X which are points of local density for
f is dense. Then f (X) is not meager.

As a partial converse, if one assumes additionally that X is second-countable,
the image of {x ∈ X : x is not a point of local density of f } is meager; thus points
of local density must exist for f (X) to be nonmeager.

DEFINITION 3.6 ([MT13b]). Let X, Y be Polish spaces. We say that f : X → Y
is category-preserving if it satisfies one of the following equivalent conditions:

(1) For any comeager A ⊆ Y, f−1(A) is comeager.
(2) For any nonempty open U ⊆ X, f (U) is not meager.
(3) For any nonempty U ⊆ X, f (U) is somewhere dense.
(4) {x ∈ X : x is a point of local density of f } is dense in X.

This definition was introduced in a joint work with T. Tsankov [MT13b], using
only the first three items of the list above; the equivalence with the fourth item (and
the fact that these maps were a fairly classical object) was only noticed in [Mel12].
The term “category-preserving” is meant to recall the classical notion of “measure-
preserving”maps. This choice is motivated by the following result, which is to the
measure disintegration theorem the same as the Kuratowski–Ulam theorem is to
the Fubini theorem.

THEOREM 3.7 ([MT13b]). Let X, Y be Polish spaces, and f : X → Y be a category-
preserving map. Let also A be a subset of X with the property of Baire. Then the following
assertions are equivalent:

(1) A is comeager in X.

(2) {y : A ∩ f−1(y) is comeager in f−1(y)} is comeager in Y.

Using symbols:

(∀∗x ∈ X A(x)) ⇔ (∀∗y ∈ Y ∀∗x ∈ f−1(y) A(x)) .

This result seems to have been formulated for the first time in [MT13b], which
is a bit surprising since it is both useful (as we will soon see) and not very hard
to prove. The proof works by showing that, if f : X → Y is a category-preserving
map from a Polish space to another, then there exists a dense Gδ subset A of X such
that f : A → f (A) is open; f (A) must be comeager since f is category-preserving,
and is Polish since it is a continuous, open image of a Polish space. Noting that
the proof of the classical Kuratowski–Ulam theorem as presented for instance in
[Kec95] extends to continuous, open maps between Polish spaces, one obtains the
desired result.
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2. Centralizers of generic elements

The most basic infinite, countable groups is certainly Z; understanding actions
of Z on some structure is of course the same thing as understanding elements of
the automorphism group of that structure. In this section we describe an approach
to proving that, in some Polish groups, centralizers of generic elements are as small
as possible. This phenomenon first appeared in work of Chacon–Schwartzbauer
[CS69], who proved that, for a generic g ∈ Aut(µ), the centralizer of g coincides
with 〈g〉 - in other words, a generic monothetic subgroup of Aut(µ) is maximal
abelian. It is easy to prove that the same is true in U(H), using spectral theory; T.
Tsankov and I also managed to establish the same result for Iso(U) [MT13b]. Let
us discuss a general simple approach that can be used to prove this type of result
for a Polish group G.

Our approach uses properties of category-preserving maps; crucially, we es-
tablish that the restriction map P : C(G) → G (identified with the projection on
the first coordinate) preserves category as soon as

(2.1) {(g, h) : 〈g〉 = 〈g, h〉} is dense in C(G) .

Indeed, assume (2.1) holds, and let O be dense and open in G. Let U be a
nonempty open subset of C(G); we may find (g1, g2) ∈ U such that 〈g1〉 = 〈g1, g2〉,
so for some n we have (g1, gn

1 ) ∈ U. Using the density of O and the continuity of
group operations, there must exist g close to g1, belonging to O, and such that

(g, gn) ∈ U. This shows that Res−1(O) is dense. Hence, assuming (2.1), the re-
striction map from C(G) to G preserves category.

Clearly, (2.1) holds as soon as the set of all (g, h) generating a finite cyclic group
with g as a generator is dense, or (since the map (g, h) 7→ (gh, h) is a homeomor-
phism of C(G)) as soon as

(2.2) {(g, h) : g, h have coprime finite orders}is dense in C(G).

This property is satisfied both for G = Aut(µ) and G = Iso(U); this is a conse-
quence of a multi-dimensional version of Rokhlin’s lemma in the first case [Con73],
and of a modification of a construction of Pestov and Uspenskij in the second case
(see [PU06] for the original result and [MT13b] for the required modification).
Note in passing that (2.2) is very unlikely to hold in a permutation group, so this
technique can only be successfully applied in “continuous” structures.

Let us explain now why (2.1) implies that the centralizer of a generic element
coincides with the closure of its powers; assume that G is a Polish group satisfying
the condition. Then we have

∀∗(g, h) ∈ C(G) h ∈ 〈g〉 .

From this, and the fact that the restriction map is category-preserving, we deduce
that

∀∗g ∈ G∀∗h ∈ C(g) h ∈ 〈g〉 .

The above sentence says that, for a generic g ∈ G, the closed subgroup generated
by g is comeager in the centralizer of g - thus the two must coincide, and we have
proved that the centralizer of g coincides with 〈g〉. Let us sum up.

THEOREM 3.8 (reformulation of ideas from [MT13b]). Let G be a Polish group
such that {(g, h) ∈ C(G) : 〈g〉 = 〈g, h〉} is dense in C(G). Then the centralizer of a
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generic element of G coincides with the closed subgroup it generates - in other words, a
generic monothetic subgroup of G is maximal abelian.

The groups Aut(µ), U(H) and Iso(U) all satisfy these conditions.

3. Extensions of generic actions

Fix a Polish group G, a countable group Γ and a subgroup ∆ ≤ Γ. As we
saw, one cannot expect in general that any element of Hom(∆, G) extends to an
element of Hom(Γ, G) - for instance, we saw that there exist elements of Aut(µ)
without square roots, and I proved in [Mel08] that the same is true for Iso(U).
Here we focus on the question of whether generic elements of Hom(∆, G) can
be extended to generic elements of Hom(Γ, G); we describe a way to tackle this
kind of problem when Γ is abelian, and G is a Polish group such that there exist
dense conjugacy classes in Hom(Γ, G) for any abelian Γ. This problem usually
reduces fairly easily to the case when Γ is finitely generated, simply because open
sets in Hom(Γ, G) only impose conditions on finitely many elements of Γ, so we
add the assumption that Γ is finitely generated. Then one can use the structure
theory of finitely generated abelian groups to decompose the problem into easier
sub-problems.

First, one needs to understand the case when ∆ is finite; for G = Aut(µ) or
Iso(U), this is easy: there exists an element π0 with comeager conjugacy class in
Hom(∆, G) for any finite abelian ∆, and this element can be extended to an action
of any finitely generated abelian supergroup of ∆. From this one obtains that the
restriction map Res : Hom(Γ, G) → Hom(∆, G) is category-preserving: given any
nonempty open U in Hom(Γ, G), the Effros theorem implies that Res(U) ∩ G ·
π0 is open and nonempty in the comeager set G · π0, so it cannot be meager in
Hom(∆, G).

Next comes the case where ∆ = nZ and Γ = Z; as we saw when discussing
King’s theorem, we are asking whether the map g 7→ gn is category-preserving. To
my knowledge, we lack efficient general techniques to solve this type of question;
King’s theorem shows that this property holds for G = Aut(µ), and it is an open
problem for G = Iso(U).

Then, one needs to understand what happens when ∆ = Zd, Γ = Zk. Using
the same argument as when we studied the restriction map from C(G) to G, one

sees that the restriction map from actions of Zk to actions of Zd preserves category
as soon as

(3.1) {(g1, . . . , gk) : 〈g1, . . . , gk〉 = 〈g1〉} is dense in Ck(G) .

If (3.1) is satisfied, then a similar line of reasoning enables us to deal with the

case of Res : Hom(Zk × F, G) → Hom(Zd × F, G) for d ≤ k and F a finite abelian
group (we skip the details).

We turn to the case Zd ≤ Zd × F. An obvious necessary condition for an

action π of Zd to extend to an action of Zd × F is that there exists a copy of F in

the centralizer of π(Zd); thus this has to be true for a generic π ∈ Hom(Zd, G) if

we are to hope that the restriction map Res : Hom(Zk × F, G) → Hom(Zd, G) is
category-preserving. It follows from the conditions we have imposed thus far on

our group that a generic π(Zd) is the same as a generic π(Z), so we need to know

that a generic π(Z) contains infinitely many elements of order n for all n ≥ 2.
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This is known to hold for Aut(µ) [SE04]. Using the fact that a generic action in

Hom(Zk, G) is free ergodic, and that the conjugacy class of such an action is dense
(see e.g. [Kec10] for details), one sees that the image of Res being nonmeager is
enough to ensure that Res is category-preserving in that case.

The final step is to understand Zd × F1 ≤ Zd × F2, where F1 ≤ F2 are finite
abelian groups. It is not hard (using Theorem 3.7) to see that the corresponding

restriction map preserves category as soon as a generic π(Zd) is divisible, which

is equivalent under our current assumptions to a generic π(Z) being divisible.
This follows from assumptions we already made on the group, namely that the

restriction map from Z2 to Z preserves category, and that a generic element admits
roots of any order. As another example of application of Theorem 3.7, let us give
details of this proof. Our starting assumption is that, for any integer n,

∀∗g ∈ G ∃ f ∈ G g = f n .

We know that, for a generic pair (g, h) ∈ C(G), we have 〈g, h〉 = 〈g〉 = 〈h〉, so we
can write

∀∗(g, h) ∈ C(G) C(g) = C(h) = 〈g〉 and ∃ f ∈ G h = f n

The f in the above line must belong to C(h), and using category-preservation we
may write the above line as

∀∗g ∈ G (∀∗h ∈ 〈g〉 ∃ f ∈ 〈g〉 h = f n) .

Thus, for a generic g, the homomorphism f 7→ f n of the abelian Polish group 〈g〉
has a comeager range, hence Pettis’ lemma implies that it is surjective, proving
that 〈g〉 is divisible.

Let us sum up the properties of G that were used to prove that the restriction
map Res : Hom(Γ, Aut(µ)) → Hom(∆, Aut(µ)) preserves category for any pair of
finitely-generated abelian groups ∆ ≤ Γ:

• {(g1, . . . , gk) : 〈g1〉 = 〈g1, . . . , gk〉} is dense in Ck(G) for all k.
• The map g 7→ gn preserves category for all n ≥ 1 (which, along with the

previous assertion, is enough to obtain that a generic π(Z) is divisible
and coincides with the centralizer of π(1))

• The centralizer of a generic element contains a copy of any finite abelian
group (equivalently it contains infinitely many elements of order n for
any integer n ≥ 2).

For a general Polish G, the third condition might be too weak to show that

the restriction map Res : Hom(Zd × F, G) → Hom(Zd, G) preserves category for
every finite F. I believe that in “natural” cases this condition (along with the two
others) should be sufficient.

These three conditions all hold for Aut(µ), and the first is known to hold for
Iso(U) while the other two are open. These questions essentially reduce to un-
derstanding the maps g 7→ gn in Iso(U); a proof that these maps are category-
preserving would probably lead to a complete positive solution of the problem.

In the case of G = Aut(µ), we obtain the following result.

THEOREM 3.9 ([Mel12]). Let Γ be a countable abelian group and ∆ be a finitely-
generated subgroup of Γ. Then the restriction map Res : Hom(Γ, G) → Hom(∆, G) is
category-preserving.
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I asked in [Mel12] whether this result extends to non-finitely generated ∆;
Ageev [Age12] shows that such is not the case. Given a countable abelian group
G, he completely described the set of its subgroups H for which it is true that
a generic H-action can be extended to a free G-action (in particular, his results
extend the results of [Mel12]). Also, one cannot expect such a result to hold in
general outside of the domain of abelian groups; for instance, Ageev [Age89]

proved that a generic element of Aut(µ) is not conjugate to its inversei. Hence,
a generic measure-preserving Z-action cannot be extended to an action of a non-
trivial semidirect product Z ⋊ F.

In [Mel12], I also pointed out an example (found with the help of B. Sévennec)
of a polycyclic group Γ with a central subgroup ∆ ∼= Z such that a generic measure-
preserving ∆-action cannot be extended to a Γ-action. This example depends on
the result of Chacon–Schwartzbauer [CS69] stating that the centralizer of a generic

g ∈ Aut(µ) coincides with {gn : n ∈ Z}.

4. Extreme amenability

A topological group G is extremely amenable if any continuous action of G on a
compact space has a global fixed point. The first examples of extremely amenable
groups, obtained in 1975 by Herer–Christensen [HC75] , were examples of abelian
“exotic” groups, which do not admit strongly continuous unitary representations;
note that exotic groups are amenable iff they are extremely amenable, and all
abelian groups are amenable. The question of the existence of extremely amenable
groups was first raised by Mitchell [Mit70]). In the early eighties Gromov and
Milman proved that U(H) is extremely amenable, as a consequence of the phe-
nomenon of concentration of measure on euclidean spheres of large dimensions,
an avatar of the isoperimetric inequality [GM83]. Since then, many large topo-
logical groups have been proved to be extremely amenable, for instance Aut(µ)
(Giordano–Pestov [GP07b]) and Iso(U) (Pestov[Pes02]). A comprehensive discus-
sion of extremely amenable Polish groups may be found in Pestov’s book [Pes06].

DEFINITION 3.10. Let K be a compact metrizable group, and (X, µ) a standard

probability space. The group L0(K) is the group of all measurable maps from
(X, µ) to K, identified if they coincide outside of a set of measure 0, endowed
with the topology of convergence in measure, which in this case is induced by the
metric

d( f , g) =
∫

X
d( f (x), g(x))dµ(x) .

(d is any compatible distance on K)

Then L0(K) is a Polish group, and Azuma’s inequality may be used to prove

that L0(K) is a Lévy group (Glasner [Gla98]; Furstenberg–Weiss), which implies
that it is extremely amenable (for the definition of a Lévy group and other facts
related to extreme amenability that we do not discuss in detail, see e.g. [Pes06]).

DEFINITION 3.11. A Polish group G is said to be monothetic if there exists g ∈ G
such that 〈g〉 is dense. We say that G is generically monothetic if this holds for a
generic g ∈ G.

iI only recently noticed that this also follows from an earlier result of del Junco, who proved that

the powers of a generic transformation form a disjoint family [dJ81].
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It follows from a classical result of Halmos–Samelson [HS42] stating that any

compact abelian connected metrizable group is generically monothetic, that L0(K)
is generically monothetic for any such K ([Gla98] for K = T). This can be proved
with a simple Baire category argument similar to one that can be found in [Kec10]*[p.26].

Along the same lines, L0(K) is topologically 2-generated whenever K is compact,
metrizable and connected, this time as a consequence of the same Baire category
argument and the fact that any such K is topologically 2-generated (Schreier–Ulam

[SU33]). The fact that L0(T) is monothetic was first noticed by Glasner [Gla98].
The starting point of the work that led to [MT13b] was the following observa-

tion.

THEOREM 3.12 ([MT13b]). Let G be a Polish group, and Γ be a countable group.
Then the set

{π ∈ Hom(Γ, G) : π(Γ) is extremely amenable}
is Gδ in Hom(Γ, G).

SKETCH OF PROOF. Fix a compatible left-invariant metric d on G. It follows

from ([Pes06], 2.1.11) and an easy argument that π(Γ) is extremely amenable if,
and only if, the following condition is satisfied:

∀ε > 0 ∀A finite ⊆ Γ ∃B finite ⊆ Γ ∀c : B → {0, 1}
∃i ∈ {0, 1} ∃γ ∈ Γ ∀a ∈ A ∃δ ∈ c−1(i) d(π(γa), π(δ)) < ε.

At first glance, there are too many quantifiers involved for this to be a Gδ

condition; however this intuition is false, because many of the quantifiers range
over finite sets. �

COROLLARY 3.13. Assume that G is a Polish group such that

{(gn) : 〈(gn)〉 is extremely amenable }
is dense in Gω. Then G is extremely amenable.

Actually, to show that G is extremely amenable, it is enough to prove that

{(gn) : 〈(gn)〉 is contained in an extremely amenable subgroup of G}
is dense in Gω.

SKETCH OF PROOF. The set {(gn) : 〈(gn)〉 = G} is dense Gδ in Gω for any
Polish G, so if the first assumption is satisfied the Baire category theorem along
with Theorem 3.12 for actions of the free group on countably many generators
give the desired conclusion.

Now, assume that the second, weaker assumption holds, and U is a nonempty
open subset of Gω. Without loss of generality, we may assume that U = V × Gω

where V is open in some Gm. Our assumption gives us (g0, . . . , gm−1) ∈ V which
generate a subgroup contained in an extremely amenable H ≤ G. Let (hi)i<ω be
dense in H. Then the sequence (g0, . . . , gm−1, h0, h1, . . .) is dense in H and belongs
to V. �

This enabled T. Tsankov and me to give in [MT13b] a new proof of the extreme
amenability of Iso(U), U(H) and Aut(µ). The same scheme applies in all three
cases, and the most complicated fact used in the proofs is the extreme amenability

of groups of the form L0(K) where K is compact metric. For instance, let us give a
proof along those lines of the extreme amenability of U(H).
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SKETCH OF PROOF OF THE EXTREME AMENABILITY OF U(H). It is enough to
show that

{(g1, . . . , gn) : 〈g1, . . . , gn〉 is contained in an isomorphic copy of some L0(U(m))}
is dense in U(H)n for all n. So we start by picking a nonempty open O ⊆ U(H)n;
we fix a Hilbert basis (ei) of H. One can find (g1, . . . , gn) ∈ O and m < ω such

that (g1, . . . , gn) acts trivially on H(m)⊥ = Span(ei)i≥m, and any element of U(H)
which agrees with (g1, . . . , gm) belongs to O; we identify U(m) with the pointwise

stabilizer of H(m)⊥.
The action U(m) y H(m) extends to an action L0(U(m)) y L2(H(m)), and

the latter is a Hilbert space, which we can identify with H in such a way that con-

stant functions in L0(H(m)) are identified with H(m). The image of (g1, . . . , gm)
under this identification is an element (h1, . . . , hm) of U(H) which coincides with
(g1, . . . , gm) on H(m), thus belongs to O, and 〈(h1, . . . , hm) is contained in an iso-

morphic copy of L0(U(m)). �

5. Generic monothetic subgroups

The fact that extreme amenability is a Gδ condition naturally leads one to
wonder whether a generic element of some fixed Polish group G generates an
extremely amenable subgroup.

Recall that a countable, abelian group is unbounded if there is no upper bound
on the order of its elements.

THEOREM 3.14 ([MT13b]). Let Γ be a countable, unbounded abelian group and

G be one of Aut(µ), U(H) or Iso(U). Then the set {π : π(Γ) ∼= L0(T)} is dense in

Hom(Γ, G); therefore, the generic π(Γ) is extremely amenable.

Actually, the above result holds in somewhat greater generality, and one can
write down an algebraic condition such that the extreme amenability of a generic

π(Γ) holds (for Γ abelian) exactly when Γ satisfies this condition, and Γ cannot
densely embed in an extremely amenable group if this condition fails. I will not
go into this level of detail here and focus on the case of Z below.

The “therefore” part above follows from the facts that extreme amenability

is a Gδ condition, and that L0(T) is extremely amenable. In each case, the proof

proceeds by showing first that {π : π(Γ) is contained in a closed copy of L0(T)} is

dense, then by perturbing slightly π so that π(Γ) becomes dense in L0(T).
In the case of U(H), using spectral theory, we actually proved a much more

precise result: if Γ is unbounded abelian, then the set {π : π(Γ) ∼= L0(T)} is comea-
ger in Hom(Γ, U(H)) (we will see a different proof of this fact below). This leads
to the following question (and now, we focus, as promised, on the case Γ = Z
for clarity of the exposition): what can one say about the generic properties of
monothetic subgroups of G, when G is Aut(µ) or Iso(U)?

We already know that, in all three cases, a generic monothetic subgroup is
maximal abelian and extremely amenable. In U(ℓ2), this completely characterizes
the group up to isomorphism: the spectral theorem tells us that a maximal abelian
subgroup of U(ℓ2) must coincide with the unitary group of a separable abelian
von Neumann algebra, and only one of those is extremely amenable: the unitary

group of L∞(X, µ) when (X, µ) is atomless, and this group is isomorphic to L0(T).
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Thus, we obtain in a fairly soft way (much more painlessly than in our original
proof of this result, at any rate) that a generic monothetic subgroup of U(H) is

isomorphic to L0(T).

QUESTION 3.15. Does the same property hold in Aut(µ)?

Evidence towards a positive answer to that question was recently found by
Solecki [Sol14], who proved that the closed subgroup generated by a generic ele-

ment of Aut(µ) is a continuous homomorphic image of a closed subspace of L0(R),
and contains an increasing chain of finite-dimensional tori whose union is dense.

One could also ask whether the same property holds in Iso(U); we do not even
know whether a generic monothetic subgroup is divisible, a property which is
presumably much easier to establish. However, it was pointed out by C. Rosendal
(private communication) that a generic element of Iso(U) does not generate a copy

of L0(T). To see why, first recall that a Polish group has property (OB) if, whenever
it acts by isometries on a metric space (X, d) such that for all x the map g 7→
gx is continuous, then every orbit is bounded (in the case of Polish groups, this
is equivalent to saying that all continuous isometric actions on separable metric
spaces have bounded orbits).

Let me sketch Rosendal’s argument: to prove that L0(T) has property (OB),
it follows from [Ros09c] that we need to prove that for any neighborhood V of 1
there exists a finite subset F and an integer n such that G = (FV)n. A basis of

neighborhoods of 1 in L0(T) is given by sets of the form

Vε = {g : µ({x : d(g(x), 1) > ε}) < ε} .

Now, it is easy to see, by cutting (X, µ) into n pieces each of measure < ε, that for

such an n one has L0(T) = Vn
ε .

However, it is easy to see that a generic isometry of the Urysohn space has
unbounded orbits, thus generates a group which does not satisfy property (OB).
Hence a generic element of Iso(U) does not generate a subgroup isomorphic to

L0(T); this property might hold for Iso(U1), as far as I know, but there is no
compelling evidence towards that being true (again, one should first understand
whether a generic monothetic subgroup is divisible in that case).

Above, it was essential for us that the maximal abelian subgroups of U(H) are
easy to classify; the same would be true in unitary groups of separable von Neu-
mann algebras: the point is that when the spectral theorem holds it is very useful,
unfortunately it is specific to von Neumann algebras (though I. Farah pointed out
to me that a weaker form of spectral theorem holds for general C∗-algebras). This
leads to the following, probably hopeless, problem.

QUESTION 3.16. Can one classify the maximal abelian subgroups of Aut(X, µ)?
Of Iso(U)?

While there may be a faint glimmer of hope that something can be said in
Aut(X, µ), I would not be surprised if the situation in Iso(U) were extremely wild
- for instance, if any (noncompact?) abelian Polish group were isomorphic to a
maximal abelian subgroup of Iso(U).

We have not addressed perhaps the simplest, most natural question about
Baire category in Hom(Γ, G): when are conjugacy classes meager? When do comea-
ger classes exist? It turns out that this is harder to investigate than it looks at first;
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we will come back to this at the end of the next chapter, after introducing the lan-
guage of metric model theory and some related ideas.





And when you look up at the sky
All you see are zeros
All you see are zeros and ones

4
First-order logic and Polish groups

1. Classical first-order logic and Fraı̈ssé classes

1.1. Basics of classical first-order logic. What is a mathematical structure?
Certainly, it is a set, along with various operations or relations of particular inter-
est. For instance, a graph could be defined as a set, along with a binary relation
(which is, say, irreflexive and symmetric); a group is a set, endowed with opera-
tions of multiplication and inverse, and perhaps it makes sense to distinguish the
neutral element too.

DEFINITION 4.1. A first-order structure is a tuple M = (M, (Ri)i∈I , ( f j)j∈J)
where:

• M, I, J are sets.
• Each Ri is a subset of some Mni .

• Each f j is a function from some Mkj to M.

The Ri’s are called relations, and the f j’s are called functions. Of course, one

might also want to consider functions from some Mk to some Ml , but considering
their coordinates these functions reduce to M-valued functions. Also, one might
want to consider distinguished constants (for instance, the neutral element of a

group); we consider them as functions from M0 to M. So, above, ni is to be under-
stood as being a positive integer, while k j is a nonnegative integer.

DEFINITION 4.2. A first-order language is a tuple L = ((Ri, mi)i∈I , ( f j, k j)j∈J)
where

• I is a set, and each mi is a positive integer.
• J is a set, and each k j is a nonnegative integer.

Each Ri is called a relation symbol, and each f j is called a function symbol; in the
particular case when k j = 0 we say that f j is a constant symbol

Given a structure M, one can then consider its language; conversely, given a
language L, one can introduce the class of L-structures, which are all the first-
order structures whose language is equal to L.

41
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Given a language L, a L-structure M and a symbol belonging to L, we call
the corresponding relation of function on M the interpretation of that symbol. We
always assume that our languages contain a special binary symbol, which is inter-
preted by the equality relation, and will not mention that symbol in our notations.

Note that there is a choice of language to be made when deciding how to turn
a mathematical structure into a first-order structure; for instance, as we pointed
out above, one might want to include a particular symbol to denote the neutral
element of a group, or be content with symbols for multiplication and inverse,
or even just for multiplication. Why would one make one choice rather than the
other? This is where semantics come into play - so far, our discussion is purely on
a syntactical level.

DEFINITION 4.3. Let L be a first-order language. Formulas are built induc-
tively; first one defines terms as follows:

• Any variable symbol is a term.
• Any expression f (t1, . . . , tn) is a term, where f is a n-ary function symbol

of L, and t1, . . . , tn are terms.

(in particular constant symbols are terms)

• If R is a n-ary relational symbol and t1, . . . , tn are terms then R(t1, . . . , tn)
is a formula.

• For any formula ϕ, its negation ¬ϕ is a formula.
• For any formulas ϕ, ψ their conjunction ϕ ∧ ψ and disjunction ϕ ∨ ψ are

formulas.
• For any formula ϕ and any variable symbol x, ∀x ϕ and ∃x ϕ are formu-

las.

Here, what matters most is that we do not allow quantification on subsets
of the structure, or on “external” objects, such as the integers for instance, nor
do we allow infinite conjunctions and disjunctions. So, while the formula ∃i ∈
{1, . . . , N} gi = 1 is a valid first-order formula in the language of groups (once it

is written in the form
∨n

i=1 gi = 1), ∃i ∈ N∗ gi = 1 is not. This is a crucial point for
the development of first-order logic and the validity of the compactness theorem;
we will not really use any first-order logic (except as a guide for intuition), so I
will not go into detail here (see [Hod93], [Poi85] or [TZ12] for an introduction to
first-order logic and model theory).

There is a natural notion of meaning of a formula inside a model, defined

inductively; for instance, consider the formula in the language of groups (×, −1, e)
ϕ(x, y) : x ∗ y = e. This formula (with two free variables x, y) is true in the group
(Z,+,−, 0) when x = 2, y = −2; we write (Z,+, 0) |= ϕ(2,−2). It is false for
instance for x = 14, y = 3. So one can express the fact that x and y are inverse
of one another by the first-order formula ϕ. If a formula has no free variables,

for instance the formula ψ: ∀x x2 = 1, then this formula will simply be true (or
satisfied) or false in any given L-structure. The formula ψ above is satisfied by a
group exactly when all elements of that group have order 2. We write M |= ϕ if ϕ
is true in M.

The choice of language clearly influences which formulas one can write in a
first-order way, thus affecting the theory of a L-structure M, which is the set of all
first-order formulas (without free variables) which are true in M.
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We can also define what a substructure of a first-order structure M is: N is a
substructure of M if the universe of N is contained in the universe of M, both
structures have the same language, and the relations and functions of N are the
restrictions of the relations and functions of M. Here again, the choice of language
influences what substructures are: if we include inverse and neutral element along
with multiplication in the language of groups, for instance, then a substructure of
a subgroup is exactly a subgroup; this is no longer true if we remove one of these
symbols.

This concludes the first part of our crash-course on first-order logic; mostly
what needs to be remembered from the above are the notions of language, struc-
ture, and substructure. Now we come to the reason why we are interested in
first-order structures here: their automorphism groups.

DEFINITION 4.4. Let M = (M, (Ri)i∈I , ( f j)j∈J) be a first-order structure. An
automorphism of M is a bijection g : M → M such that:

• For all i ∈ I, for all m̄ = (m1, . . . , mk) such that ni = k, one has M |=
Ri(m̄) ⇔ M |= Ri(g(m̄)) (where g(m̄) = (g(m1), . . . , g(mk)).)

• For all j ∈ J, for all m̄ = (m1, . . . , mk) such that k j = k, one has f j(m̄) =
f j(g(m̄)).

These groups are of particular interest to us when the structure is countable,
that is, when it universe is. Below we use the word countable to mean an infinite
set equinumerous with ω; we say that a set is at most countable if it is finite or
countable.

DEFINITION 4.5. Let M be a countable first-order structure. The permutation
group topology on its automorphism group Aut(M) is the topology of pointwise
convergence with respect to the discrete topology on M; explicitly, a basis of open
neighborhoods of the identity is given by subsets of the form

{g ∈ Aut(M) : ∀a ∈ A g(a) = a}
where A ranges over all finite subsets of M.

When M is (N,=), the corresponding automorphism group is the permuta-
tion group of the integers S∞, endowed with the topology we discussed in the
first chapter. In general, one may always assume that M = N. Since any automor-
phism must induce a bijection of the universe, the automorphism group Aut(M) is
then a subgroup of S∞; the permutation group topology is the topology on Aut(M)
that is induced from the Polish topology on S∞. It is easy to check that Aut(M) is a
closed subgroup on S∞ or, equivalently, that Aut(M) endowed with this topology
is a Polish group in its own right.

THEOREM 4.6 (folklore). Let G be a closed subgroup of S∞. Then there exists a first-
order structure M (with a countable language) such that G is isomorphic, as a topological
group, to Aut(M) endowed with its permutation group topology.

PROOF. As a subgroup of S∞, G naturally acts on N and more generally on

any Nk. For any integer k ≥ 1, let Ok = {Ok,i}i∈Ik
be an enumeration of all orbits of

the action G y Nk. Then consider a language with exactly |Ik| relational symbols
Rk,i for each k, and turn N into a L-structure M by setting

M |= Rk,i(n̄) ⇔ n̄ ∈ Ok,i .
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Clearly, G is a subgroup of Aut(M). Consider a finite set A = {n1, . . . , nk} ⊆ N
and an automorphism f of M. Then (n1, . . . , nk) ∈ Ok,i for some i, and f (Ok,i) =
Ok,i, which means exactly that there exists g ∈ G such that g(n̄) = f (n̄). We have
just shown that, given any finite subset A of N and any f ∈ Aut(M), there exists
g ∈ G which coincides with f on A. In other words, G is dense in Aut(M); since
G is closed in S∞ it is also closed in Aut(M), so G = Aut(M). �

It is actually a nonarchimedean Polish group, which means that the neutral el-
ement admits a basis of open neighborhoods made up of open subgroups. This is
clearly not true for all Polish groups (for instance, a connected Polish group can-
not have a nontrivial open subgroup), so not all Polish groups are isomorphic, as
topological groups, to automorphism groups of first-order structures. But those
are actually completely characterized by being Polish and nonarchimedean: a Pol-
ish nonarchimedean group naturally embeds into S∞ by considering its action by
conjugacy on some countable basis of open subgroups.

Note that one could still wonder whether any Polish group is isomorphic, as
an abstract group, to a subgroup of S∞; this question was asked by Ulam [Ula60]
for SO(3, R) and more generally for Lie groups; the answer was proved to be pos-
itive for many matrix groups by Kallman [Kal00]; see also Thomas [Tho99]. Now
we know plenty of examples of Polish groups which do not admit any nontrivial
homomorphism to S∞, and we will see some of those later on.

One last remark before forging ahead: there are many ways to turn a nonar-
chimedean Polish group into the automorphism group of a countable first-order
structure; some properties of the structure will be impervious to this choice, but
others will not, which is important to keep in mind.

1.2. Fraı̈ssé classes. It is often the case that “universal” structures have very
large automorphism groups. One way to quantify this “largeness” is via the action
of the group on the structure.

DEFINITION 4.7. A first-order structure M is said to be homogeneous if any
isomorphism between two finitely generated substructures extends to an isomor-
phism of the whole structure.

When the structure is relational (that is, there are only relation symbols in its
language), finitely generated structures are always finite; this is false in general
when the language contains functions. For instance, the substructure of (Z,+, 0)
generated by 1 is N; the substructure of (Z,+,−, 0) generated by 1 is Z.

The intuitive idea of homogeneity is that, if finitely many elements cannot
be distinguished by the structure they generate, then they can be mapped one
onto another by an automorphism of the structure. In particular, the structure
“looks the same” as seen from one of these finite sets as it does from the other.
For instance, it is obvious that (N,=) is homogeneous. A crucial observation,
due to Fraı̈ssé, is that one can characterize homogeneous first-order structures by
properties of their finitely-generated substructures.

DEFINITION 4.8. Let L be a countable first-order language, and K be a class
of finitely generated L-structures. We say that:

• K is countable if it contains only finitely elements up to isomorphism.
• K is hereditary if, whenever B belongs to K and A is a L-structure which

embeds in B, A must belong to K.
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• K has the joint embedding property (JEP) if any two elements of K embed
in a third one.

• K has the amalgamation property (AP) if, given A, B, C ∈ K and embed-
dings α : A → B, β : A → C, there exists D ∈ K and embeddings
i : B → D, j : C → D such that i ◦ α(a) = j ◦ β(a) for all a ∈ A. Schemati-
cally, the following diagram commutes.

B

i ��❅
❅❅

❅❅
❅❅

A

α

??⑦⑦⑦⑦⑦⑦⑦

β ��❅
❅❅

❅❅
❅❅

❅ D

C

j

??⑦⑦⑦⑦⑦⑦⑦⑦

A class satisfying all the properties above is called a Fraı̈ssé class.

The amalgamation property is probably the most mysterious at first glance;
note that it does not necessarily imply the joint embedding property, because we
are not assuming that the empty structure belongs to K, or even that K contains an
initial object. Let us discuss a simple example: the class of finite graphs, which for
us are structures in a language with a binary relation symbol R which is irreflexive
and symmetric. Countability and hederitarity are obvious in that case; we allow
graphs to be empty so the amalgamation property will imply the joint embedding
property in that case. It is easy to amalgamate two graphs Γ1, Γ2 over a common
subgraph ∆: simply form the disjoint union Γ1 ⊔ Γ2, then identify both copies of
∆; keep the edges of Γ1 and Γ2 and add no new ones.

Amalgamating groups over a common subgroup is somewhat more compli-
cated, but of course the amalgamated free product is the construction we need in
that case. However, there are uncountably many finitely-generated groups up to
isomorphism, so they do not form a Fraı̈ssé class. Finite groups do, however, and
the reader is invited to think up a good way to amalgamate finite groups in such a
way that the amalgam remains finite and, more generally, to try to come up with
examples of Fraı̈ssé classes of her own.

DEFINITION 4.9. Let M be a countable first-order structure, with language
L. The age of M is the class of all L-structures which are isomorphic to a finitely
generated substructure of M.

Clearly, the age of any countable structure is countable, hereditary and satis-
fies the joint embedding property.

THEOREM 4.10 (Fraı̈ssë [Fra54]). The age of a homogeneous countable structure is
a Fraı̈ssé class.
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PROOF. We only need to check the amalgamation property; let A, B and C be
three elements of the age of K and α, β be embeddings from A to B, C respectively.
We may assume that A, B, C are substructures of K, and (by homogeneity) that
α, β are restrictions to A of automorphisms of K, which we still denote by α, β.

Then, let D denote the substructure of K generated by α−1(B) and β−1(C). D
is finitely generated, and is an amalgam of B, C over A. �

Using a back-and-forth construction, Fraı̈ssé proved a converse of the above
result, in the following strong sense.

THEOREM 4.11 (Fraı̈ssë [Fra54]). Let K be a Fraı̈ssé class in a countable language
L. Then there exists a L-structure K which is homogeneous and whose age is equal to K.
This structure is unique up to isomorphism and is called the Fraı̈ssé limit of K.

Uniqueness up to isomorphism is easy to obtain from countability and homo-
geneity. The structure K is characterized by the following property, which should
make more or less clear how to construct K via repeated embeddings and amal-
gamations (recall Katětov’s construction of the Urysohn space): for any finitely
generated substructure A of K, any B ∈ K, and any embedding i : A → B, there
exists B̃ ⊆ K containing A and an isomorphism from B̃ to B which coincides with
i on A.

This characterization is sometimes called Alice’s restaurant axiom: everything
you can imagine is already there.

Let us consider again the class of finite graphs: the Fraı̈ssé limit of the class
of finite graphs is the Radó graph R, which is characterized among all countable
graphs by the following property: for any disjoint subsets A, B of R, there exists
an element x of R such that there is an edge from x to every element of A and
to no element of B. This is the translation of Alice’s restaurant axiom for graphs;
interestingly, there is also a probabilistic construction of this object. Consider a
graph on N built in the following way: for each i 6= j, flip a coin; if the coin lands
on heads, put an edge between i and j, and do not put an edge otherwise. Clearly,
with probability 1, the axiom we just wrote down will be satisfied, because, once
we only consider j > max(A, B), the probability to put an edge between j and all
elements of A and no element of B is a fixed strictly positive number, hence such
a j will appear with probability 1. In general, one cannot hope for such simple
probabilistic constructions of Fraı̈ssé limits, but this is still an interesting area, with
some nice recent developments which unfortunately fall outside the scope of this
text.

We saw other examples of homogeneous structures: Urysohn spaces. For in-
stance, the rational Urysohn space UQ may be seen as a homogeneous structure in
the language with countably many binary relational symbols (dq)q∈Q+ , by setting

UQ |= dq(x, y) ⇔ d(x, y) = q .

We let the reader think of how one can amalgamate metric spaces.
In the end of this section, we will discuss some other examples. Going back to

Polish groups for a moment, we note that the construction of Theorem 4.6 actually
shows that, for any nonarchimedean Polish group G, there exists a homogeneous
countable structure M, in a countable relational language, such that G is isomor-
phic (as a topological group) to Aut(M).
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1.3. Free amalgams. There is a situation where amalgams are particularly
simple: free amalgamation. In this section, we assume that all languages are re-
lational and countable; the material discussed here comes from [BM13].

DEFINITION 4.12. Let L be a countable relational language, A, B, C be three
L-structures and α : A → B, β : A → C be two embeddings. The free amalgam of
B, C over α, β is the structure M, where:

• The universe M of M is the quotient of the disjoint union B ⊔ C by the
equivalence relation which identifies α(a) and β(a) for all elements of A
(and identifies only those elements)

• Relations in M come only from tuples entirely contained in B and tuples
entirely contained in C, are such that the natural inclusion maps from
B, C to M induce embeddings of L-structures.

Informally: glue together the two copies of A, copy the relations from B and C,
and add no other relations. Below we will simply say that this structure is the free
amalgam of B, C over A (the embeddings should always be clear from the context).
Using the same idea, we can freely amalgamate any family of L-structures over a
common substructure A.

Some classes are stable under free amalgamation (we say that they satisfy the
free amalgamation property), for instance the class of all graphs is; the amalgamation
procedure we described to show that the class of finite graphs is a Fraı̈ssé class was
exactly free amalgamation. Most classes are not stable under free amalgamation:
for instance, the class of finite rational metric spaces certainly is not, since elements
must have distances, so we must add relations between elements of B \ A and
C \ A.

Free amalgamation behaves very well with respect to automorphisms, in the
sense that it enables one to glue automorphisms together (which is also possible
for rational metric spaces, and indeed in many cases where there exists a “natu-
ral” amalgamation procedure). It turns out to be possible to reproduce Katětov’s
construction of the Urysohn space in any free amalgamation class.

DEFINITION 4.13. Let K be a Fraı̈ssé class in a countable relational language
L, with the free amalgamation property. We let Kω denote the class of all at most
countable L-structures whose age is contained in K.

For instance, if K is the class of all finite graphs, then Kω is the class of all (at
most) countable graphs. Assuming that K has the free amalgamation property, it
is easy to check that Kω is also stable under free amalgamation.

DEFINITION 4.14. Let A, B be L-structures such that B = A∪{b}. The quantifier-
free type of b over A is the set of all formulas ϕ with at most one free variable x,
with parameters in A, such that B |= ϕ(b).

A quantifier-free type (q.f type for short) over some L-structure A is a set of
formulas with at most one free variable x such that there exists a structure B con-
taining A and an element b of B such that our set of formulas is exactly the q.f type
of b over A.

We recall that all our Fraı̈ssé classes are assumed to be infinite. In particular,
for any A ∈ K, there exists at least one q.f type over it which does not come from
an element of A. To each q.f type p over A one can associate a unique L-structure
whose universe is of the form A ∪ {b}, where b realizes the q.f. type we started
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from; we call this the structure associated to p (if p contains a formula x = a for
some a ∈ A, then B = A, otherwise A is strictly contained in B).

For A ∈ Kω , we say that a q.f. type p over A is finitely induced if there exists
a finite substructure M of A and a q.f. type q over M such that the structure as-
sociated to p is the free amalgam over M of A and the structure associated to q.
Note that there are only countably many finitely induced q.f. types over a given
A ∈ Kω .

DEFINITION 4.15. Let K be a Fraı̈ssé class of L-structures with the free amal-
gamation property, and A ∈ Kω . We let E(A) denote the L-structure obtained
by forming the free amalgam over A of the structures associated to all the finitely
induced q.f. types over A.

There is an obvious natural embedding of A into E(A), and we always see A
as a substructure of E(A) via this embedding. Now, given a Fraı̈ssé class K with
the free amalgamation property, we can simply mimic Katětov’s construction of
the Urysohn space: start from any A ∈ K, and construct a tower of elements in
Kω by setting M0 = A, Mi+1 = E(Mi). The limit M∞ = ∪Mi must then be the
Fraı̈ssé limit of K. It is clear that automorphisms of M extend to automorphisms of
M∞, and one can check that this induces a continuous embedding of permutation
groups. Let us sum up.

THEOREM 4.16 ([BM13]). Let K be a Fraı̈ssé class with the free amalgamation prop-
erty, with Fraı̈ssé limit K, and M be a countable structure whose age is contained in K.
Then there exists an embedding i : M → K such that all automorphisms of M extend
to automorphisms of K, and this extension map can be taken to be a continuous group
embedding from Aut(M) to Aut(K).

This construction can be tweaked a little bit. For instance, at each step, we
could let Mi+1 be the free amalgam of two copies of E(Mi) over Mi; then any
automorphism of Mi extends uniquely to an automorphism of Mi+1 that swaps
the two copies of E(Mi). This idea can be used to prove the following result.

THEOREM 4.17 ([BM13]). Let K be a Fraı̈ssé class with the free amalgamation prop-
erty, with Fraı̈ssé limit K, M be a countable structure whose age is contained in K, and
n ≥ 2 an integer. There exists an automorphism ϕM of K such that ϕn

M = 1, and the set
of fixed points of ϕM is isomorphic to M.

The construction ensures that M and N are isomorphic iff ϕM and ϕN are conjugate;
the map M 7→ ϕM can be turned into a Borel reduction of the isomorphism relation of
elements of Kω to the relation of conjugacy in Aut(K).

We do not discuss definitions of Borel reducibility, and refer the reader to
[Kec02] for background. The remainder of this section can be safely skipped by
readers unfamiliar with this theory. Let us note that the above result implies that
the relation of conjugacy among, say, involutions of the random graph, is universal
among Borel actions of S∞; the same result is true if one replaces the random graph
by any one of the Henson graphs. The reason this holds is that, in each of these
cases, the isomorphism relation among elements of Kω is universal for actions of
S∞, and the above result gives us a reduction of this relation to the conjugacy re-
lation of involutions in Aut(K) (involutions could be replaced by elements of any
fixed finite order, of course). The fact that the relation of conjugacy in the auto-
morphism group of the random graph is universal among Borel actions of S∞ was
originally proved, differently, by Coskey–Ellis–Schneider [CES11].
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The main reason why I discussed the constructions above in some detail is
that they lead to a question I find intriguing: what are the possible complexities
for the relation of isomorphism of elements of Kω?

QUESTION 4.18. Let K be a Fraı̈ssé class with the free amalgamation property.
Is it true that the relation of isomorphism of elements of Kω is either smooth or
universal for Borel actions of S∞?

1.4. An example: good measures. Fraı̈ssé classes may appear in somewhat
unexpected places; we discuss an intriguing example related to topological dy-
namics. First, consider the class of all finite boolean algebras, say in the language
with constant symbols for the emptyset and the whole space, as well as function
symbols for union, intersection and complement. This is a Fraı̈ssé class - the amal-
gamation procedure may be checked by using product algebras, for instance: in-
deed, let A be a common subalgebra of two finite boolean algebras B, C. Then
D = B × C is a finite boolean algebra, and the diagonal embedding a 7→ (a, a)
amalgamates B and C over A. The limit of this class is easily seen to be the count-
able atomless boolean algebra B∞, whose Stone space is a Cantor space X (the
Boolean algebra of clopen subsets of X is isomorphic to B∞). So, the automor-
phism group Aut(B∞) and the homeomorphism group Homeo(X) are isomorphic
as topological groups.

Now, let us increase the complexity of our class a little bit.

DEFINITION 4.19 (Akin [Aki05]). Let X be a Cantor space. A good measure on
X is a Borel measure µ which is atomless, has full support, and is such that for
any clopen A, B such that µ(A) ≤ µ(B), there exists a clopen C ⊆ B such that
µ(A) = µ(C).

It follows from a result of Glasner–Weiss [GW95]*Proposition 2.6 we already
mentioned in the first chapter that, whenever ϕ is a uniquely ergodic homeomor-
phism of a Cantor space X, the unique ϕ-invariant measure is a good measure.
A beautiful theorem of Akin [Aki05] states that the converse is also true: given a
good measure µ on a Cantor space X, there exists a homeomorphism ϕ on X such
that µ is the unique ϕ-invariant measure.

DEFINITION 4.20. Given µ a good measure on a Cantor space X, we define its
clopen value set V(µ) as the set of all values µ(V) as V ranges over clopen subsets
of X.

Whenever V is the clopen value set of a good measure, it is easy to see that V
is countable, contains 0 and 1, is the intersection of a subgroup of R and [0, 1], and
is dense in [0, 1]. Any such set will be called a good value set.

Akin pointed out in [Aki05] that for any good value set V there exists a good
measure µ such that V = V(µ). Let us see this from the point of view of Fraı̈ssé
theory: fix a good value set V, and consider the language LV made up of the
language of boolean algebras expanded by unary relational symbols µr for all r ∈
V. We may then consider the class of LV-structures A which are finite Boolean
algebras and are such that, when one sets (µ(a) = r) iff A |= µr(a), one defines
a probability measure on A. One can check that this defines a Fraı̈ssé class, the
limit of which is a countable atomless Boolean algebra endowed with a probability
measure whose set of values is equal to V. Looking at the Stone space, one can see
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the limit as a Cantor space endowed with a good measure µ such that V(µ) = V.
We thus see that to any good value set corresponds a good measure.

Using back-and-forth as usual, it is straightforward to check that, if µ is a good
measure on a Cantor space X and A, B are finite subalgebras of clopen subsets
of X, any isomorphism from A to B extends to a homeomorphism of X which
preserves µ. Hence the algebra of clopen sets on X endowed with the measure µ is
the Fraı̈ssé limit of the class of finite boolean algebras endowed with a probability
measure taking its values in V(µ). In particular, two good measures with the
same clopen value set must be isomorphic, a fact which is proved very differently
in [Aki05].

As we saw in the first chapter, there is no Polish topology on the full group of
a minimal homeomorphism of a Cantor space X; for Z-actions, the closure of the
full group is still a complete invariant for orbit equivalence (this is pointed out in
[IM13], and follows easily from results of Giordano–Putnam–Skau [GPS95]), thus
a natural object to study.

We focus on the case of a uniquely ergodic homeomorphism ϕ of a Cantor
space X, call µ the unique ϕ-invariant measure, and Hµ the group of all homeo-
morphisms of X which preserve µ. Then the same argument we used to prove that
there is no Polish group topology on [ϕ] shows that the Polish group topology on
Hµ is unique; it follows from the arguments of [BM08] that any nontrivial normal
subgroup of Hµ contains its derived subgroup, so to decide whether Hµ is simple
as an abstract group we need to know whether every element of Hµ is a product
of commutators. A case where this is particularly easy to prove is when Hµ has a
comeager conjugacy class: assume that such is the case, call Ω the comeager class,
and let k be any element of Hµ. Then kΩ ∩ Ω must be nonempty, so there exists

g ∈ Ω and f ∈ Hµ such that k f g f−1 = g, or k = g f g−1 f−1, i.e. k is a commu-
tator. Using an argument due to Rosendal and Solecki [RS07], one can also see
that when Hµ has a comeager conjugacy class then it has the automatic continuity
property.

We are led to the question of whether Hµ has a comeager conjugacy class;
this is a well-studied question for Polish groups in general, well-understood in
the case of subgroups of S∞ since work of Kechris–Rosendal [KR07] extending
a study initiated by Hodges–Hodkinson–Lascar–Shelah [HHLS93] . Kechris and
Rosendal approached this problem using a Fraı̈ssé-theoretic point of view: let K
be a Fraı̈ssé class with limit K, and denote by Kaut the class made up of all pairs
(A, ϕ) such that A is an element of K and ϕ is a partial automorphism of A. Then
the existence of a dense conjugacy class in G = Aut(K) is equivalent to saying that
Kaut satisfies the joint embedding property. Intuitively, pairs (A, ϕ) encode basic
open sets in G, and the joint embedding property says that any two basic open sets
have conjugates which intersect, equivalently, that there exists a comeager set of
elements with a dense orbit.

The existence of a comeager conjugacy class may similarly be expressed in
terms of the class Kaut, but is a bit trickier; say that a class F of finite structures
has the weak amalgamation property if, given any A ∈ F , there exists an embedding
i : A → B ∈ F such that any two superstructures of B belonging to F can be
amalgamated over A - the corresponding diagram is as follows.
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Kechris–Rosendal [KR07] proved that there exists a comeager conjugacy class
in Aut(K) if, and only if, Kaut satisfies both the joint embedding and weak amalga-
mation properties. The weak amalgamation property is sometimes easy to check
in presence of the following phenomenon: when, given any (A, ϕ) ∈ Kaut, there
exists (B, ψ) ∈ Kaut in which (A, ϕ) embeds and such that ψ is a global automor-
phism of B. We then say that K has the weak extension property. When looking at
things from the angle of the action of Aut(K) on K, the weak extension property
says that elements with finite orbits are dense in K. Typically, the weak extension
property is difficult to prove or just plain false, while the joint embedding prop-
erty holds in many examples. The following result was proved in joint work with
T. Ibarlucia.

THEOREM 4.21. Let µ be a good measure on a Cantor space X. Then the set of
elements of finite order is dense in the group of homeomorphisms which preserve µ.

Using Akin’s theorem linking good measures and minimal homeomorphisms,
this result can be considerably reinforced, as was pointed out by K. Medynets.

THEOREM 4.22 (Essentially Grigorchuk–Medynets [GM12]). Let ϕ be a minimal
homeomorphism. Then [ϕ] contains a dense locally finite subgroup.

The proof of the above theorem uses in an essential way the existence of
Kakutani–Rokhlin partitions (and the fact that, up to replacing ϕ by another min-
imal homeomorphism which is orbit equivalent to it, one can always assume that
[[ϕ]] is dense in [ϕ]).

Going back to the existence of dense/comeager conjugacy classes in the au-
tomorphism group of a good measure, the previous theorems tell us that the ex-
tension property always holds; unfortunately, the joint embedding property is not
always satisfied, as the following simple example shows.

EXAMPLE 4.23. Assume that µ is a good measure, that 1/n ∈ V(µ), and that α
is a cyclic permutation of atoms of measure 1/n. Let B be any clopen set different
from the empty set and the whole space, and let β be an automorphism fixing B
and X \ B. Assume that the partial automorphisms α, β jointly embed in some µ-
preserving automorphism δ; identify B with its image via this embedding. Since
α embeds in δ, B must be split up in n subsets of equal measure (the trace on B of
the atoms which are permuted by α); thus µ(B)/n must belong to V(µ).

Thus, we see that if Hµ satisfies the joint embedding property, then 1/n ∈
V(µ) ⇒ V(µ)/n = V(µ). This condition is clearly not always satisfied; for in-
stance, it fails when V is the smallest good value set containing 1/2 and 1/π and
µ is the good measure such that V(µ) = V.

Analyzing the counterexample above, one can give a characterization, in terms
of the structure of V(µ), of exactly when there exists a dense conjugacy class in Hµ.
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This is satisfied in particular when V(µ) is the intersection of a Q-vector subspace
of R and [0, 1], (in which case there is a comeager conjugacy class, a fact already
proved by [Aki05]) or of a subring of R and [0, 1].

In most cases I am aware of, the conjunction of the joint embedding property
and the weak extension property is sufficient to obtain the weak amalgamation
property (usually, one can produce a class of finite structures endowed with a
global automorphism which is cofinal in the class of finite structures with a partial
automorphism, and satisfies the amalgamation property); it appears not to be the
case in Fraı̈ssé classes of measures.

One can also use the density of elements of finite order and results of [BM08]
to show that Hµ is always topologically simple, or, more generally, that the closure
of the full group of any minimal homeomorphism is topologically simple (hence,
the same is true for the full group itself), see [IM13]. The following problem re-
mains open.

QUESTION 4.24. Is the full group of a minimal homeomorphism a simple
group? What about its closure in Homeo(X)?

There are other intriguing questions; we already mentioned Akin’s theorem
stating that for any good measure µ on a Cantor space X there exists a minimal
homeomorphism ϕ of X such that µ is the unique ϕ-invariant measure. Can this
result be recovered using the Fraı̈ssé-theoretic approach we used here? Can it be
extended to more general situations?

QUESTION 4.25. Given a Cantor space X, can one give a characterization of
all the compact, convex sets of measures K such that there exists a minimal home-
omorphism of X for which K is the set of all ϕ-invariant measures?

By a result of Downarowicz [Dow91], any abstract Choquet simplex can be
obtained in such a way - so the question is about how the Choquet simplex sits
inside the set of measures on the Cantor space (perhaps some type of “goodness”
assumption as in the case of singletons?).

2. Metric structures and Fraı̈ssé classes

2.1. Moving from the discrete to the continuous setting. As we saw, Fraı̈ssé
theory provides a fairly versatile tool to approach structures with somewhat differ-
ent flavors, the unifying feature being homogeneity. However, the class of Polish
groups one can capture using classical Fraı̈ssé theory is limited to nonarchimedean
Polish groups, so for instance connected Polish groups look unapproachable in
this way. Still, at least in an intuitive sense, many classical structures of analysis
look just as homogeneous as those from first-order logic: for instance, think of a
Hilbert space, or of the Urysohn space... A way to use Fraı̈ssé-theoretic ideas to
study the automorphism groups of such structures goes through the formalism of
continuous first-order logic, or metric model theory. This formalism had a precursor
in Henson’s work on logics adapted to the study of Banach spaces, and was intro-
duced by Ben Yaacov and Usvyatsov in its current form [BU10]; its basic properties
were developed in [BYBHU08].

We will not actually be using any tools from logic, (most notably, no compact-
ness theorem), so our definitions are fairly relaxed.

DEFINITION 4.26. A metric structure is a tuple M = ((M, d), (Ri)i∈I , ( f j)j∈J)
such that
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• (M, d) is a complete metric space.

• Each Ri : Mki → R is a Lipschitz map.
• Each f j : Mnj → M is a Lipschitz map.

When (M, d) is separable, we say that M is a Polish metric structure.

As in the discrete setting, 0-ary functions are considered as named constants.
A continuous language is then what one would expect, with the added wrin-
kle that the language includes a Lipschitz constant for each Ri and each f j. For

instance, the language of real Banach spaces could be written as (0,+, (·λ)λ∈R)
where 0 is a constant, + is a 2-Lipschitz map, and each ·λ is |λ|-Lipschitz. The
distance function plays the same role as equality does in the classical, or discrete,
setting; in particular, we always assume that the distance is part of our language,
as a distinguished binary 1-Lipschitz predicate.

Many definitions (substructure, embedding ...) extend seamlessly from the
discrete setting to the continuous one.

DEFINITION 4.27. Let M = ((M, d), (Ri)i∈I , ( f j)j∈J) be a metric structure. An
automorphism of M is a bijection g of M onto itself such that

• For all m̄ ∈ Mk and each i such that ki = k, Ri(m̄) = Ri(g(m̄)). In
particular, g must be an isometry of (M, d).

• For all m̄ ∈ Mk and each j such that nj = k, f j(m̄) = f j(g(m̄))

The automorphism group Aut(M) of a Polish metric structure M is then a
closed subgroup of the isometry group of (M, d) (endowed with the pointwise
convergence topology), so is a Polish group itself.

When M is a metric structure and (a1, . . . , an) is a finite tuple of elements of
M, we denote by 〈a1, . . . , an〉 the substructure of M generated by a1, . . . , an.

DEFINITION 4.28. We say that a Polish metric structure M is homogeneous
when it is true that, for any a1, . . . , an ∈ M, for any ε > 0, and for any em-
bedding f : 〈a1, . . . , an〉 → M, there exists an automorphism g of M such that
d(g(ai), f (ai)) < ε for all i.

In other words: an isomorphism between finitely generated substructures of
M can be approximated arbitrarily well by an automorphism of M, the approxima-
tion taking place on the images of the generators of the first substructure. Naming
generators is a price to pay when dealing with structures whose language includes
functions; of course this is not necessary when the language is relational, since
finitely generated substructures of M must then be finite. Controlling what hap-
pens on finitely many elements is really just a way of saying that we are working
with the pointwise convergence topology on Aut(M).

Then, the same argument as for discrete structures leads to the following ob-
servation.

THEOREM 4.29 ([Mel10a]). Let G be a Polish group. There exists a homogeneous
Polish metric structure M such that G is isomorphic, as a topological group, to Aut(M).

Here, one can wonder to what extent the ε in the definition of homogeneity
is important: maybe one can always ask for exact homogeneity. I do not know
whether each Polish group is the automorphism group of an exactly homogeneous
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metric structure, but I suspect not. Also, there are natural examples of homoge-
neous metric structures which are not exactly homogeneous (for instance, the Gu-
rarij space, which we will discuss some more later on), and it seems that accepting
the intrusion of ε here is the right thing to do. We will see shortly that this is cru-
cial when working with Fraı̈ssé classes in the metric setting, via the example of the
Gurarij space.

For now, let us recall that, when considering topologies on isometry groups
in the first chapter, we had pointed out two choices: the pointwise convergence
topology, and the uniform convergence topology. Given any Polish metric struc-
ture M, one can endow its automorphism group G with the metric of uniform
convergence du, defined by

du(g, h) = sup{d(g(x), h(x)) : x ∈ M}
(truncated for instance at 1 if allowing infinite distances causes moral issues). This
du is always complete and bi-invariant (i.e. it is impervious to multiplications on
the left and the right), which are certainly desirable qualities. But it is in general
not separable, and often close to discrete (or outright discrete), and it might seem
at first glance that it cannot give much information. It turns out that this metric
can sometimes be used in conjunction with the Polish topology; let us make an
abstract definition to describe the corresponding object.

DEFINITION 4.30. A Polish topometric group is a triple (G, τ, ∂), where

(1) (G, τ) is a Polish group
(2) ∂ is a bi-invariant distance on G, refining τ.
(3) ∂ is τ-lower semicontinuous, i.e. each set {(g, h) : ∂(g, h) ≤ r} is τ-closed.

These assumptions (which imply that ∂ is complete) are satisfied when G is
the automorphism group of a Polish metric structure, endowed with the topology
of pointwise convergence and the metric of uniform convergence. Actually, what
matters is not really the metric ∂ but the uniformity it generates, but we will de-
scribe everything in metric terms (the reader should keep in mind that replacing
δ by an equivalent metric, as long as the third assumption remains satisfied, is of
no consequence). Starting from any Polish group G, there exists a left-invariant
metric d inducing the topology of G (this d is usually not complete, as we saw; any
two such distances generate the same uniformity, called the left uniformity). Then
one can define a metric ∂ by setting

∂(g, h) = sup{d(gk, hk) : k ∈ G}
Clearly ∂ is τ-lower semicontinuous, bi-invariant, and refines τ. One can also
show that ∂ is always complete when (G, τ) is Polish (one says that Polish groups
are Raikov-complete). Thus (G, τ, ∂) is a Polish topometric group, and ∂ induces the
coarsest uniformity among all metrics turning (G, τ) into such a structure. Most of
the time we will be working with this ∂. We call the uniformity generated by ∂ the
minimal bi-invariant uniformity, and will abuse notation somewhat by calling mini-
mal bi-invariant metric any metric which generates this uniformity (and satisfies the
third topometric axiom).

Two remarks are in order here.

• Given a Polish group (G, τ), we saw in Theorem 4.29 that there exists a
Polish metric structure M whose automorphism group, endowed with
the topology of pointwise convergence, is isomorphic to G. If one builds



2. METRIC STRUCTURES AND FRAÏSSÉ CLASSES 55

this structure in the same way as we did earlier in the discrete case, then
the uniform metric on Aut(M) induces a minimal bi-invariant metric on
G.

• If (G, τ) is a Polish group isomorphic to Aut(M) for some Polish metric
structure M, then the uniform metric on Aut(M) is not necessarily min-
imal. For instance, given G = Sω

∞, one can embed G into S∞, and then
make G act on N; the associated uniformity is discrete. But it is easy to
see that the minimal bi-invariant uniformity on G is the trace on G of the
product of the discrete uniformities on each factor, which is not discrete.

Mostly out of curiosity, let us note the following problem.

QUESTION 4.31. Let (G, τ, ∂) be a Polish topometric group. Under which con-
dition does there exist a metric structure M such that (G, τ, ∂) is isomorphic, as
a topometric group, to Aut(M) endowed with the topology of pointwise conver-
gence and the metric of uniform convergence?

As far as I am aware, it is not even excluded that all Polish groups have this
property, even though that seems highly unlikely to me.

Let us now describe what Fraı̈ssé classes become in the metric setting; metric
Fraı̈ssé classes were first considered in [Sch07], but our presentation follows a
more streamlined and efficient approach presented in [Ben12]; what we present
here is more restrictive than what can be found in [Ben12] but is sufficient for our
purposes.

As in the classical, discrete setting, we consider a class K of finitely generated
metric structures in some fixed metric language L, and we want to state conditions
on K that are equivalent to being the age of a homogeneous structure (the age
of a continuous structure being defined exactly as in the discrete setting). Some
properties must be satisfied by the age of any structure.

DEFINITION 4.32. Let K be a class of finitely generated metric structures in
some metric language L. We say that

(1) K satisfies the hereditary property (HP) if any substructure of an element
of K belongs to K.

(2) K satisfies the joint embedding property (JEP) if any two elements of K em-
bed in a third one.

So far, so good; but we need a condition that bounds the size of K, so that
K can be the age of a separable structure. In the discrete world that condition
was countability, clearly in the metric world it must be separability for an appro-
priately chosen metric. To introduce this metric, and since we allow functions in
our languages, it is useful to make the following convention: whenever we write
A = 〈ā〉, we mean that A is generated by the tuple ā = (a1, . . . , an); repetitions
are allowed in the enumeration (a1, . . . , an) (and the order in which elements are
enumerated matters).

DEFINITION 4.33. Let K be a class of finitely generated metric structures in
some metric language L, satisfying (JEP). We denote by Kn the class of all struc-
tures 〈a1, . . . , an〉 belonging to K, and define dn on Kn ×Kn by setting

dn(〈ā〉, 〈b̄〉) = inf
(α,β)

sup
i=1,...n

d(α(ai), β(bi))
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where (α, β) ranges over all pairs of embeddings of 〈ā〉, 〈b̄〉 into a common struc-
ture C ∈ K.

The assumption that (JEP) holds ensures that dn takes finite values; dn mea-
sures how close two elements of Kn can be mapped to one another, and saying
that dn(〈a〉, 〈b〉) = 0 does mean as expected that the two structures are isomor-
phic; the fact that the Lipschitz constants of the functional symbols are imposed
by the language is useful to check this when functions are present. Intuitively, dn

should be a pseudometric, but the triangle inequality need not be satisfied under
the assumptions we are working with so far: given a structure witnessing that 〈ā〉,
〈b̄〉 are close, and another structure witnessing that 〈b̄〉, 〈c̄〉 are close, one can not
necessarily produce a structure witnessing that 〈ā〉, 〈c̄〉 are close - unless one can
glue together in some way the copies of b̄ appearing in both structures.

DEFINITION 4.34. Let K be a class of finitely generated metric structures in
some metric language L. We say that K satisfies the near-amalgamation property
(NAP) if the following condition is satisfied:

For any ε > 0, any A = 〈ā〉 ∈ K, and any embeddings α : A → B ∈ K,
β : A → C ∈ K, there exists D ∈ K and embeddings i : B → D and j : C → D such
that d(i ◦ α(ai), j ◦ β(ai)) < ε for all i.

When the class K satisfies both (JEP) and (NAP), it is easy to check that each
dn is a pseudometric.

DEFINITION 4.35. Let K be a class of finitely generated metric structures in
some metric language L, satisfying (JEP) and (NAP). We say that K has the Polish
property (PP) if each dn is separable and complete.

We have finally listed all the properties characterizing the age of a homoge-
neous Polish metric structure.

DEFINITION 4.36. Let K be a class of finitely generated metric structures in
some metric language L. We say that K is a Fraı̈ssé class if K satisfies (HP), (JEP),
(NAP) and (PP)

The following is not hard to prove.

THEOREM 4.37. The age of any homogeneous Polish structure is a Fraı̈ssé class.

The converse is harder, especially if one allows functions; Ben Yaacov’s proof
[Ben12] introduces an interesting formalism (leading to a formal weakening of the
notion of Fraı̈ssé limit in the metric context), which we do not discuss here.

THEOREM 4.38 ([Ben12]). Let K be a Fraı̈ssé class of finitely generated metric struc-
tures in some metric language L. Then there exists a unique homogeneous Polish metric
structure whose age is equal to K. We call this structure the Fraı̈ssé limit of K.

The simplest non-discrete example of a Fraı̈ssé class is given by the class of all
finite metric spaces, whose limit is the Urysohn space. Going in the other direction,
the infinite-dimensional, separable Hilbert space H is certainly homogeneous, so
its age is a Fraı̈ssé class. The same goes for a standard atomless probability alge-
bra, which is the Fraı̈ssé limit of all finite probability algebras. In all these cases,
one can replace near amalgamation by exact amalgamation, and the limit is homo-
geneous in a stronger sense than what we asked for, namely one can set ε = 0 in
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the definition of homogeneity; this is not always possible. One of only two exam-
ples of this that I know at the moment is the Gurarij space, which we discuss now
(the other example is Lp lattices which we will not discuss).

Let us consider the class of all finite-dimensional normed vector spaces, in a
language whose symbols (besides the norm/distance) are 0, +, and (·λ)λ∈Q (with
the appropriate Lipschitz constants). As pointed out in [Ben12], this is a Fraı̈ssé
class; let us see why (NAP) holds in this case. Consider three finite-dimensional
normed vector spaces X, Y, Z and isometric embeddings i : X → Y and j : X → Z.

Then endow the direct sum Y ⊕ Z with the l1-norm:

‖(y, z)‖ = ‖y‖+ ‖z‖ .

Next, let N denote the closed subspace {(i(x),−j(x)) : x ∈ X} of Y ⊕ Z, and let E
be the space (Y ⊕ Z)/N, with the quotient norm

‖(y, z)‖ = inf{‖(y, z) + (i(x),−j(x))‖ : x ∈ X}
Then Y isometrically embeds in E via α : y 7→ [(y, 0)], Z isometrically embeds in E
via β : z 7→ [(0, z)], and for any x ∈ X one has

α ◦ i(x) = [(x, 0)] = [(0, x)] = β ◦ j(x) .

Hence the class of finite-dimensional normed vector spaces satisfies (NAP), ac-
tually one even has exact amalgamation. Joint embedding follows immediately
(take X = {0}), and separability of each (Kn, dn) is an immediate consequence of
the existence of a universal separable Banach space. The fact that each (Kn, dn) is
complete is easy once one knows how to compute the distance between structures:
given E = 〈a1, . . . , an〉 and F = 〈b1, . . . , bn〉, C. Ward Henson (see [BYH14]) proved
that

dn(E, F) = sup{
∣∣‖∑ riai‖ − ‖∑ ribi‖

∣∣ : ∑ |ri| = 1} .

So the class of finite-dimensional Banach spaces is a Fraı̈ssé class. Its limit is
the unique universal homogeneous separable Banach space, an object which was
built by Gurarij [Gur66] and whose uniqueness up to isometry was proved by
Lusky [Lus76]. A simple proof of existence/uniqueness of the Gurarij space was
published recently by Kubis–Solecki [KS13]. Note that the usual Banach-theoretic
characterization of the Gurarij space G is not quite the same as the Fraı̈ssé-theoretic
version one obtains via the Fraı̈ssé-theoretic approach, see [Ben12].

An interesting point here is that, while the class of finite-dimensional spaces
amalgamates exactly, no universal Banach space can be exactly homogeneous: this
is because the norm must have points of differentiability (this is true in any sepa-
rable space by a classical result of Mazur [Maz33]), while universality implies that
it cannot be differentiable everywhere. A linear isometry cannot map a point at
which the norm is differentiable to a point at which it is not; so the group of linear
isometries of G cannot act transitively on one-dimensional subspaces, showing
that G is not homogeneous (this line of reasoning was explained to me a long time
ago by G. Godefroy). This shows that allowing for small errors in the definition of
homogeneity is useful to capture some natural examples.

As a Fraı̈ssé limit, the Gurarij space is certainly analogous, in the setting of Ba-
nach spaces, to the Urysohn space; this analogy was taken further by Ben Yaacov
[BY14], who adapted Katětov’s construction of U, showing in the process that any
separable normed space embeds in G in such a way that all its isometries extend,
and the extension map can be taken to be a group homomorphism. Consequently
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Aut(G) is a universal Polish group. This analogy with the Urysohn space, and the
fact that the Urysohn space generates a unique Banach space (the Holmes space,
discussed at the end of the second chapter), makes it tempting to believe that the
Holmes space and the Gurarij space are one and the same. Surprisingly, this turns
out to be false, see [FW08].

2.2. Hjorth’s oscillation theorem revisited. Hjorth’s oscillation theorem is the
first example that made me realize that continuous logic could be used to translate
results known to hold for closed subgroups of S∞ to the context of general Polish
groups; this process was initiated by a suggestion of S. Solecki while I was a post-
doc in the University of Illinois at Urbana-Champaign. The results of this section
were published in [Mel10a].

In [KPT05], Kechris, Pestov and Todorcevic established a link between topo-
logical dynamics and combinatorics, relating the so-called finite oscillation stabil-
ity of subgroups G of S∞ with combinatorial properties of a Fraı̈ssé class of which
G is the automorphism group (we will get back to this in the next section). This
led them to formulate a notion of oscillation stability for isometric actions of topo-
logical groups. The discussion below is mostly taken from [Pes06].

DEFINITION 4.39. Let G be a metrizable topological group with a compati-

ble left-invariant distance δ. The left-completion of G, denoted by Ĝ, is simply the
metric completion of (G, δ).

Note that G naturally acts on Ĝ by isometries; Ĝ does not depend on the choice
of left-invariant metric δ, in the sense that any two left-invariant metrics on G

(compatible with its topology) will produce isomorphic Ĝ. This happens because,
as we already mentioned, Cauchy sequences are the same for all left-invariant
distances (it would probably be more natural to work with uniformities here, since
what we are really using is the left uniformity of G).

Also, Ĝ is in general not a group but is always a semigroup in which multipli-

cation is jointly continuous. By a right ideal of Ĝ we mean a subset of Ĝ which is
invariant under multiplication on the right.

If (X, d) a Polish metric space and G is a subgroup of the isometry group of

(X, d), one can naturally see Ĝ as a semigroup of isometric embeddings of (X, d)
into itself.

DEFINITION 4.40. Let G be a Polish group, and f : G → R be a left-uniformly

continuous function, which one may then uniquely extend to Ĝ. Say that f is

oscillation stable if for every ε > 0 there exists a right ideal I of Ĝ such that the
oscillation of f on I is less than ε.

DEFINITION 4.41. Let a Polish group G act continuously and by isometries
on a Polish metric space X. Say that the action of G is oscillation stable if every
Lipschitz function f : X → R is oscillation stable. If the action of G is not oscillation
stable, say that it has distortion.

For instance, saying that the action of the unitary group U(ℓ2) on the unit
sphere of ℓ2 has distortion turns out to be equivalent to Odell and Schlumprecht’s
celebrated solution to the distortion problem for ℓ2 [OS94] (note, however, that ℓ2

is the only separable Banach space in which the notion of distortion as presented
here and the classical functional-analytic notion of distortion coincide).
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It is then natural to ask, given some action of a Polish group G, whether it
has distortion or not. In particular, Kechris, Pestov and Todorcevic asked whether

there exists a nontrivial group G such that the action of G on Ĝ does not have
distortion. Answering this question, Hjorth proved the following result.

THEOREM 4.42 (Hjorth [Hjo08]). Let (X, d) be a complete separable metric space,
and G ≤ Iso(X, d) be a group of cardinality bigger than one. Then there exists x0, x1 ∈ X
and uniformly continuous

f : {(π.x0, π.x1) : π ∈ G} → [0, 1]

such that for any ρ ∈ Ĝ there exist

(y0, y1), (z0, z1) ∈ {
(
ρ(π(x0)), ρ(π(x1))

)
: π ∈ Ĝ}

with f (y0, y1) = 0 and f (z0, z1) = 1.

As was pointed out by Hjorth, this theorem has as an easy corollary the fact

that for any non-trivial Polish group G the left-translation action of G on Ĝ has
distortion.

In the same paper, Hjorth proves a version of this theorem for automorphism
groups of first-order countable relational structures.

THEOREM 4.43 (Hjorth [Hjo08]). Let M be a homogeneous relational countable

first-order structure such that |Aut(M)| > 1. Then there exist a function f : M2 →
{0, 1} and (a0, a1) ∈ M2 such that for any morphism ρ : M → M one can find (b0, b1)
and (c0, c1) in the image of ρ2, with the same quantifier-free type as (a0, a1) and such that
f (b0, b1) = 1 while f (c0, c1) = 0.

After stating Theorem 4.43, Hjorth points out that “a weaker form can be de-

rived from the final theorem i, [and] its proof is easier” . Looking at Theorem 4.43
with continuous logic in mind, it is tempting to formulate the following statement.

THEOREM 4.44. Let M be a homogeneous relational Polish metric structure such
that |Aut(M)| > 1. Then there exist a uniformly continuous f : M2 → [0, 1] and
(a0, a1) ∈ M2 such that for any morphism ρ : M → M one can find (b0, b1) and (c0, c1)
in the image of ρ2, with the same quantifier-free type as (a0, a1) and such that f (b0, b1) =
1, f (c0, c1) = 0.

(Actually, one can take f to be Lipschitz in the above statement and in Hjorth’s
theorem, but I stick to uniform continuity since this was Hjorth’s original formu-
lation).

It is clear that this result implies Theorem 4.43: given an homogeneous count-
able first-order relational structure M, one may use the same idea as in the proof
of Theorem 4.6 to turn it into a homogeneous relational Polish metric structure (de-
noted by Mmet) by endowing the universe of M with the discrete metric and, for
any relation symbol R of the language of M, introducing a {0, 1}-valued predicate
symbol Rmet defined by Rmet(m1, . . . , mk) = 0 ↔ M |= R(m1, . . . , mk). Then Mmet

satisfies the assumptions of Theorem 4.44, and morphisms of M and Mmet are the

same. If f is the function yielded by Theorem 4.44, then f̃ defined by f̃ (m, m′) = 0
if f (m, m′) < 1, and 1 otherwise, shows that the conclusion of Theorem 4.43 holds.

ii.e, Theorem 4.42 in our notation.
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It is also easy to see that Theorem 4.42 implies Theorem 4.44. We do not detail
the proof here, but it is a straightforward consequence of the fact that, when M
is approximately homogeneous, the left-completion of Aut(M) coincides with the
set of morphisms from M into itself, and morphisms preserve quantifier-free type.
Perhaps more interestingly, Theorem 4.44 implies Theorem 4.42: indeed, assume
that we are in the situation of Theorem 4.42. Then, one may find a countable family
of predicates (Ri) such that (X, d, (Ri)) becomes an approximately homogeneous
Polish metric structure M, with G as its automorphism group, and Theorem 4.44
enables one to show that the conclusion of Theorem 4.42 holds.

To sum up this brief discussion: Theorem 4.44, whose statement is just the con-
tinuous logic translation of Theorem 4.43, unsurprisingly implies Theorem 4.43
and turns out to be equivalent to Hjorth’s oscillation theorem. Interestingly, one
may combine Hjorth’s ideas from his proof of Theorem 4.43, and some of his ar-
guments to establish Theorem 4.42, to provide a proof of Theorem 4.44 which is
simpler (at least, shorter) than the original proof. I will not go into detail here;
work on Hjorth’s theorem is what convinced me that the language of metric struc-
tures could be useful to study properties of Polish groups.

3. Extremely amenable Polish groups

Recall that a Polish group is extremely amenable if any continuous action of
G on a compact space has a fixed point. Earlier, we gave a proof that extreme
amenability of a countable group was a Gδ condition (in the right framework);
this was based on an intrinsic characterization of extreme amenability of a Polish
group G in terms of the left translation of G on itself.

DEFINITION 4.45. Let G be a group acting by isometries on a metric space
(X, d), and let f be a function from X to R. We say that f is finitely oscillation stable
if for every finite F ⊆ X and every ε > 0 there exists g ∈ G such that the oscillation
of f on gF is less than ε.

We say that the action G y X is finitely oscillation stable if every bounded
Lipschitz function f : (X, d) → R is finitely oscillation stable.

THEOREM 4.46 (Pestov [Pes06]*Theorem 2.1.11). Let G be a Polish group, and
{di}i∈I be a directed collection of left-invariant pseudometrics inducing the topology of G.
Then G is extremely amenable if, and only if, each action G y (G, di) is finitely oscillation
stable.

Of course, one could simply consider one left-invariant metric in the charac-
terization above; but, if G is the automorphism group of some metric structure M,
then there is a natural collection of pseudometrics inducing the topology of G.

DEFINITION 4.47. Let M be a Polish metric structure and G be its automor-
phism group. For any finite A ⊆ M we define a pseudometric dA on G by setting

dA(g, h) = sup{d(g(a), h(a)) : a ∈ A}
The family {dA}, as A ranges over finite subsets of M, induces the topology of G.

One could let A vary only over some dense subset of M and still induce the
topology of G. What matters to us is that extreme amenability of Aut(M) depends
on how Aut(M) acts on its finitely generated substructures; when M is homoge-
neous, this means that one can expect a characterization of extreme amenability in
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terms of the properties of the age of M. In the discrete setting, such a characteriza-
tion was obtained in the seminal [KPT05], following earlier work of Pestov. To see
in action, in a simple setting, some of the ideas behind that work, let us discuss a
striking combinatorial proof of extreme amenability of a Polish group.

THEOREM 4.48 (Pestov [Pes98]). The automorphism group of (Q,≤) is extremely
amenable.

PROOF. Let G = Aut(Q,≤), and A be a finite subset of Q, of cardinality n.
We need to show that the left-translation action of G on (G, dA) is finitely oscil-
lation stable; (G, dA) naturally identifies with the set X of all n-element subsets
of Q, endowed with the discrete metric, and on which G acts diagonally. Since
we are looking at Lipschitz functions on a discrete set, we may as well focus on
functions taking values in {0, 1}; so, what we are aiming to prove is that, for any
map f : X → {0, 1}, and any finite subset F of X, there exists g ∈ G such that f is
constant on gF.

Let B denote the (finite) union of all the elements of F, and denote its cardi-
nality by m. The map f is a coloring of all subsets of Q of cardinality n, with two
colors, and the finite version of the Ramsey theorem tells us that there exists N
such that, whenever we color n-elements subsets of an N element set with two
colors, there exists a m-element subset which is monochromatic. Let B be any sub-
set of Q of cardinality N; there exists a subset B̃ of B of cardinality m such that f is
constant on subsets of B̃ with cardinality n. One can pick g ∈ G such that gF = B̃,
and f is constant on gF, as desired. �

The appearance of the Ramsey theorem in the proof above, and of maps de-
fined on the space of copies of a given finitely generated substructure, is not a
coincidence: indeed, if K is a Fraı̈ssé class with limit K, and G = Aut(K), then the
oscillation stability of each action G y (G, dA) is equivalent to a Ramsey-theoretic
property of K.

DEFINITION 4.49. Let K be a Fraı̈ssé class of discrete finitely generated struc-

tures. Given A, B ∈ K, we let

(
B
A

)
denote the set of substructures of B which are

isometric to A.
Say that K has the Ramsey property if, for any A ≤ B ∈ K, and any k ∈ N, there

exists C ∈ K such that, for any map c :

(
C
A

)
→ {1, . . . , k}, there exists B0 ∈

(
C
B

)

such that c is constant on

(
B0

A

)
.

The map c above is usually called a coloring; the Ramsey property could be
stated equivalently using colorings with only 2 colors instead of any finite number
of colors.

Whenever G ≤ S∞ is a closed subgroup, G acts on the compact set of orders
on N; so, if G is extremely amenable, then G must fix an ordering on N since the
space of orderings is a compact space on which G acts continuously. In particular,
S∞ is not extremely amenable, a fact which was first observed in [Pes98]. This
observation also implies that, whenever G = Aut(K), where K is the Fraı̈ssé limit
of some Fraı̈ssé class K, all elements of K must be rigid, i.e. have trivial automor-
phism group, and one may as well assume that the language of K contains a binary
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symbol ≺ which is interpreted by a total ordering in K. Following [KPT05], we
then say that K is a Fraı̈ssé order class. One of the main results of [KPT05] is the
following.

THEOREM 4.50 ([KPT05]). Let G be a closed subgroup of S∞. Then G is extremely
amenable if, and only if, G = Aut(K), where K is the Fraı̈ssé limit of a Fraı̈ssé order class
with the Ramsey property.

As pointed out in [KPT05], every Fraı̈ssé order class such that G is the auto-
morphism group of its limit must have the Ramsey property, so the above result
does not depend on the way G is represented as the automorphism group of a
Fraı̈ssé limit. One could replace the statement that K is an order class by asking
that K is made up of rigid structures.

Now, our task is to translate Theorem 4.50 to the context of general Polish
groups. At first glance, something seems to go awry: many natural metric Fraı̈ssé
limits whose automorphism group is known to be extremely amenable (the stan-
dard atomless probability algebra, the separable infinite-dimensional Hilbert space,
the Urysohn space ...) are made up of very much non-rigid structures, and no or-
dering is to be found. As it turns out, the ordering, which plays a very important
role in the discrete setting, is a bit of a red herring here: what one needs to un-
derstand is that, if A is a rigid structure, then the set of copies of A inside B is the
same thing as the set of embeddings from A to B. So, the Ramsey property could be
restated in terms of embeddings.

DEFINITION 4.51. Let K be a metric Fraı̈ssé class. For any A, B ∈ K, let AB
denote the set of all embeddings from A to B, and turn it into a metric space by
setting

∀α, β ∈ AB, d(α, β) = sup{d(α(a), β(a)) : a ∈ A} .

A coloring of AB is a 1-Lipschitz map from AB to [0, 1].

The fact that colorings are asked to take values in [0, 1], and to be 1-Lipschitz,
is somewhat inessential - all that really matters is that their behavior is controlled
by the metric on embeddings.

DEFINITION 4.52. Let K be a metric Fraı̈ssé class, and A, B, C be elements of
K. For any β ∈ BC, set

AC(β) = {β ◦ α : α ∈ AB}
the set of embeddings of A in C which factor through β.

Once we agree that we should be coloring embeddings when working in the
continuous setting, the analogue of finding a copy B0 of B in C such that a coloring

is constant on

(
B0

A

)
is finding β ∈ BC such that a coloring has small oscillation

on AC(β). With this in mind, the Ramsey property naturally translates to the
following.

DEFINITION 4.53. Let K be a metric Fraı̈ssé class. We say that K has the approx-
imate Ramsey property for embeddings (ARP) if the following condition is satisfied:

For any A ≤ B ∈ K, and any ε > 0, there exists C ∈ K such that, for any

coloring c of AC, there exists β ∈ BC such that the oscillation of c on AC(β) is less
than ε.
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When the class is made up of discrete structures, we are just reformulating
the Ramsey property in terms of embeddings rather than substructures. When
the class is made up of rigid structures, we recover the usual Ramsey property;
however, the Ramsey property for embeddings is stronger, since it actually forces
the structures to be rigid.

As in the discrete setting, this condition turns out to be a reformulation of the
finite oscillation stability of the action of (Aut(K), dA) for any finite A ⊆ K, and
we obtain the following result (unpublished joint work with T. Tsankov).

THEOREM 4.54 ([MT13a]). Let K be a metric Fraı̈ssé class, and G be the auto-
morphism group of its limit. Then G is extremely amenable if, and only if, K has the
approximate Ramsey property.

Taking advantage of the continuous setting, one can formulate a formal weak-
ening of the approximate Ramsey property which is equivalent to it (for instance,
this enables one to work with a dense subclass of K rather than the whole of K).
Unfortunately, even this weakening seems very hard to prove, and we were unable
to use Theorem 4.54 to obtain interesting new examples of extremely amenable
Polish groups. One obvious candidate would seem to be the automorphism group
of the Gurarij space.

QUESTION 4.55 ([MT13a]). Is the automorphism group of the Gurarij space
an extremely amenable Polish group?

Using an abstract version of Pestov’s approach in [Pes02] and the phenome-
non of concentration of measure, one would obtain a positive answer by answer-
ing affirmatively the following question.

QUESTION 4.56 ([MT13a]). Let G be the automorphism group of the Gurarij
space. Is it true that {ḡ : ḡ generates a relatively compact subgroup } is dense in
Gn for all n?

I do not even know if this question admits a positive answer for n = 1. If
it has a positive answer for all n, then one could probably also deduce extreme
amenability of the isometry group of the Gurarij space by using the techniques
of [MT13b], though I have not checked the details. It is not clear to me whether
Theorem 4.54 can really be useful; it was of some use as a guide towards obtaining
the following result, joint with Nguyen Van Thé and Tsankov, but the final version
of the proof makes no mention of the approximate Ramsey property.

THEOREM 4.57 ([MNT14]). Let G be a Polish group. Then the following are equiv-
alent.

(1) The universal minimal flow of G is metrizable and has a comeager orbit.
(2) There exists a closed subgroup G∗ such that the right uniformity on G/G∗ is

precompact, and the universal minimal flow of G is the action G y Ĝ/G∗.

Shortly after we proved this theorem, Andy Zucker [Zuc14] announced results
that imply in particular that in the important case of subgroups of S∞ one can
remove the assumption of existence of a comeager orbit in the first item above; that
is, this assumption is always satisfied for nonarchimedean Polish groups when
their universal minimal flow is metrizable. It is an open problem whether one can
do away with this assumption in general. One could also wonder whether some
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of the ideas presented above could be used to make Zucker’s approach work for
general Polish groups; there appear to be significant difficulties to overcome before
achieving this.

4. Ample generics

When looking at the question of simplicity of full groups of minimal home-
omorphisms, and their closures, we already noticed that the existence of an ele-
ment with a comeager conjugacy class was a desirable, and strong, property for
a Polish group G to have. This property is usually not satisfied (for instance P.
Wesolek [Wes13] recently proved that no locally compact Polish group can have a
comeager conjugacy class); it can be particularly enlightening when one thinks
of G as the automorphism group of some structure. Indeed, the action of the
generic element on the structure should be intimately linked with the structure’s
properties, despite the fact that having a comeager orbit is expressible purely in
terms of the group. Actually, as was first noted by Hodges–Hodkinson–Lascar–
Shelah [HHLS93] , existence of generic tuples in Gn for all n provides a tool to
reconstruct the structure from its automorphism group as an abstract group (in a
model-theoretic sense that I will not go into; this also depends on earlier results of
Ahlbrandt–Ziegler [AZ86]).

DEFINITION 4.58 ([KR07]). Let G be a Polish group. We say that G has am-
ple generics if for all n ∈ N there exists (g1, . . . , gn) ∈ Gn such that the diagonal

conjugacy class {(kg1k−1, . . . , kgnk−1) : k ∈ G} is comeager in Gn.

The notion above was introduced, using a somewhat more flexible (and opaque
to me) definition, in the context of permutation groups in [HHLS93] ; the above
formulation, which makes sense for general Polish groups, comes from [KR07].

Recall that a Polish group G has the automatic continuity property if, whenever
H is a separable topological group, any homomorphism from G to H must be
continuous. Any Polish group with the automatic continuity property must have
a unique Polish topology compatible with its group structure (since an abstract
group isomorphism between Polish groups which is continuous must also have a
continuous inverse), and this is a stronger property. To see that the two properties
are different, one can for instance note that Kallman [Kal76] proved that the group
of p-adic integers has a unique Polish topology compatible with its group struc-
ture; but, as observed in [Ros09a]*Example 1.6, any uncountable abelian compact
Polish group admits a non-continuous homomorphism into S∞. Indeed, any in-
finite abelian group has a subgroup of countable, infinite index; if the ambient
group G is compact then this subgroup cannot be open, and the left-translation
action of G on the coset space produces a discontinuous action of G on a countable
set, which is the same thing as a non-continuous mapping from G into S∞.

It was proved in [HHLS93] that, whenever G is a closed subgroup of S∞ with
ample generics, G admits a basis of neighborhoods of 1 consisting of open sub-
groups with ample generics (this is only explicitly pointed out in [BYT13], I be-
lieve), in particular G must satisfy the small index property, i.e. any subgroup of
G with countable index must be open. This last property is equivalent to saying
that any homomorphism from G to S∞ is continuous (in one direction, use the fact
that the topology of S∞ has a basis consisting of open subgroups, which are of
countable index; in the other direction, look at the action of G on its quotient by
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some countable subgroup). The following stronger result is due to Kechris and
Rosendal [KR07].

THEOREM 4.59 (Kechris–Rosendal [KR07]). Let G be a Polish group with ample
generics. Then G satisfies the automatic continuity property.

Using the weak amalgamation property we mentioned in an earlier section,
Kechris and Rosendal also provided a Fraı̈ssé-theoretic characterization of closed
subgroups of S∞ with ample generics. These appear to be fairly common among
automorphism groups of highly homogeneous discrete structures - for instance,
S∞ has ample generics (which is easy to show by hand), as do the automorphism
group of the random graph, the isometry group of the rational Urysohn space...

Unfortunately, at the moment no example of a Polish group with ample gener-
ics and which is not isomorphic to a subgroup of S∞ is known. While I personally
doubt that such groups exist, I believe it is fair to say that the general expectation is
that there are examples, and that we just do not know where to look for them at the
moment. Still, the point remains that, in the automorphism groups of nondiscrete
metric structures that we encountered so far, conjugacy classes are meager. For
Iso(U) this is a result of Kechris (published in a paper of Glasner–Weiss [GW08]).
For U(H), one can find a proof of meagerness of conjugacy classes in [GW08],
while Kechris [Kec10] refers to Nadkarni’s book ([Nad98], Chapter 8); I do not
know who first proved the result. For Aut(µ), [GW08] points out that meagerness
of conjugacy classes follows from a result of del Junco [dJ81], and Kechris [Kec10]
attributes meagerness of conjugacy classes there to Rokhlin.

So, automatic continuity via ample generics seems to be a non-starter in those
cases. However, these groups do have dense conjugacy classes, at least (Kechris–
Rosendal [KR07] for Iso(U), Rokhlin for Aut(µ)); and we already noticed that the
uniform metric could be of interest - in analysis, one is used to neglecting small,
uniformly controlled errors, or at least to working with them.

DEFINITION 4.60. Let (G, τ, ∂) be a Polish topometric group, and A be a subset
of G. We set

(A)<ε = {g ∈ G : ∃a ∈ A ∂(g, a) < ε}
.

Then, the next best thing after a conjugacy class is the uniform closure of a
conjugacy class. To make notation a bit simpler below, we denote by Conj(ḡ) the
diagonal conjugacy class of ḡ ∈ Gn.

DEFINITION 4.61. Let (G, τ, ∂) be a Polish topometric group. We say that G has
ample generics if, for any ε > 0 and any n, there exists ḡ ∈ Gn such that (Conj(ḡ))<ε

is comeager.

Note that saying that this condition is satisfied is the same as saying that there
exists ḡ such that the uniform closure of Conj(ḡ) is comeager; we call such ele-
ments metric generics. When ∂ induces the coarsest bi-invariant uniformity refin-
ing τ, we say that G has metric ample generics. This condition seems somewhat
unlikely to be satisfied if G does not have ample generics to start with: indeed,
if we assume that there exists a dense conjugacy class, then the fact that ∂ is τ-
Baire measurable and bi-invariant imposes that there exists some r > 0 such that
{(g, h) : ∂(g, h) = r} is comeager. Thus ∂ looks to be almost constant (and discrete)
from the point of view of τ. Also, if there are dense conjugacy classes and no
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comeager one, then they are all meager; so, we are hoping to take a meager set, ex-
pand it by taking an arbitrarily small tubular neighborhood for an almost discrete
metric, and obtain something comeager. Surprisingly, this can actually happen.

THEOREM 4.62 ([BYBM13]). The Polish groups Aut(µ), U(H) and Iso(U) all
have ample metric generics.

The key point to prove this is that, in each case, there is a countable substruc-
ture sitting inside the continuous one, whose automorphism group has ample
generics (when endowed with its permutation group topology) and is a very good
approximation of the automorphism group of the continuous structure. One way
to formalize this is as follows.

DEFINITION 4.63. Let M be a Polish metric structure, and N be a (classical)
countable structure. We say that N is a good approximating substructure if the fol-
lowing conditions are satisfied:

• The universe of N is a countable dense subset of the universe of M.
• Any automorphism of N extends to an automorphism of M and (under

the obvious identification) Aut(N) is dense in Aut(M).
• For every open subset U of Aut(N) (in its permutation group topology)

and any ε > 0, (U)<ε is open in Aut(M).

For instance, the countable atomless rational probability algebra (the Fraı̈ssé
limit of all finite probability algebras with measure taking only rational values) is
a good approximating substructure of the standard atomless probability algebra;
the rational Urysohn space is a good approximating substructure of the Urysohn
space. By playing Banach-Mazur games, one can then show the following result,
which implies in particular that, if N is a good approximating substructure of M,
and Aut(N) has ample generics as a permutation group, then Aut(M) has ample
metric generics.

THEOREM 4.64. Let N be a good approximating substructure of a Polish metric
structure M. Then, whenever A ⊆ Aut(N) is comeager (for the permutation group
topology of Aut(N)), the uniform closure of A is comeager in Aut(M) (for the Polish
topology of Aut(M)).

So far, all our examples of Polish groups with ample metric generics come
from structures with a good approximating substructure, making one wonder
whether this is a general phenomenon. This might simply be a consequence of
our lack of examples.

Ample metric generics for a Polish topometric group can be used, in some
sense, to translate questions about the topology to (formally easier, and trivial
when the metric is discrete) questions about the metric. For instance, using the
ideas of [KR07] and some additional work to take care of the ε’s, we proved the
following result in [BYBM13].

THEOREM 4.65. Let (G, τ, ∂) be a Polish topometric group with ample generics, H
be a separable topological group, and ϕ : (G, ∂) → H be a continuous homomorphism.
Then ϕ : (G, τ) → H is continuous.

This applies in particular to Iso(U), U(H) and Aut(µ). Since we claimed ear-
lier that the uniform metric in these groups was almost discrete, and it should not
be hard to prove continuity of homomorphisms starting from an almost discrete
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group, we look well on our way to proving automatic continuity for these groups.
The situation is actually somewhat more complicated.

THEOREM 4.66.

(1) The group Aut(µ) has the automatic continuity property ([BYBM13]).
(2) The group U(H) has the automatic continuity property (Tsankov [Tsa13]).
(3) The group Iso(U) has the automatic continuity property (Sabok [Sab13]).

In the first two cases, the original proof uses Theorem 4.65 (even though, as
was pointed out to me by M. Malicki, one could bypass the notion of ample met-
ric generics and work directly with the good approximating substructure and the
uniform metric; still, the interplay of metric and topology is fundamental in this
argument) to reduce the question to continuity of homomorphism to separable
groups when the source Polish group is endowed with its uniform metric. In the
case of Aut(µ), it turns out to be not too hard to obtain the desired result, by
following an argument of Kittrell–Tsankov [KT10] which they used to prove auto-
matic continuity of full groups of ergodic, probability-measure-preserving actions
of countable groups. The case of U(H) requires more ingenuity and technical skill,
and was dealt with by T. Tsankov [Tsa13].

Automatic continuity for the isometry group of the Urysohn space was proved
very recently by Sabok [Sab13], using a different method; his method can be used
to obtain automatic continuity for Aut(µ) and U(H) as well, though this leads to
more complicated, less transparent proofs (to my tastes at least). Still, his tech-
nique appears to be more versatile, in that it captures the example of the Urysohn
space; both techniques seem powerless to tackle some natural classes of candi-
dates for the automatic continuity property, for instance, full groups of aperiodic,
non-ergodic probability-measure-preserving equivalence relations with countable
classes.

Once one is convinced that metric generic elements are interesting objects,
it becomes worthwhile to try and give an “intrinsic” characterization of them.
Rather than try to define formally what I mean here, let me recall the following
theorem of Effros, which answers that question for generic elements.

THEOREM 4.67 ([Eff65]). Let G be a Polish group acting continuously on a Polish
space X. Let x ∈ X have a dense orbit. Then, the following are equivalent:

(1) The orbit G · x is comeager in X.
(2) The orbit map g 7→ g · x is an open map from G to G · x.
(3) The orbit G · x is a Gδ subset of X.

The characterization we are interested in, for metric generic elements, is sim-
ilar to the equivalence of the first two items above. The last item is interesting in
its own right, in that it shows that the set of generic elements is Gδ; one may then
wonder whether the same is true of metric generic elements in a Polish topometric
group.

The second condition above says that, for any open U ⊆ G, the set U · x is open
in G · x. The natural analogue of U · x in the topometric setting is given by sets of
the form (U · x)<ε; G · x could be left unchanged, replaced by its uniform closure,
or, more ambitiously, replaced by (G · x)ε. So we have three somewhat natural
candidates for a generalization of the Effros theorem to the topometric setting.

The use of ε’s threatens to be cumbersome, so it is useful to subsume all of
them into a single object: the distance function. Instead of g ∈ G, what we are
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really working with is the distance function ∂(g, ·), and g being a metric generic
element is a property of the orbit of that function under the natural shift action of
G. It turns out to be possible to think of ∂(g, ·) as being a point, in a setting where
∂ plays the role of the diagonal. We turn to a discussion of this approach before
going back to the promised topometric version of the Effros theorem.

5. Grey sets

Material in this section comes from [BYM13], joint with I. Ben Yaacov.

DEFINITION 4.68. Let X be a set. A grey subset of X is a function A : X →
[0,+∞].

Given A, B two grey subsets, we write A ⊑ B to mean that B(x) ≤ A(x) for
all x ∈ X.

The terminology is meant to evoke scales of grey: rather than dealing with
sets, where things are black or white (belonging to the set or not), we want to deal
with distance to sets, where one can be more or less close to belonging. Of course,
subsets can be seen as grey subsets, via their zero-indicator functions: given A ⊆ X,
define

0A(x) =

{
0 if x ∈ A

∞ else

We use “square” versions of usual set-theoretic symbols when working in the
grey setting; thus, ⊔ denotes the infimum operation (analogue to the union), while
⊓ denotes the sup (and, unfortunately, this runs contrary to the usual symbols ∨
for max and ∧ for min).

The plan is to introduce a variant of descriptive set theory where subsets are
replaced with grey subsets, in order to avoid getting bogged down in epsilon-
tracking during proofs taking place in the topometric setting. When applied to
zero-indicators, the new notions should boil down to the usual notions. An ob-
vious problem with this approach is that there is no complementation operation
when dealing with grey subsets; this can be overcome but makes a few definitions
somewhat awkward.

5.1. Grey topology. Throughout, we assume that X is a completely metriz-
able topological space.

A subset is open iff its zero-indicator is upper semi-continuous, closed iff its
zero-indicator is lower semi-continuous, and we have our first definition.

DEFINITION 4.69. Let A be a grey subset of X. We say that A is open (respec-
tively, closed) if it is upper (respectively, lower) semi-continuous.

It is straightforward to check that a union of open grey subsets is open, an in-
tersection of closed grey subsets is closed; consequently one can define the interior
A◦ and closure Ā of a grey subset A, and check the formulas

∀x ∈ X A◦(x) = lim sup
y→x

A(y) and Ā(x) = lim inf
y→x

A(y)

DEFINITION 4.70. A grey subset A ⊑ X is meager if there exists r > 0 such that
∀∗x ∈ X A(x) ≥ r. It is comeager if ∀∗x ∈ X A(x) < r for all r > 0, equivalently, if
A(x) = 0 for a comeager set of x.
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In the above definition we feel the effect of the lack of a complementation
operation, as we cannot say that a grey subset is meager iff its complement is
comeager, and the two definitions have a somewhat different flavor.

We write A ⊑∗ B to mean that ∀∗x ∈ X A(x) ≥ B(x), similarly for ⊒∗, =∗. To
do descriptive set theory, we want to define Baire-measurable grey subsets; they
should be those which coincide almost everywhere (in the sense of Baire category)
with open sets.

DEFINITION 4.71. Let A be a grey subset of X. Define

U(A) =
⊔
{O ⊑o X : O ⊑∗ A}

Then, as in usual descriptive set theory, it is always the case that U(A) ⊑∗ A,
and we define A to be Baire-measurable if the reverse inclusion holds, namely,
A ⊑∗ U(A). It is not hard to see that this is equivalent to the existence of an open
grey subset B such that A =∗ B and, perhaps more interestingly, also equivalent to
the fact that A is a Baire-measurable function from X to [0,+∞]. I see this as a hint
that our definitions are the right ones; of course, an equally viable point of view is
that our definitions have so far only enabled us to recover a well-known concept
that certainly did not need grey subsets to be introduced.

Similarly, one could define a Gδ grey subset either as the (grey) intersection of
countably many open sets, or a function A : X → [0,+∞] such that A≤r is Gδ for
all r. Again, the two definitions coincide.

There is a notion of a grey subset being dense in another: simply say that
A ⊑ B is dense if Ā ⊒ B; similarly, one can define the relative closure of A in B
as being equal to Ā ⊓ B. These notions have the expected properties; it is more
tedious to define what a relative open subset is, again due to the fact that there is
no notion of “grey complement” of a grey subset, so one cannot simply dualize
the notion of relative closure. However, a definition can be made to work: define
the relative interior of A ⊑ B as being equal to (A − B)◦ + B. Then one can say
that a grey subset of B is relatively open if it coincides with its relative interior; the
important example to keep in mind here is that, if U is an open grey subset of the
ambient space, then B + U is a grey open subset of B.

Armed with these definitions, we now can state (and prove rather straightfor-
wardly) a grey version of the Baire category theorem: a countable intersection of
dense open grey subsets of a Gδ grey subset B of a complete metric space is dense
in B.

All this leads to a new version of the Kuratowski–Ulam theorem. Below, when
(Y, τ, ∂) is a Polish topometric space, X is a Polish space and f : X → Y is a con-
tinuous map, we define for all y ∈ Y and all A ⊑ X a grey subset Ay of X (the
“fibre of A above y”) by setting Ay(x) = A(x) + ∂( f (x), y) . Similarly, we define a
topometric variant of the image of A under f , by setting

( f (A))∂(y) = inf
x

A(x) + ∂( f (x), y) = inf
x

Ay(x) .

In the particular case where f is the identity map from Y to itself, we simply denote
(id(A))∂ by (A)∂. When A is a “true” subset of X this is equal to the ∂-distance to
A.

THEOREM 4.72 ([BYM13]). Let (Y, τ, ∂) be a Polish topometric space, X a Polish
space, and π : X → Y a continuous map. Assume that:
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• Whenever U ⊑ X is open, (πU)∂ is open in Y.
• Whenever V ⊑ Y is open in Y, (V)∂ is open in Y.

Then the following conditions are equivalent, for a Baire-measurable A ⊑ X:

(1) The grey set A is comeager in X.
(2) The set {y ∈ Y : Ay is comeager in Xy} is comeager in Y.

The above Kuratowski–Ulam theorem is, so far, the main payoff of grey topol-
ogy for us; when trying to prove an analogue of the Effros theorem in the topomet-
ric setting, it is useful to understand how the uniform metric and Baire category
interact (recall that, initially, it seemed unlikely that ample metric generics could
even exist outside of “usual” ample generics), in particular one needs to show that,
whenever A is comeager in an open set O of a Polish group G and r is some posi-
tive real, then (A)<r is still comeager in (O)<r. This is the content of the following
corollary of our grey Kuratowski–Ulam theorem.

COROLLARY 4.73. Let (X, τ, ∂) be a Polish topometric space, and assume that (V)∂

is open for any open V ⊑ X. Assume also that A ⊑ U ⊑ X, where U is open and A is
comeager in U. Then (A)∂ is comeager in (U)∂.

In particular, if A ⊑ X is 1-Lipschitz (relative to ∂), then U(A) is also 1-Lipschitz.

Note that the compatibility assumption between topology and metric featured
above is automatically satisfied in a Polish topometric group.

Now we focus on grey subsets of (completely metrizable, not necessarily sep-
arable) groups.

DEFINITION 4.74. Let G be a group. For A, B ⊑ X, we define

A ∗ B(g) = inf
hk=g

A(h) + B(k) , A−1(x) = A(x−1) .

The ∗ operation is a form of convolution, and extends to grey subsets the
group operation of G as applied to subsets of G (identified with their zero-indicator
function). One can then extend to the grey context several classical, and useful,
properties of grey subsets of completely metrizable groups.

LEMMA 4.75 (Pettis’ theorem for grey subsets). Let A, B be grey subsets of a
completely metrizable group G. Then U(A) ∗ U(B) ⊑ A ∗ B.

Now, let us go further, and try to see what a “grey subgroup” should be. A
subset H of a group G is a subgroup if the following conditions are satisfied: H is

nonempty, and HH−1 ⊆ H.
Thus, a grey subgroup H ⊑ G should be a grey subset such that H(1) = 0, and

H ∗ H−1 ⊑ H. Explicitly, this last condition says that H(x) + H(y) ≥ H(xy−1) for

all x, y ∈ G. These two conditions imply that H(1) ≤ infxy=1 H(x) + H(y−1) =

2 inf(H) = 0, from which the fact that H ∗ H−1 ⊑ H yields H = H−1; finally we

see that the conditions are equivalent to writing H(1) = 0, H(g−1) = H(g) and
H(gh) ≤ H(g) + H(h) for all g, h. In other words, our grey subgroups are sim-
ply seminorms on G, which are themselves in natural bijection with left-invariant
pseudometrics on G. So the grey analogue of a subgroup is a left-invariant pseu-
dometric; hence one should expect that results concerning subgroups of permu-
tation groups should translate, using the topometric formalism, to results about
left-invariant pseudometrics.
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One example of this phenomenon is the translation of the small index prop-
erty. Recall that a subgroup G of S∞ has the small index property if any subgroup
of G of index strictly below the continuum is open. We know by now that this
property implies that any homomorphism from G to S∞ is continuous (and really,
for that one only cares about subgroups of countable index). Let us now try to
translate the small index property in the grey context. Thinking of a left-invariant
pseudometric as the counterpart of a subgroup, the obvious analogue of “index
strictly below the continuum”, that is, “cardinality of G/H strictly below the con-
tinuum”, is “the density character of the metric space associated to the pseudomet-
ric is strictly below the continuum”. Since “open” translates to ”continuous”, we
have a first candidate: “any left-invariant pseudometric on G of density charac-

ter strictly below 2ℵ0 is continuous”; equivalently, any homomorphism from G to

a metrizable group of density character strictly below 2ℵ0 is continuous. This im-
plies that any homomorphism from G to a separable group is continuous (what we
called earlier the automatic continuity property); in the discussion above it would

also make sense to replace all instances of the words “strictly below 2ℵ0” by the
word “countable”, and the proposed analogue of the (very) small index property
is then exactly the automatic continuity property. There is something wrong in
this picture, however: we are not taking the topometric structure into account at
all. Some compatibility between the pseudometric under consideration, and the
uniform metric on our topometric group, should be assumed.

DEFINITION 4.76. Let (G, τ, ∂) be a Polish topometric group. We say that
(G, τ, ∂) has the small density property if, whenever d is a left-invariant pseudo-

metric such that the density character of (G, d) is < 2ℵ0 , and d is Baire measurable
with respect to ∂, d must be continuous.

Equivalently: any homomorphism from G to a metrizable group of density

character < 2ℵ0 which is ∂-Baire measurable is τ-continuous.

In the definition above, one would not change anything if one replaced ∂-Baire
measurability with ∂-continuity.

THEOREM 4.77 ([BYM13]). Let (G, τ, ∂) be a Polish topometric group with ample
generics. Then (G, τ, ∂) has the small density property.

This is essentially a variant of the automatic continuity theorem proved in
[BYBM13], though the approach via grey sets makes the proof neater and probably
easier to comprehend.

5.2. A topometric version of Effros’ theorem.

THEOREM 4.78 ([BYM13]). Assume that (X, τ, ∂) is a Polish topometric space, and
that G is a Polish group acting continuously on X by τ-homeomorphisms which are also
∂-isometries. Assume further that, for any U open in X and any r > 0, the set (U)<r is
open. Assume also that x ∈ X is such that G · x is dense. Then the following conditions
are equivalent:

(1) G · x
∂

is Gδ.

(2) G · x
∂

is comeager.

(3) For any open subset U of G and any r > 0, (U · x)<r is open in G · x
∂
.
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(4) There exists y ∈ G · x
∂

such that, for any open subset U of G and any r > 0,
(U · y)<r is open in G · y.

Note that all the assumptions above are satisfied when X = (G, τ, ∂) is a Polish
topometric group (or a power thereof) and G acts by (diagonal) conjugacy.

The only interesting implications here are (2) ⇒ (3) and (4) ⇒ (1). As it
turns out, to close the implication diagram once one has proved the implication
(2) ⇒ (3) it is simpler to prove that (4) ⇒ (2) and (3) ⇒ (1); these implications
are both instances of a topometric variant of a well-known theorem of Hausdorff
stating that a metrizable space which is a continuous, open image of a Polish space
is Polish itself. I will only discuss the proof of (2) ⇒ (3).

PROOF OF (2) ⇒ (3). Denote by π the orbit map g 7→ g · x. Fix a countable
basis (On)n<ω for the topology of G; for any n (πOn)∂ is Baire-measurable and 1-
Lipschitz (relative to ∂). Then 4.73 shows that Un = U((πOn)∂) is also 1-Lipschitz.
Let Ω = {y : ∀n(πOn)∂(y) = Un(y)}. This is a τ-comeager, ∂-closed subset. Also,
for any O ⊑o G, (πO)∂ ⊓ 0Ω ⊑o 0Ω.

Now, let B = {y : ∀∗g ∈ G g · y ∈ Ω}. This set is G-invariant, τ-comeager, and
∂-closed. The first point is obvious, the second follows from the (usual) Kuratowski-
Ulam theorem, and to see why the third holds assume that bi ∈ B and b ∈ X are
such that ∂(bi, b) → 0. Then there exists g ∈ G such that g · bi ∈ Ω for all i, so since
Ω is ∂-closed we get g · b ∈ Ω, i.e. b ∈ Ω.

It follows that G · x
∂

is contained in B; to conclude, it is enough to prove that
for all U ⊑o G (πU)∂ ⊓ 0B ⊑o 0B. To that end, let bi ∈ B converge to b ∈ B; there
exists g ∈ G such that g · b ∈ Ω and g · bi ∈ Ω for all i.

Since (πgU)∂ ⊓ 0Ω ⊑o 0Ω, we have lim sup(πgU)∂(g · bi) ≤ (πgU)∂(gb),
equivalently lim sup(πU)∂(bi) ≤ (πU)∂(b). �

6. Meagerness of conjugacy classes in the space of actions

We conclude this chapter by discussing a topometric approach to proving that
conjugacy classes are meager in Hom(Γ, G) for some countable groups Γ and Pol-
ish groups G - so far this approach only really works when G is the isometry group
of the Urysohn space. The results of this section are unpublished.

Assume that M is a Polish metric structure, and that G is its automorphism
group, which we turn into a Polish topometric group in the usual way. For any
finite A ⊂ M, denote by GA the pointwise stabilizer of A, and assume that for
any ε > 0 the set (GA)<ε contains 1 in its interior. This is true for instance in the
standard atomless probability algebra, the Urysohn space or the Urysohn sphere;
the assumption is a bit stronger than what we really need but simplifies exposition
somewhat.

Fix a countable group Γ. We may endow Hom(Γ, G) with a very strong uni-
form metric d∞, defined by d∞(π, σ) = supg∈Γ du(π(g), σ(g)). Here du denotes

the uniform metric on G = Aut(M); note that even if Γ = Z d∞ is much finer than
du, since we are taking a supremum over all elements of Z. In the case of Aut(µ),
this metric is considered in [Kec10], where it is proved that conjugacy classes are
clopen in the topology induced by d∞.

Now, assume that π0 ∈ Hom(Γ, G) has a comeager conjugacy class. Then, for

any neighborhood V of 1, π0 must belong to the interior of V · π0 (where closure is
relative to the Polish topology on Hom(Γ, G), and · denotes the conjugacy action



6. MEAGERNESS OF CONJUGACY CLASSES IN THE SPACE OF ACTIONS 73

of G on Hom(Γ, G)). Thus, under our assumption on M, π0 must belong to the
interior of the closure of (GA)<ε · π0 for any finite A ⊂ M and ε > 0.

Let us focus on V = (GA)<ε · π0 for a moment: assume that π belongs to this
set; then there exists h ∈ GA and g ∈ (1)<ε such that π = gh · π0. Thus for any
a, b ∈ A and γ, δ ∈ Γ we have that |d(π(γ)a, π(δ)b)− d(π0(γ)a, π0(δ)b)| is equal
to

|d(ghπ0(γ)h
−1g−1a, ghπ0(δ)h

−1g−1b)− d(π0(γ)a, π0(δ)b)|
≤ 2ε + |d(hπ0(γ)h

−1a, hπ0(δ)h
−1b)− d(π0(γ)a, π0(δ)b)|

= 2ε + |d(hπ0(γ)a, hπ0(δ)b)− d(π0(γ)a, π0(δ)b)|
= 2ε .

So for any π ∈ V, we have for all γ, δ ∈ Γ and all a, b ∈ A that

|d(π(γ)a, π(δ)b)− d(π0(γ)a, π0(δ)b)| ≤ 2ε .

Note that the set of all π satisfying these conditions is closed in Hom(Γ, G), while
we know that the closure of V contains π0 in its interior: hence there exists an
open neighborhood W of π0 in Hom(Γ, G) such that

∀π ∈ W ∀γ, δ ∈ Γ ∀a, b ∈ A |d(π(γ)a, π(δ)b)− d(π0(γ)a, π0(δ)b)| ≤ 2ε .

In other words, the map π(γ)a 7→ π0(γ)a must be an isomorphism from π(Γ)A
to π0(Γ)A up to a prescribed error 2ε: the finite amount of constraints imposed by
the open set W must control the whole orbit π(Γ)A up to a prescribed error. This
seems to be a very strong condition that is unlikely to hold when Γ is infinite.

THEOREM 4.79. For any infinite, countable group Γ, conjugacy classes are meager
in Hom(Γ, Iso(U)) and Hom(Γ, Iso(U1)).

PROOF. One can use the above criterion with A a singleton to derive a con-
tradiction. Let us give the proof for Iso(U): assume for a contradiction that π0 ∈
Hom(Γ, Iso(U)) has a comeager conjugacy class. There must exist an open subset
W of Hom(Γ, Iso(U)) containing π0 and such that, for all π ∈ W and all γ ∈ Γ,
one has

|d(π(γ)a, a)− d(π0(γ)a, a)| ≤ 1 .

This implies that all elements of W have bounded orbits, or all elements of W have
unbounded orbits (depending on what π0 does).

Thus to derive a contradiction it is enough to prove that Γ actions with bounded
orbits and Γ actions with unbounded orbits are both dense in Hom(Γ, Iso(U)).
This is easy to do. Indeed, let

O = {π : ∀a ∈ A∀γ ∈ F d(π(γ)a, σ(γ)a) < ε}
be an open subset (with A, F finite, ε > 0). Then consider the supremum M of
all distances between elements of {σ(γ)a : γ ∈ F , a ∈ A}; let (X, d) be the met-
ric space σ(Γ)A. One can endow it with a new metric ρ = min(d, M); Γ still acts
isometrically on (X, ρ), which may be embedded in Iso(U); denote this new ac-
tion by π. Using the homogeneity of U, and the fact that ρ, d agree on elements
{σ(γ)a : γ ∈ F , a ∈ A} we obtain that π belongs to O, and has bounded orbits.
Thus the set of elements with bounded orbits is dense in Hom(Γ, G) for any count-
able group Γ.
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Now, let ρ be an unbounded left-invariant metric on Γ (this exists because Γ

is countable infinite). The left-translation Γ y (Γ, ρ) extends to an action π : Γ y

U with unbounded orbits; thus we obtain two pseudometrics on Γ × A which
are invariant when Γ acts on Γ × A by left-translation on the first coordinate:
d1((γ, a), (δ, b)) = d(σ(γ)a, σ(δ)b) and d2((γ, a), (δ, b)) = d(π(γ)a, π(δ)b). For
any r > 0 d1 + rd2 is a pseudometric on Γ × A which is invariant under the left-
translation action, and elements have unbounded orbits for d1 + rd2 under this
action. As r goes to 0, the values of d1 + rd2 on F × A get arbitrarily close to the
values of d1 on F × A, so for r small enough, using the homogeneity of U, we ob-
tain an action of Γ that belongs to O and has unbounded orbits. This concludes the
proof for Iso(U). One can use similar ideas to deal with Iso(U1) (looking at the
behaviour of d(π(γ)a, a) as γ goes to ∞), though I will not give details here. �

It would be much more interesting to be able to prove the same result for
G = Aut(µ); this is related to questions about complexities of some classification
problems. It is known since work of Foreman and Weiss [FW04] that conjugacy
classes are meager in Hom(Γ, Aut(µ)) for any infinite amenable Γ. They used
entropy for amenable actions as an invariant that contradicts the possibility of
a comeager conjugacy class. This makes it tempting to believe that, using the
notion of entropy for measure-preserving actions of sofic groups (see e.g. [Bow10]
and [Ker13]), one could extend their result to all sofic groups. But entropy for
sofic groups is significantly more complicated than for amenable groups and at
the moment I do not know whether this approach can be fruitful in this generality.

We can however obtain some partial results, for instance one can prove that, if
Γ is a countable group such that finite actions and weakly mixing actions are both
dense in Hom(Γ, Aut(µ)), then conjugacy classes are meager in Hom(Γ, Aut(µ)).
The above approach also works if one assumes that rigid and mildly mixing ac-
tions are both dense; certainly there are other examples. The result above (as
well as the case when both rigid and mildly mixing actions are dense) was ob-
tained independently by Robin Tucker–Drob, using a different argument. He ex-
plained to me that density of finite actions is equivalent to profinite actions being
dense, in particular the group must be residually finite; density of weakly mixing
actions is equivalent to the group not having Kazhdan’s property (T) (this fol-
lows from results of Glasner–Weiss [GW97] and Kerr–Pichot [KP08]). Examples
of groups satisfying the conditions of the proposition above, also pointed out to
me by Tucker–Drob, include surface groups and fundamental groups of closed
hyperbolic 3-manifolds. b, using a different argument. He explained to me that
density of finite actions is equivalent to profinite actions being dense, in particular
the group must be residually finite; density of weakly mixing actions is equiva-
lent to the group not having Kazhdan’s property (T) (this follows from results of
Glasner–Weiss [GW97] and Kerr–Pichot [KP08]). Examples of groups satisfying
the conditions of the proposition above, also pointed out to me by Tucker–Drob,
include surface groups and fundamental groups of closed hyperbolic 3-manifolds.

One can certainly do some other variations, but this approach does not seem
to be powerful enough to solve the problem of existence of comeager conjugacy
classes for all countable groups. In particular, it seems powerless to prove that
conjugacy classes are meager in the case of infinite groups with property (T) (or,
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maybe, it suggests that groups with property (T) are a good place to look for ex-
amples of groups for which there exists a comeager conjugacy class in the space of
measure-preserving actions).

I did not discuss the case of the unitary group in this section - this is because
Kerr–Li–Pichot [KLP10] proved that conjugacy classes are meager in Hom(Γ, U(H))
for any countable infinite group Γ. They actually prove more, using an approach
based on operator algebras; maybe the approach discussed above can be used to
give a simpler proof than theirs in the case of countable groups.





I read the poets and the analysts
[. . .]
I traveled the whole world around
For an answer that refused to be found

5
Some open problems

This is a nice occasion to mention some open (at least, I think so) problems that
I have worked on over the past few years or would like to know the answer to.
Several, maybe most, of these problems were mentioned in the main body of the
text.

1. General properties of Polish groups

QUESTION 5.1. Does there exist a Polish group with ample generics which is
not isomorphic to a closed subgroup of S∞?

Here, there are (at least!) two completely opposite views: one is that there
does not appear to be any natural obstruction for the existence of such a group,
hence there must be some example. The other point of view is that, in the case of
subgroups of S∞, subgroups with ample generics appear as automorphism groups
of very natural highly homogeneous structures; in the continuous setting, the very
homogeneity of these structures turns out to imply, at least in all cases that I am
aware of, that the conjugacy classes are meager. So an example would most likely
come from a new breed of Polish groups; I do not know of any candidate.

It would also be interesting to gain a better understanding of Polish groups
with ample metric generics and to expand our list of examples. So far, our exam-
ples come up as follows: assume G is a Polish group, H is a Polish permutation
group with ample generics and ϕ : H → G is a continuous homomorphism with
dense range such that (ϕ(U))<ε is open in g for any U open in H and any ε > 0.
Then G has ample metric generics, and the image under ϕ of a generic element of
H is a metric generic element of G.

QUESTION 5.2. Does there exist a Polish group with ample metric generics
which does not appear in the way described above?

Topometric group structures appear naturally when one considers groups as
automorphism groups of metric structures. Many basic questions are open at the
moment.

77
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QUESTION 5.3. Let (G, τ) be a Polish group, and ∂ be such that (G, τ, ∂) is a
Polish topometric group. What conditions on ∂ ensure that there exists a Polish
metric structure M such that (G, τ) is isomorphic to Aut(M) as a topological
group, and ∂ is uniformly equivalent to the uniform metric on Aut(M)?

A seemingly basic starting point would be to understand what happens when
∂ is discrete.

The most interesting topometric structures on a Polish group are those that
appear when seeing the group as the automorphism group of some Polish metric
structure; one can always make the structure in question approximately homoge-
neous by expanding its language suitably, but can one do better?

QUESTION 5.4. Is every Polish group isomorphic (as a topological group) to
the automorphism group of an exactly homogeneous Polish metric structure?

By exactly homogeneous Polish metric structure, I mean a structure such that
any isomorphism between finitely generated substructures extends to an isomor-
phism of the whole structure. A candidate to prove that the answer to this question
is negative is the group of linear isometries of the Gurarij space. I am convinced
that approximate homogeneity is the right analogue, in the continuous context,
of the usual notion of homogeneity (especially if one cares about automorphism
groups). Still, it would be interesting to understand whether there is a property
of groups that prevents them from being the automorphism group of an exactly
homogeneous structure.

The following question is related to the previous problem and seems interest-
ing in its own right.

QUESTION 5.5. Which Polish groups admit a nontrivial, continuous, isometric
and transitive action on a complete metric space?

Any Polish group which does not admit such an action (or for which such
actions do not separate points) would be an example of a group which cannot be
the automorphism group of an exactly homogeneous Polish metric structure. Of
course, if G is a Polish group admitting a complete left-invariant metric d (such
groups are called cli groups), then the action G y (G, d) is an isometric transitive
action on a complete metric space. Unfortunately (?), not all Polish groups are
cli, so this obvious approach to finding a transitive isometric action on a complete
metric space does not work; some groups come equipped with such an action
despite not being cli, an obvious example being the isometry group of the Urysohn
space. Still, if a group which is not cli appears naturally as an automorphism group
which does not act transitively, then one is hard-pressed to find out where such an
action would come from.

2. The Gurarij space

The isometry group of the Gurarij space is currently rather poorly understood;
I. Ben Yaacov [BY14] proved that it is a universal Polish group.

QUESTION 5.6. Does the isometry group of the Gurarij space satisfy the auto-
matic continuity property?

The Gurarij space is not homogeneous in the sense of Sabok [Sab13], so his
technique does not seem to adapt (though it has been introduced very recently
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and there is still a chance that it may apply in a wider range of situations than is
currently the case). The approach via the uniform metric would require having a
grasp of conjugacy classes.

QUESTION 5.7. Are all conjugacy classes in the isometry group of the Gurarij
space meager? Does this group have ample metric generics?

QUESTION 5.8. Is the isometry group of the Gurarij space extremely amenable?

There is an approach that can be used to show both that conjugacy classes
are meager and that the group (which we call G below) is extremely amenable:
understanding elements of finite order or, a little less ambitiously, elements/tuples
which generate a relatively compact subgroup. Indeed, it follows from Rosendal’s
topological similarity technique [Ros09b] that, if for any nonempty open set U
in a nontrivial Polish group there exists N such that U contains elements such
that gn = 1 for all n ≥ N, then conjugacy classes are meager. To show that G is
extremely amenable, we mentioned above when discussing extreme amenability
for metric Fraı̈ssé limits that it would be sufficient to prove that

{(g1, . . . , gn) : (g1, . . . , gn) generates a relatively compact subgroup}
is dense in Gn for all n. These two questions have a common weakening, which
already I do not know how to answer.

QUESTION 5.9. Is the set of elements of finite order dense in the isometry
group of the Gurarij space? What about the set of elements generating a relatively
compact subgroup?

This seems like a basic question that needs to be answered before one can
expect to say much more about this group.

3. The Holmes space

The reader who made it all the way to this point in the text should not be sur-
prised to read that I consider the Urysohn space to be a natural object, worthy of
investigation. We saw in the first chapter that a separable Banach space is natu-
rally attached to the Urysohn space: whenever U embeds in a Banach space, with
0 belonging to the image of U, the closed linear span of the image U is always iso-
metric to the same space (even more, the norms of linear combinations of elements
of U are uniquely determined by the coefficients of the linear combination and the
choice of which element is mapped to 0). This phenomenon was discovered by M.
R. Holmes , and the separable Banach space described above is now often called
the Holmes space. This is a universal separable Banach space, and its isometry
group is a universal Polish group. Beyond that, not much is known.

It seems natural to wonder what the geometry of this space is like; for instance,
does the Holmes space have a Schauder basis? The questions that we asked above
about the isometry group of the Gurarij space would also make sense here (recall
that the two spaces are not isometric [FW08]). But, to me, the most interesting
question here is of a somewhat different nature: can one give a first-order charac-
terization of the Holmes space, as is possible for most of the other structures that
we encountered in this memoir?

QUESTION 5.10. Is the theory of the Holmes space (in the language of Banach
spaces) ℵ0-categorical?
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To approach this question, it seems that one would need to understand the
orbits of elements of the unit sphere under the group of linear isometries of the
Holmes space; is the action of the linear isometry group on the unit sphere topo-
logically transitive?

For people who prefer topological group theory to model theory (note that I
am not disparaging or blaming them), a question that is very closely related to the
one above is the following.

QUESTION 5.11. Is the group of linear isometries of the Holmes space a Roelcke-
precompact Polish group?

I will not discuss here the notion of Roelcke-precompactness, which was intro-
duced in [RD81]; recent work of Ben Yaacov–Tsankov [BYT13], Ibarlucia [Iba14],
Rosendal [Ros13], Tsankov [Tsa12], inspired by earlier work of Uspenskij ([Usp01],
[Usp08]) makes it likely that this notion will gain prominence in the near future.

4. Measure-preserving automorphisms

Recall the following problem.

QUESTION 5.12. Does a generic element of Aut(µ) generate a closed subgroup

isomorphic to L0(T)?

Solecki [Sol14] has obtained results that provide some evidence pointing to-
wards a positive answer: he proved that a generic element of Aut(µ) generates
a closed group which is a closed homomorphism image of a closed subspace of

L0(R), and contains an increasing chain of finite-dimensional tori whose union is
dense. This extends earlier results of Stepin-Eremenko [SE04]. We also saw that
a generic element of Aut(µ) generates a subgroup whose closure is both maximal
abelian and extremely amenable. In the case of the unitary group U(H), these
last two bits of information are sufficient to determine the subgroup up to isomor-
phism; this is due to the fact that, thanks to the spectral theorem, one can easily
understand maximal abelian subgroups of U(H). Probably this is not possible for
Aut(µ).

QUESTION 5.13. Can one classify maximal abelian subgroups of Aut(µ)?

I would guess that no sensible classification can be obtained (which begs the
question of the complexity of the corresponding classification problem); I am not
sure what kind of information one can extract from the fact that a subgroup is
maximal abelian. I also note in passing that I do not know anything about maxi-
mal proper subgroups of Aut(µ); maximal proper subgroups of S∞ are interesting
objects from the point of view of the properties of their action by permutations
on the naturals, and form a surprisingly rich class. I do not know whether study-
ing maximal subgroups of other Polish groups of interest could lead to gaining a
better understanding of these groups.

The next question was discussed at some length in the last section of the text.

QUESTION 5.14. Are conjugacy classes meager in Hom(Γ, Aut(µ)) for any in-
finite countable group Γ?

King [Kin00], when he proved that the set of squares in comeager in Aut(µ),
asked the following.
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QUESTION 5.15. Is the set of squares Borel in Aut(µ)?

Note that there are examples of Polish groups where the set of squares is ana-
lytic non Borel; it seems that the first example, due to Gartside and Pejic [GP07a],
is the group of homeomorphisms of T. It follows from the fact that such Polish
groups exist that the isometry group of the Urysohn space should be one of them
(i.e. the set of squares is probably non Borel in Iso(U)). Here is a way one should
be able to prove this (I have not checked that this is indeed possible!): starting
from a Polish space X, one might build an isometric embedding of X into U such
that all isometries of X extend uniquely to U, and for any g ∈ Iso(X), g is a square
in Iso(X) if and only if it is a square in Iso(U) (this is the part of the argument that
needs to be written down carefully and might be easier said than done). Since any
Polish group is the isometry group of some Polish metric space X, we would ob-
tain from the fact that there exists Polish groups whose set of squares is non Borel
that there exist closed subsets X ⊆ U such that {g : g(X) = X and g is a square} is
not Borel, which in turn would imply that the set of squares is not Borel in Iso(U).

While we now know a lot about the properties of the Urysohn space and its
isometry group, here are still some related open questions I am curious about.

5. The Urysohn space

We know that the set of squares is generic in Aut(µ); what about Iso(U)?

QUESTION 5.16. Does a generic isometry of the Urysohn space admit a square
root? Roots of all order?

Since a root of g must belong to the centralizer of g, which is generically an

abelian group, and the map h 7→ hk is an homomorphism in abelian groups, the
first question above is equivalent to asking whether the centralizer of a generic
element is a divisible abelian group.

I spent a frankly embarrassing amount of time trying to answer this question,
thinking several times that I had obtained a positive answer. I am not making any
conjecture as to whether the answer is positive or negative.

I mentioned that Tent and Ziegler [TZ13a] proved that the isometry group of
U1 is simple, and that the normal subgroup generated by any unbounded isome-
try of U is the whole group [TZ13b]; as they pointed out, it is not hard to prove
that Iso(U) is topologically simple, i.e. has no closed normal subgroups. Their
techniques to prove simplicity use a combination of Baire category methods and
model-theoretic concepts coming from stability theory. These techniques, which
originated in work of Macpherson–Tent [MT11] apply in a much broader setting
(see for instance [EGT13]), and often, when the automorphism group of the struc-
ture under consideration is not simple, one can still prove the existence of a max-
imal normal subgroup (such as the group of bounded isometries in the case of
Iso(U)); typically this group is dense, and then one can no longer use Baire cate-
gory, at least not for the topology induced by the ambient group. Two questions
then come up: is there a Polish, or at least second-countable and Baire, group
topology on this maximal normal subgroup? Is this group simple?

QUESTION 5.17. Does the group of bounded isometries of the Urysohn space
admit a compatible Polish group topology? Is this group a simple group?
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The answer to the first question is most likely negative. Possibly, the theory of
grey sets could be relevant here: the group of bounded isometries could be under-
stood via the function du(1, ·), which is a closed grey subgroup. Said differently,
it might be possible to take advantage of the fact that closed balls in the uniform
metric are also closed in the Polish topology.

As I indicated earlier, I think that the above question is mostly interesting as a
test case; perhaps it would be more natural to work in the rational Urysohn space.
The next question is a further test; a negative answer would be interesting but very
unlikely, I think.

QUESTION 5.18. Is the group of all bounded isometries of the Urysohn space,
endowed with the uniform topology, path-connected?

6. Complexity of equivalence relations

Since I did not give any details about the theory of Borel complexity of equiva-
lence relations, I will simply mention a few complexity problems related to topics
discussed in this memoir. In a previous version of the text I asked the question
of the complexity of the relation of elementary equivalence of separable Banach
spaces; I. Farah rightfully pointed out that this relation is clearly smooth.

QUESTION 5.19. Let K be a Fraı̈ssé class with the free amalgamation prop-
erty. What can be said the complexity of the isomorphism relation for countable
structures whose age is contained in K?

In all examples I know, this relation is either smooth or universal for Borel
actions of S∞.

QUESTION 5.20. Let G be your favorite Polish group, to be chosen among
Iso(U), U(ℓ2), Aut(µ). What is the complexity of the relation of isomorphism be-
tween maximal closed subgroups of G? What about maximal abelian subgroups
(for the second question it is considered unsporting to choose U(ℓ2) as your fa-
vorite group)?

7. Topological dynamics

When studying full groups of minimal Z-actions, it is very useful to under-
stand their closure; we mentioned that the closure of the full group of a minimal
homeomorphism ϕ is exactly the space of all homeomorphisms of the ambient
Cantor space which preserve all ϕ-invariant measures. The proof uses Kakutani–
Rokhlin partitions, which unfortunately seem very specific to Z.

QUESTION 5.21. Can one extend Glasner–Weiss’ characterization of the clo-
sure of the full group to minimal actions of countable abelian groups? Even more
ambitiously, to amenable groups?

Of course, the answer to the above question would be positive if a minimal
action of a countable amenable group were necessarily orbit equivalent to a Z-
action. The same is true of the next question.

QUESTION 5.22. Is the closure of the full group a complete invariant for orbit
equivalence of countable amenable groups?
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Closure of the full group is a complete OE-invariant for Z-actions; it is not
complicated, using some measured group theory, to provide examples of minimal
actions of Z and a nonabelian free group which cannot be orbit equivalent, yet
have full groups whose closures coincide; hence the restriction to amenable groups
in the question above.

I mentioned earlier a theorem of Akin [Aki05] which characterizes all prob-
ability measures µ on a Cantor space X such that there exists a minimal homeo-
morphism of X whose set of invariant measures is exactly µ: they are the so-called
good measures, which are such that whenever A, B, C are clopen subsets, A ⊆ B,
and µ(B) ≤ µ(C), there exists D ⊆ C with µ(D) = µ(A). Using Fraı̈ssé theory, we
saw an alternative argument to prove Akin’s result that two good measures on a
Cantor space X are isomorphic if and only if their sets of values taken on clopen
subsets of X coincide.

QUESTION 5.23. Can one give a Fraı̈ssé-theoretic proof of Akin’s result?

The reason why I would be most interested in a new proof of Akin’s result is
that it might help us gain a better understanding of the sets of probability mea-
sures on a Cantor space X which can be realized as the set of invariant measures
for a minimal homeomorphism of X.

QUESTION 5.24. Let X be a Cantor space. Can one describe necessary and/or
sufficient conditions on a compact, convex subset K of the space of probability
measures on X which ensure that K is the set of measures invariant under a mini-
mal homeomorphism of X?

Note that the difficulty here comes from the fact that K is given as a set of
measures, not merely as an abstract simplex; Downarowicz proved that any Cho-
quet simplex could be realized as the set of invariant measures of a Toeplitz flow
[Dow91].

Since I did not discuss universal minimal flows in the main body of the text, I
only mention the following questions for the record.

QUESTION 5.25. Let ϕ denote a minimal homeomorphism of a Cantor space,
and G denote the closure of its full group. Is the universal minimal flow of G
metrizable?

The following question appeared in [AKL12].

QUESTION 5.26. Let G be a Polish group and assume that the universal mini-
mal flow of G is metrizable. Does it necessarily have a comeager G-orbit?

When G is a subgroup of S∞, A. Zucker recently proved that the answer to
this question is positive. The following, very interesting problem is related and
appeared first in print in [BPT13].

QUESTION 5.27. Let G be an oligomorphic permutation group. Must its uni-
versal minimal flow be metrizable?

It is currently even possible that the answer to this question could be positive
for general Roelcke-precompact Polish groups.
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8. Isometric embeddings of separable Banach spaces

At the end of the first chapter, I mentioned the following theorem of Godefroy–
Kalton [GK03b]: assume X, Y are separable Banach spaces, and X embeds isomet-
rically in Y; then X embeds linearly and isometrically in Y. This statement fails in
general when X is not assumed to be separable. Can one weaken the hypothesis,
while retaining the conclusion? In [DL08], Dutrieux–Lancien proved that there
exists a compact space K such that any separable Banach space containing an iso-
metric copy of K must be universal for separable Banach spaces; they also proved
that, whenever X is a separable polyhedral Banach space (see [DL08] for details;
for finite-dimensional spaces “polyhedral” means that the unit ball is a polyhe-
dron, equivalently, that finitely many linear functionals can be used to compute
the norm of elements of X), any Banach space Y containing an isometric copy of
the unit ball of X must contain an isometric copy of X.

QUESTION 5.28 (Dutrieux–Lancien [DL08]). Assume that X, Y are separable
Banach spaces such that the unit ball of X isometrically embeds in Y. Is it then
true that X embeds isometrically in Y?

The results of Dutrieux–Lancien mentioned above mean that the answer is
positive for polyhedral spaces, as well as for universal ones. The starting point
of their investigation, as well as of the proof of Godefroy–Kalton, is the following
lemma due to Figiel.

LEMMA 5.29 (Figiel [Fig68]). Assume X is a Banach space, Y is a Banach space and
f : X → Y is an isometric embedding such that f (0) = 0. Then, for any x1, . . . , xn ∈ X
and any a1, . . . , an ∈ R, one has

‖
n

∑
i=1

aixi‖ ≤ ‖
n

∑
i=1

ai f (xi)‖ .

Hence in that case we do have a minimal norm among all possible norms
coming from embeddings of X into Banach spaces (see the discussion at the end
of Chapter 1) though I am not sure what to make of this. To make the Dutrieux–
Lancien approach work, it would be sufficient that the preceding lemma be true
when f is only an isometric embedding of the unit ball of X into Y; they proved
that this extension of Figiel’s lemma is true in the case of a polyhedral space. Un-
fortunately, it is false in general; let us present a simple example where it fails
(mentioned in [DL08] but hitherto not publicly available, I believe) which I ob-

tained after discussions with Gilles Lancien and Éric Ricard.
Let (X, ‖ · ‖) denote some finite dimensional (just for simplicity), strictly con-

vex normed space of dimension greater than 2 (for instance, R2 with the euclidean
norm). Let SX denote the unit sphere of X, and BX the unit ball. For all z ∈ SX ,
consider the function fz on BX defined by

fz(x) = ‖z‖ − ‖z − x‖ .

Then fz is 1-Lipschitz, fz(0) = 0 for all z, and for any x, y ∈ BX there exists z ∈ SX

such that | fz(x)− fz(y)| = ‖x − y‖ (if x = y this is trivial, otherwise let z be one
of the points of intersection of SX and the line going through x and y).

Now, consider the vector space E which is made up of all formal finite combi-
nations of the form ∑

n
i=1 aixi, where each ai is real and xi ∈ X. The origin of this
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vector space is the empty formal sum. Then put a pseudonorm N on E by setting

N(∑ aixi) = sup{
∣∣∑ ai fz(xi)

∣∣ : z ∈ SX} .

(Let us agree that sup(∅) = 0 to avoid definition problems with the empty sum)
Let F denote the normed space obtained by quotienting E by N, and consider

the natural map from BX to F. This map is isometric:

∀x, y N(x − y) = sup{| fz(x)− fz(y)| : z ∈ SX} = ‖x − y‖ .

To contradict the desired extension of Figiel’s theorem, it is enough to notice
that, for any x, y ∈ BX which are not colinear and not in SX , one has N(x + y) <
‖x + y‖. Indeed, assume that x, y ∈ BX are such that N(x + y) ≥ ‖x + y‖ and that
x + y 6= 0. Then there exists z ∈ SX such that

‖z‖ − ‖z − x‖+ ‖z‖ − ‖z − y‖ ≥ ‖x + y‖ .

This is the same as 2‖z‖ ≥ ‖x + y‖ + ‖z − x‖ + ‖z − y‖. Using the triangle in-
equality and strict convexity of ‖ · ‖, this is only possible if x + y and z − x are
colinear, and the same holds for x + y and z − y. Thus z is a point of SX which is
on a line from x parallel to x + y, and on a line from y parallel to x + y; these two
lines are parallel so they can only meet if they coincide, that is to say, if x and y are
proportional.

This means that the approach to Question 5.28 via a generalization of Figiel’s

lemma fails; also, it makes (R2, ‖ · ‖2) a candidate for a possible counterexample
to this question. The following problem, also mentioned in [DL08], is related (and
equivalent when X is finite-dimensional).

QUESTION 5.30. Assume X, Y are separable Banach spaces, and any compact
subset of X embeds isometrically in Y. Must X embed isometrically in Y? (And
what about the analogous problem with bi-embeddability?)

Let me close this section by mentioning an intriguing question, only loosely
related to the discussion at hand, and which was mentioned to me by L. Nguyen
Van Thé.

QUESTION 5.31. Given a metric space (X, d), is there a way to determine
whether (X, d) is isometric to the unit ball of some Banach space?

One could ask the same question about unit spheres.

Of course one could go on listing questions, but everything must come to an
end. Here I chose to only mention problems that were directly related to top-
ics previously discussed in the main body of the text; because of that interesting
questions related to topological dynamics and ergodic theory are not mentioned.
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[Sch07] Konstantinos Schoretsanitis, Fraı̈ssé theory for metric structures, Ph.D. thesis, University of
Illinois at Urbana-Champaign, 2007.

http://math.univ-lyon1.fr/homes-www/melleray/MetrizableUMF.pdf
http://arxiv.org/abs/1404.4590
http://www.math.uni.wroc.pl/~sabok/PRACE/automatic.rev.pdf


94 BIBLIOGRAPHY

[SE04] A. M. Stepin and A. M. Eremenko, Nonuniqueness of an inclusion in a flow and the vastness
of a centralizer for a generic measure-preserving transformation, Mat. Sb. 195 (2004), no. 12,
95–108. MR 2138483 (2006b:37008)
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Fraı̈ssé limit (metric), 56
free amalgam, 47
full group, 10
full group of an action by homeomorphisms,

11
function symbol (classical), 41

generic set, 3
good approximating substructure, 66
good measure, 49
good value set, 49
grey subset, 68
Gurarij space, 57

hereditary, 44
hereditary property (metric), 55
Holmes space, 24
homogeneous metric structure, 53

joint embedding property (JEP), 45
joint embedding property (metric), 55
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Radó graph, 46
Ramsey property (classical), 61
rational Urysohn space, 20
relation symbol (classical), 41
relational first-order structure, 44
relative closure of a grey subset, 69
relative interior of a grey subset, 69
rigid structure, 61

second countable topological space, 5
small density property, 71
small index property, 71
space of actions of a countable group on a

structure, 29
strong topology on the group of unitary

operators, 8
substructure, 43
support of a Katětov map, 19
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