POLISH GROUPS AND BAIRE CATEGORY METHODS

JULIEN MELLERAY

ABSTRACT. This article is a slightly modified version of the author’s habilitation
thesis, presenting his work on topics related to Polish groups, Baire category meth-
ods and metric model theory. Nearly all results presented are not new, though
some arguments are. Among new results, we show that, for any countably infinite
group I', all conjugacy classes in the space of actions of I' on the Urysohn space are
meager; and that the group of bounded isometries of the Urysohn space, endowed
with the topology of uniform convergence, is path-connected.
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1. INTRODUCTION

The present article is a slightly modified version of the author’s habilitation
thesis; the first aim of such a thesis is to serve as an introduction to the author’s
work and domains of interest. In their current form, my hope is that these notes
may be useful as an introduction to some of the uses of Baire category methods
and ideas inspired by model theory.

When I first learned about the Baire category theorem, I thought it was remark-
able that such a simple statement, with such a simple demonstration, could be
used to establish the existence of apparently complicated mathematical objects.
But that, to me, is not the main interest of Baire category notions; they are also
particularly useful for instance as substitutes for measure-theoretic concepts in
contexts where no natural measure is present. This phenomenon is particularly
striking when one studies properties of Polish groups, which are the main subject
of interest of this memoir. These groups appear in many places: infinite com-
binatorics, functional analysis, topological dynamics, ergodic theory... Isometry
groups, homeomorphism groups, permutation groups can often be endowed with
a Polish group structure and Baire category, or more generally descriptive-set-
theoretic methods prove useful.



2 JULIEN MELLERAY

In the first section, we recall some definitions and concepts of Baire category
theory, then present a panorama of Polish groups; we also discuss an interest-
ing example of a group which (unfortunately?) cannot be endowed with a Polish
group structure.

Next, we discuss the Urysohn space U and some of its siblings; this space, built
by Urysohn in 1924, is characterized by the fact that it is both universal (it contains
an isometric copy of any separable metric space) and homogeneous (any isometry
between finite subspaces extends to an isometry of the whole space). These prop-
erties make the isometry group of U an interesting and rich object, for instance it
contains an isomorphic copy of any Polish group. These notions of homogeneity
and universality make sense in a variety of contexts and provide interesting prob-
lems. Before moving on to some of these, we discuss isometric embeddings of U
into Banach spaces, which are surprisingly rigid: Holmes proved that there is es-
sentially only one way of embedding U isometrically into a normed vector space,
as soon as one has decided which point gets mapped to 0. We will investigate
which spaces share this rigidity property.

Then we move on to actions of countable groups on some homogeneous struc-
tures, mainly the separable Hilbert space, the standard atomless probability alge-
bra, and the Urysohn space. We study Baire category in the space of actions of
some countable group I' on one of these structures; this space has a natural Polish
topology, and understanding generic properties of isometric actions, unitary rep-
resentations and measure-preserving actions of countable groups also has some
consequences on the structure of the ambient Polish group. This is a classic theme
of research in ergodic theory, originally considered by Halmos in the case when
the acting group is Z and much-studied since.

The last section, which is also the longest, bears the title “First order logic and
Polish groups”. This section actually contains little (or no?) logic, but the language
and notions of first-order logic, and its metric avatar sometimes called “metric
model theory”, play a crucial role. Wittgenstein famously wrote that “the lim-
its of my language are the limits of my world”; the limits of my language were
pushed when I learned about metric model theory, and consequently the limits
of my mathematical world were redefined by this new language. My hope is to
convince the reader, whom I imagine to be somewhat skeptical, of the interest of
considering Polish groups using a point of view influenced by model theory. It
is certainly not new that this interaction is fruitful and natural in the context of
automorphism groups of countable structures, which are exactly the closed sub-
groups of the permutation group of the integers; but it is only more recently that
it appeared that model theory was relevant to the study of general Polish groups,
and I believe some of the work presented here played a part in this realization.

I chose to use a relatively informal writing style, and to present few complete
proofs; often a sketch of proof is proposed, sometimes a complete argument is
given when it seems particularly enlightening to me or is not easily found in the
literature. I tried to make this text accessible and interesting for a reader who is not
a specialist of Polish groups; I hope that the experts will nevertheless find some
food for thought.
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2. BAIRE CATEGORY

2.1. The basics of Baire category. We begin by recalling the statement of the Baire
category theorem.

Theorem 2.1 (Baire). Let X be a completely metrizable topological space, and (Op)n<w
be a countable family of dense open subsets of X. Then the intersection (., On is dense
in X.

Definition 2.2. Let X be a topological space. A subset of X is meager if it is con-
tained in a countable union of closed sets, each of which has empty interior. A
subset is comeager, or generic, if it contains a countable intersection of dense open
sets.

Thus, the Baire category theorem is the assertion that comeager subsets of com-
pletely metrizable spaces are dense. Countable intersections of open sets are called
G; sets; countable unions of closed sets are called F; sets. It is important to keep in
mind that Baire’s theorem is a topological theorem as opposed to a metric one: what
matters is that there exists a compatible complete metric, even though the met-
ric one “naturally” considers on X may not be complete. For instance, the usual
distance on ]0, +oo[ is certainly not complete; however, the distance defined by
d(s,t) = |s — t| + |1 — 1] is, and it induces the usual topology on 0, +oo[. This is
part of a broader phenomenon.

Theorem 2.3 (Alexandrov). Let (X, d) be a metric space. There exists a complete metric
compatible with the topology of X if, and only if, X is a G4 subset of the completion of
(X,d).

This is easily seen to be equivalent to X being a G; subset of any metrizable
space containing it. What matters most for us is that the Baire category theorem is
true in any G; subset of a completely metrizable space.

Baire category notions are useful as notions of largeness: a comeager set may be
thought of as being large, and a meager set as being small. The union of countably
many small sets is still a small set; dually, the intersection of countably many large
sets is still a large set. Of course, one is reminded of measure theory, where small
sets are those which have measure zero, and large sets those with full measure.
We will often work in contexts where there is no natural measure (something that
will be made precise in the discussion at the beginning of the next section), so we
have to content ourselves with category notions, cruder than measure-theoretic
tools but which can be used in different contexts.

We say that a topological space X in which the Baire category theorem holds
is a Baire space; any G; subset of a completely metrizable space is a Baire space,
and any open subset of a Baire space is a Baire space. This gives rise to a local
notion of largeness: given an open subset O of a topological space X and a subset
A C X, we say that A is comeager in O if AN O is a comeager subset of O. The
local and global notions of largeness get along reasonably well: if A is globally
large, then it is locally large everywhere; if A is large in an open set O, then AN O
is the intersection of O and a globally large subset of X.
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We would want these local and global notions of largeness to get along even
better; namely, a natural assumption would be that, if a set is not globally small,
then it is locally large somewhere. This is not necessarily true (at least, not if one
uses the usual axioms of Zermelo-Fraenkel set theory (ZFﬂ). The analogy with
measure leads us to introduce a class of sets which behave well with regard to our
notion of largeness; in measure theory, the measurable sets are those who differ
from a Borel set by a negligible set. The same definition makes sense here.

Definition 2.4. Let X be a topological space. A subset A of X is Baire-measurable if
there exists an open set O such that the symmetric difference AAO is meager.

It might be a bit surprising that the definition requires an open set rather than
a Borel set; actually this does not matter: any Borel set is equal to an open set
modulo a meager set, which is a consequence of the fact that the family of Baire-
measurable subsets of a topological space X is a o-algebra. Pursuing the analogy
with measure, one could think of this as a strong form of regularity: if y is an
(outer) regular Borel measure on a topological space X, then any measurable set is
equal to a G; set modulo a set of y-measure 0.

Remark 2.5. The standard terminology for the above property is “A has the prop-
erty of Baire”. I always found it confusing, because my intuition is that a set with
the property of Baire should satisfy the Baire category theorem, and this is ob-
viously not always the case. For instance, the space of rational numbers has the
property of Baire yet is a textbook example of a topological space failing to sat-
isfy Baire’s theorem. This is why I use the less standard, but to my mind more
evocative, “Baire-measurable” terminology.

Note that from the definition of Baire-measurability it follows that if A is Baire-
measurable and non-meager in a Polish space X then there exists a nonempty
open subset O of X such that A is comeager in O. This is what we wanted: if a
set is well-behaved (i.e. Baire measurable) and not small, then it is locally large
somewhere.

Most of the time, we will not be working with general completely metrizable
spaces, but merely with separable spaces.

Definition 2.6. A Polish space is a completely metrizable and separable topological
space.

In particular, the topology of a Polish space is second countable, i.e. it admits
a countable basis of open sets. We will often use the fact that any such space
satisfies the Lindeldff property: from any open covering one can extract a countable
subcovering. Note again that being a Polish space is a topological condition, not
a metric one; often we will need to manipulate Polish spaces with noncomplete
metrics. We use the terminology Polish metric space when we are concerned with
complete separable metric spaces.

Remark 2.7. The term “Polish space” is often credited to Bourbaki, who were sup-
posedly honoring the pioneering work of Polish topologists and set theorists dur-
ing the first half of the twentieth century. In some papers, mostly from the fifties
and sixties, one can find the term “polonais space” in articles written in English

iThroughout this text we work, as usual, in ZF + (Dependent Choice); the reader may safely assume
that we work with the usual set theoretic axioms, and that we accept the axiom of choice.
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(for instance [Eff65]). Using the French word for “Polish” was an interesting way
to capture the influence of mathematicians of both countries on this notion, but it
does not seem to have caught on.

We already saw that all Borel subsets of Polish spaces are Baire-measurable,
which is useful but not sufficient for our purposes. The problem is that many
naturally-defined subsets of Polish spaces turn out not to be Borel; an underlying
issue is that the continuous image of a Borel set need not be Borel in general.

Definition 2.8. Let X be a Polish space. A subset A C X is analytic if there exists
a Polish space Y, a Borel mapping f: Y — X and a Borel subset B of Y such that
f(B) = A. A subset A of X is coanalytic if its complement is analytic.

Actually, the condition above is equivalent to saying that there is a Polish space
Y, and a continuous mapping from Y to X such that f(Y) = A.

Theorem 2.9 (Lusin-Sierpinski). Let X be a Polish space and A be an analytic subspace
of X. Then A is Baire-measurable.

Any Borel subset of a Polish space is analytic; one can use a diagonal argument
to show that there exist analytic non Borel subsets of Polish spaces (any uncount-
able Polish space contains one). The following fundamental result may be consid-
ered as the starting point of descriptive set theory.

Theorem 2.10 (Lusin). Let X be a Polish space, and A be a subset of X. Then A is Borel
if, and only if, A is both analytic and coanalytic.

This result has the following spectacular consequence.

Theorem 2.11. Let X, Y be Polish spaces, and f: X — Y be a function. Then f is Borel
if, and only if, its graph is a Borel subset of X X Y.

I will not give proofs of these classical results here; we use [Kec95] as a general
reference for descriptive-set-theoretic facts and theorems. The following fact is
used in the classical proof of Theorem 2.9/ and will be useful to us later.

Theorem 2.12. Let X be a topological space, and let A be a subset of X. Denote by U(A)
the union of all open subsets of X in which A is comeager. Then U(A) \ A is meager, and
A is Baire-measurable if, and only if, A \ U(A) is meager.

The definition of U(A) will play a role in the next section (in the proof of Pettis’
lemma) as well as in the last section.

2.2. Polish groups.

Definition 2.13. A topological group is a group endowed with a topology for which
the group operations (g, 1) — g¢h and g — g’l are continuous.
A Polish group is a topological group whose topology is Polish.

Polish groups are abundant in analysis but also, as we shall see, in ergodic the-
ory and model theory. Below we will discuss important examples in some detail;
for now, let us simply note that any countable discrete group is Polish, as is any
locally compact metrizable group, any separable Banach space (the group oper-
ation being addition of vectors), etc. In locally compact groups, one can use the
Haar measure to provide a notion of largeness which is well-behaved with respect
to the group operations; while one cannot in general hope that the Haar measure
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is translation-invariant on both sides, it is invariant on one side (e.g. under the left
translation action of the group on itself), and translates of subsets of measure zero
always have measure zero.

The Haar measure was used by Weil in the thirties, generalizing a result of
Steinhaus for G = (R, +), to prove that a discontinuous homomorphism defined
on a locally compact group must be fairly wild.

Theorem 2.14 (Weil). Let G be a locally compact topological group, and A be a non-
negligible Haar-measurable subset of G. Then AA~! contains a neighborhood of the neu-
tral element 1.

Consequently, any Haar-measurable homomorphism from a locally compact group to a
second-countable topological group must be continuous.

Sketch of proof. The first statement is proved using the regularity of the Haar mea-
sure; the second sentence is an easy exercise: let G be a locally compact group, H
a second-countable topological group and ¢: G — H a Haar-measurable homo-
morphism. Pick a nonempty open neighborhood V' of 1y; the Lindelsff property
of ¢(G) implies that there exists a countable family 4, of elements of ¢(G) such
that ¢(G) = Uhn(V N ¢(G)), from which one obtains a countable family (g,) of
elements of G such that G = U g9~ (V).

Hence ¢~ (V) is not negligible, so ¢~ (V) (¢~ (V))~! C ¢~ (VV~1) contains
a neighborhood of 1 whenever V is an open neighborhood of 1. Given any
open neighborhood W of 1y, continuity of group operations implies that one can
find an open neighborhood V of 1y such that VV—t C W. Hence ¢~ }(W) has
nonempty interior; we just proved that ¢ is continuous at 1, hence continuous
everywhere. O

Unfortunately, as soon as one gets out of the class of locally compact groups,
one loses the Haar measure, in the worst way possible: by a result of Weil (see Ap-
pendix B of [GITWO05] for a proof, coming from [Oxt46] and attributed to Ulam),
a Polish group which admits a left-translation invariant measure class (i.e. a mea-
sure p such that all its left translates are absolutely continuous with respect to )
must be locally compact. Thus one must make do with Baire category methods.

Theorem 2.15 (Pettis [Pet50]). Let A, B be subsets of a Baire topological group; then
U(A)U(B) C AB. In particular, if A is a Baire-measurable non meager subset of G then
AA~! contains a neighborhood of 1.

Consequently, any Baire-measurable homomorphism from a Baire topological group to
a second-countable topological group must be continuous.

We recall that U(A) denotes the union of all open subsets of X in which A is
comeager, that A is comeager in U(A), and that A is Baire measurable if, and only
if, A\ U(A) is meager. The fact that Baire-measurable homomorphisms between
Polish groups are continuous was first proved by Banach [Ban55].

Proof. Let A, Bbe two subsets of X, and pick g € U(A)U(B). Equivalently, U(A) N
g(U(B))~' = U(A) NnU(gB ') is nonempty; this is an open set in which A and
¢B~! are both comeager, hence the fact that open subsets of Baire spaces are Baire
implies that ANgB~! # @, i.e. g € AB.

Now, if A is Baire-measurable and nonmeager, then U(A)U(A~!) is a nonempty
open neighborhood of 15 which is contained in AA~!; the automatic continuity
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of Baire-measurable homomorphisms with range in a second countable group is
deduced from this exactly as in the case of Haar-measurable homomorphisms. [

Let us point out a few structural facts about Polish groups.

Theorem 2.16. Let G be a Polish group, and H be a subgroup of G. Then H, endowed
with the relative topology, is a Polish group iff H is closed in G.

Proof. One implication is obvious. Assume that H is a subgroup of G which is
Polish when endowed with the relative topology. Then H is a G; subset of H;
thus, for any k € H, H and kH are dense G subsets of H, so the Baire category
theorem implies that H N kH is nonempty for all k € H,so H = H. O

Theorem 2.17. Let G, H be Polish groups, and ¢: G — H be a Baire-measurable iso-
morphism (of abstract groups). Then ¢ is an isomorphism of topological groups.

Proof. Being Baire-measurable, ¢ is automatically continuous. So its graph is closed,
and so is the graph of ¢~!; hence ¢! is Borel, hence Baire-measurable, hence con-
tinuous. U

Thus, if (G, T) is a Polish group and 7 is a Polish group topology on G such that
each T-open set is T-Baire-measurable, then necessarily T = 7.

We now turn to a quick panorama of the Polish groups we will encounter in this
memoir, as well as an example of a seemingly nice group which cannot be made
Polish.

2.3. Isometry groups. Whenever (X, d) is a Polish metric space, one can consider
its isometry group Iso(X); it is tempting to turn it into a topological group by
endowing it with the metric of uniform convergence. While this is a perfectly rea-
sonable thing to do, the resulting topology will often have too many open sets to
be useful - an extreme example of this is obtained when one considers the isometry
group of the space of natural integers endowed with the discrete metric or, equiv-
alently, the group of all permutations of N. Then any two distinct permutations
are at (uniform) distance 1, so the topology of uniform convergence is discrete in
that case.

If uniform convergence is too much to ask, then the next best thing is pointwise
convergence. When endowed with the topology of pointwise convergence, Iso(X)
is a Polish group whenever X is a Polish metric space. Given a countable dense
subset A of X, Iso(X) equipped with this topology is homeomorphic (via the map
that associates to an isometry its restriction to A) to a subset of X4, so the topology
is metrizable and separable. It is easy to check that group operations are contin-
uous on Iso(X); an abstract way to see that Iso(X) is a Polish group is to notice
that the image of the restriction map from Iso(X) to X is the set of all elements
g € X/ which satisfy:

e Vabe A d(ab)=4d(g(a)g(b))

o Ve>0Vac Adbe A d(a,g(h)) <e.
The first condition expresses that g preserves the distance, and defines a closed
subset of X4; the second condition means that g(A) is dense in X, and is a G;
condition. Hence Iso(X) is homeomorphic to a G subset of X, thus is a Polish
topological space.
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A more down-to-earth way to show the same thing goes as follows: let A =
{ay } n<w, and define a metric p on Iso(X) by setting

o(g,h) = iomm(z-”,d(g(an),h(an)))

This metric induces the topology of pointwise convergence on Iso(X), and is left-
invariant; unfortunately it is not complete in general, but the metric § defined by
p(g,h) = p(g,h) +p(g~!,h~1) is complete. This is a general phenomenon: while
any Polish group, and indeed any first-countable Hausdorff topological group,
admits a compatible left-invariant metric by the Birkhoff-Kakutani theorem, most
Polish groups do not admit a compatible left-invariant complete metric.

In a sense, isometry groups are all there is when it comes to Polish groups:
Gao and Kechris [GKO03a] proved that, given any Polish group G, there exists a
Polish metric space X such that G is isomorphic, as a topological group, to Iso(X)
equipped with the topology of pointwise convergence.

2.4. The unitary group. Consider an infinite-dimensional, separable Hilbert space
H and denote by U(#H) its unitary group, i.e. the set of all C-linear bijections of
‘H whose inverse coincides with their adjoint. Equivalently, a map is unitary if
it is a C-linear isometry of H onto itself. As above, the first idea that comes to
mind might be to endow U(#H) with the topology induced by the operator norm:
d(g,h) = ||g — hl|. This is the topology of uniform convergence on the unit ball
of H and, not unexpectedly, is “almost” discrete: letting (e;);., denote a Hilbert
basis of H, any permutation ¢ of the set of natural integers induces a unitary op-
erator uy: €; > €4(j), and whenever ¢ # T one has |[uy — uc|| = V2. Thus the
topology induced by the operator norm is certainly not separable (it will play a
role later on, though).

The example of isometry groups discussed above shows that, when endowed
with the pointwise convergence topology with regard to the norm topology on H,
the isometry group of H is a Polish group; being C-linear is closed under point-
wise convergence, so this is a Polish topology on U(# ), called the strong topology.
One could equip U(H) with the topology of pointwise convergence with regard
to the weak topology on H; when it comes to unitary operators, the difference is
immaterial since both topologies coincide. This is a hint of a broader phenome-
non: there exists a unique Polish group topology on U (), a fact first proved by
Atim and Kallman [AK12] and generalized by Tsankov [Tsal3|], who proved that
U(#H) has the automatic continuity property: any homomorphism from U(H) to a
Polish group is continuous. This is very much related to our concerns, and we will
discuss this phenomenon in some detail later on.

From now on, H will denote an infinite-dimensional, separable Hilbert space,
and U(H) will be its unitary group.

2.5. Measure-preserving automorphisms. The notation (X, ) will stand for a
standard atomless probability space throughout the text. This is a fancy way of
speaking of the unit interval endowed with the Lebesgue measure; the reason the
more abstract notation (X, u) is useful is that standard atomless probability spaces
occur in many different guises, for instance any infinite compact metrizable group
endowed with its Haar measure is one.
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The group we are concerned with here is made up of all measure-preserving
bijections of (X, i), identified if they coincide outside of a set of measure 0; thus one
should really speak of classes of measure-preserving bijections. This abuse of ter-
minology must be kept in mind, but will not cause us any significant trouble, and
we will simply ignore sets of measure 0 whenever it does not cause confusion -
these sets are called negligible for a reason, after all. We denote this group by
Aut(X, u), or simply Aut(y). Again there seem to be several reasonable choices of
topology: one could consider the uniform topology, induced by the metric

dy(S,T) = p({x: S(x) # T(x)}).

This metric is bi-invariant; unfortunately, it is again far from separable - for in-
stance, see (X, jt) as the unit circle with its usual measure; then two rotations with
different angles are at distance 1. One could do even worse: embedding Aut(X, i)
into the unitary group U(L?(X, 1)) and endowing it with the operator norm, one
obtains a discrete group.

Of course, we know what went wrong: we considered uniform metrics, which
should not be separable; the right choice if one wants to obtain a Polish group is to
consider pointwise convergence. The measure algebra MALG, of all measurable
subsets of (X, ) (identified if their symmetric difference has measure 0) is a com-
plete separable metric space when endowed with the distance d(A, B) = u(AAB);
and measure-preserving bijections are the same as isometries of MALG, which
fix @ (Sikorski, see [Kec95, Theorem 15.9]). Thus one obtains a Polish topology by
considering the topology of pointwise convergence relative to this metric, which
is the topology induced by the maps g — 1(g(A)AA) as A ranges over all mea-
surable subsets of X.

As in the case of the unitary group, this is the unique Polish topology on Aut(u)
which is compatible with its group structure; one of the results presented below is
the fact that Aut(yu) satisfies the automatic continuity property which, combined
with a result of Glasner [Glal2] and the simplicity of Aut(y) [Fat78], shows that
there are only two second-countable topologies on Aut(y): the coarse topology,
and the Polish topology we just defined. The fact that there is a unique compatible
Polish group topology on Aut(y) is due to Kallman [Kal85].

As a general reference regarding Aut(y), [Kecl0] is particularly well-suited to
our purposes.

2.6. Permutation groups. Both U(7{) and Aut(y) are connected, indeed they are
both homeomorphic to an infinite-dimensional separable Hilbert space. Since both
groups have the automatic continuity property, they cannot act nontrivially on a
countable set: the action would have to be continuous with respect to the discrete
topology on the countable set, so by connectedness the action must be trivial.

Still, groups acting on countable sets are interesting objects. The first example
is the permutation group of the integers, denoted by Se.; we already met it when
discussing isometry groups, and know that it is a Polish group when endowed
with the topology of pointwise convergence relatively to the discrete topology on
N - equivalently, this is a group topology such that the family of subgroups of the
form {c: Vx € F o(x) = x}, where F ranges over all finite subsets of N, is a basis
of open neighborhoods of 1.

Again, this topology is the unique second-countable group topology on S
(Kechris—-Rosendal [KR07], extending a theorem of Gaughan [Gau67]); a Polish
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group is isomorphic, as a topological group, to a (necessarily closed) subgroup
of S if, and only if, it admits a basis of neighborhoods of 1 made up of open
subgroups. When this happens, we say that the group is a permutation group.

These groups naturally appear in model theory; we will discuss this in some de-
tail later on. For now, we simply note that when encountering a countable “struc-
ture”, one can consider its automorphism group, which is made up of all bijections
preserving the structure; identifying the universe of the structure with N, its auto-
morphism group is then a closed subgroup of S.. Conversely, all Polish permuta-
tion groups are automorphism groups of countable structures. As examples, one
can cite the automorphism group of the random graph, the automorphism group
of a countable free group...

The topology of the permutation group comes from its action on the structure;
in some cases, knowing the topology is enough to recover a lot of information
about the structure (we will also come back to this later). One is then led to won-
dering when it is possible to reconstruct the topology when knowing only the
algebraic structure of the group, motivating the study of the automatic continuity
properties of permutation groups.

2.7. Full groups. To close this section, we discuss full groups. To motivate our in-
terest in those groups, we begin by recalling the more classical notion of full group
of a countable measure-preserving equivalence relation; these equivalence rela-
tions are those that arise from a measure-preserving action of a countable group
on a standard probability space (X, u); as usual when dealing with measures, we
ignore sets of measure 0.

Given such an action of a countable group I', we denote by Rr the associated
equivalence relation; its full group, denoted by [Rr], is the group of all measure-
preserving bijections ¢ € Aut(X, u) such that g(x)Rrx for (almost) all x € X.
These groups were introduced by Dye ([Dye59], [Dye63])); the full group com-
pletely remembers the relation, in a way made precise by the following definition
and theorem .

Definition 2.18. Consider two countable groups I';, I'; acting by measure-preserving
bijections on a standard probability space (X, ). We say that the associated equiv-
alence relations are orbit equivalent if there exists g € Aut(X, u) such that

Vx,y € X (xRry) < (8(x)Rr,8(y))

Orbit equivalence is the natural notion of isomorphism of measure-preserving
equivalence relations: up to an isomorphism of the space, the relations coincide.
Recall that a measure-preserving action is ergodic if it does not admit any nontrivial
invariant sets.

Theorem 2.19 (Dye). Assume that 'y, T’y are two countable groups acting by measure-
preserving transformations on a standard probability space (X, i), and that there exists
an isomorphism ®: [Rr,| — [Rr,|. Then there exists g € Aut(X, ) such that for all
h € [Rr,] one has ®(h) = ghg™1.

In particular, ¢ must realize an orbit equivalence between Ry, and Ry, - thus Ry, and
Rr, are orbit equivalent iff their full groups are isomorphic (as abstract groups).

iThe definition of orbit equivalence actually appeared after Dye’s work, in work of Mackey [Mac66]
so Dye’s theorem is formulated differently than the original.
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Thus, full groups are complete invariants for orbit equivalence. Dye’s theorem
is also related to considerations of automatic continuity; to explain this we need to
discuss topologies on full groups of ergodic, probability measure-preserving ac-
tions of countable groups. The first that comes to mind is the topology induced
from the Polish topology of Aut(X, u); of course this is a second-countable group
topology, but it is never Polish for ergodic relations: indeed, ergodicity of the ac-
tion I' ~ X is equivalent to the fact that [Rr] is dense in Aut(X, #). Not being a
closed subgroup, it cannot be Polish for the induced topology; still, it is never too
complicated a subset of Aut(X, u): Wei [Wei05] proved that full groups of ergodic
actions of countable groups are always countable intersections of countable unions
of closed subsets of Aut(X, u), in particular they are Borel subsets of Aut(X, yt).

What about the topology induced from the uniform topology? It is easy to
see that [Rr] is closed in Aut(X, u) with respect to the uniform topology; perhaps
more surprisingly, [Rr] is also separable, so it is a Polish group (see e.g. [Kecl0,
Proposition 3.2]). Then, Dye’s theorem implies that an isomorphism between two
full groups is necessarily continuous with respect to their Polish topologies; given
the examples discussed above, the reader will probably not be surprised to learn
that Kittrell and Tsankov [KT10] proved that full groups of relations induced by
an ergodic action of a countable group have the automatic continuity property.

We turn to full groups in topological dynamics, which for us means the study
of actions of countable groups by homeomorphisms of a Cantor space X. The
analogue of ergodicity in that context is minimality.

Definition 2.20. Let I be a countable group acting by homeomorphisms on a Can-
tor space X. The action is said to be minimal if all orbits are dense.

Then one can define the full group of an action I' ~ X in the natural way: it
is made up of all the homeomorphisms of X which map each I'-orbit onto itself.
Similarly, two actions of countable groups I'1, I'; by homeomorphisms of a Cantor
space X are orbit equivalent if there exists a homeomorphism of X which maps
each orbit for the first group’s action onto an orbit for the second group’s action.
The natural analogue of Dye’s theorem holds in that context.

Theorem 2.21 (Giordano—-Putnam-Skau [GPS99). Assume that I'1, T are two count-
able groups acting minimallyfl by homeomorphisms of a Cantor space X, and that ®: [Rr, |
[Rr,] is an isomorphism. Then there exists a homeomorphism g of X which is such that
forall h € [Rr,| one has ®(h) = ghg™'.
This g must realize an orbit equivalence between Rr, and Rr, - thus Rr, and Rr, are
orbit equivalent iff their full groups are isomorphic (as abstract groups).

Now, given an action by homeomorphisms of a countable group I' on a Can-
tor space X, we would like to turn [Rr] into a Polish group; first, what kind of
topologies can one put on the homeomorphism group Homeo(X)? As with the
homeomorphism group of any compact metric spac, one can use the uniform
topology: given a compatible metric d on X, this topology is induced by the uni-
form metric d,, defined by

dy(g,h) = sup({d(g(x), h(x)): x € X}).

iThe minimality assumption is stronger than what is needed, see [Med11].

ian open problem (as far as I know): which Polish groups are isomorphic, as a topological group,
to the homeomorphism group of a compact metric space?
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This metric is not complete, but the metric d,, defined by dy( gh) =dy(g L+
d, (g, h) is complete and induces the same topology on Homeo(X). It was proved
by Rosendal and Solecki [RS07] that Homeo(X), with this topology, has the au-
tomatic continuity property; thus this is the unique Polish group topology on
Homeo(X). Actually, it follows from the simplicity of Homeo(X) [And58] and a
result of Gamarnik [GamO91] that this is the unique second-countable group topol-
ogy on Homeo(X) besides the coarse topology. It is actually a permutation group
topology; Homeo(X) naturally acts on the countable set of all clopen subsets of X,
and the permutation group topology induced by that action is the same as the one
we just described; a basis of neighborhoods of 1 is given by sets of the form

{g € Homeo(X): VA € A g(A) = A}

where A ranges over all finite clopen partitions of X.

Unsurprisingly, the full group of a minimal action of a countable group is not
closed in Homeo(X); in the case of a minimal Z-action, one can describe its closure.
Below we say that an homeomorphism ¢ of a Cantor space X is minimal if the
associated Z-action is minimal, and we denote by [¢] the associated full group.
The following is a consequence of a result of Glasner—Weiss [GW93].

Theorem 2.22 (Glasner—Weiss). Let ¢ be a minimal homeomorphism of a Cantor space
X. Denote by M, the set of all Borel probability measures on X which are @-invariant.
Then the closure of [¢] inside Homeo(X) is equal to {g € Homeo(X): Vi € My g«pt =

pt.

This is somewhat analogous to what happens in the measure-theoretic setting
(i.e. the closure of the full group is as large as possible); things already appear to be
more complicated in the topological setting, however: two measure-preserving er-
godic Z-actions are always orbit equivalent (Dye [Dyeb59]), while the above result
can be used to see that there are continuum many pairwise non-orbit equivalent
minimal actions of Zll. As far as I know, the closure of the full group of a mini-
mal action of a countable group is not understood in general, even if the group is
abelian.

As in the measure-theoretic context, one might expect that there exists a Polish
topology on the full group; however, if such a topology existed, it should have a
natural definition and none is to be found. This motivated the following result,
obtained in collaboration with T. Ibarlucia.

Theorem 2.23 ([IM13])). Let I be a countable group acting by homeomorphisms on a
Cantor space X; assume that for any nonempty open subset U of X there exists x € U
such that T - x intersects U in at least two points. Then [Rr] does not admit a compatible
Baire, Hausdorff, second-countable group topology.

Sketch of proof. The idea behind the proof is fairly standard, see for instance [Ros05].
Assume that I’ ~ X satisfies the assumption above, and that 7 is a Baire, Hausdorff
group topology on [Rr]. Then, given any clopen U, one can check that ¢ € [Rr]

11 do not know the exact complexity, in the sense of Borel equivalence relations, of the relation of
orbit equivalence of minimal homeomorphisms; however, it is known to be fairly complicated since
OE for uniquely ergodic homeomorphisms is already not essentially countable as it is bireducible to
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is equal to the identity on U if and only if ¢ commutes with all elements which
coincide with the identity on X \ U; thus

{g:gu=iduy= () {g:gh=hg}
hix\u=1dx\u

is an intersection of closed subsets of [Rr], hence it is closed.

Now, given any clopen U and ¢ € [Rr], one has ¢(U) C U iff g~'hg coincides
with the identity on U for any h which coincides with the identity on U; thus
{g: g(U) C U} is t-closed by the same reasoning as above. This means that each
set {g: g(U) = U} is T-closed, thus the inclusion map from ([Rr], T) to Homeo(X)
endowed with its usual Polish topology is Borel, hence continuous since ([Rr], T)
is assumed to be Baire. We just proved that T extends the topology induced from
the Polish topology of Homeo(X).

So far, we are in the same situation as in the measure-theoretic context; now, fix
x € X and consider the orbit map g — g(x) from ([Rr], T) to the countable setT - x,
which induces a homomorphism from ([Rr], T) to the group H, of permutations
of I' - x. What we proved above shows that this homomorphism is Borel when Hy is
endowed with its permutation group topology; using again the fact that 7 is Baire,
we obtain that this homomorphism is continuous. Equivalently, each subgroup
{g: g(x) = x} is T-clopen. With a bit of work one can check that this causes
the existence of too many clopen subgroups for T to be Lindel6ff, so T cannot be
second-countable.

O

It is then tempting to study the properties of the closure of ([Rr], T); we will get
back to this topic later on, in the case when I' = Z. Given Wei’s result computing
the Borel complexity of full groups of measure-preserving equivalence relations
mentioned above, which shows in particular that those are always Borel subsets
of Aut(y), it is also natural to wonder how complicated a subset of Homeo(X)
[Rr] is; I do not know the answer in general, but for minimal Z-actions the answer
is that it is as complicated as possible.

Theorem 2.24 ([IM13]]). The full group of a minimal Z-action on a Cantor space X is a
coanalytic non Borel subset of Homeo(X).

Let me try to give an idea of our approach. First, recall that a tree on a countable
set A is a subset T of the set A<“ of all finite sequences of elements of A which
is closed under taking initial segments. In particular, any nonempty tree must
contain the empty sequence. The space 7 (A) of all trees on A may be identified
with a subset of 24 (identifying each tree with its indicator function); endowing
247 with the product topology, we obtain a compact topology on T (A). A tree is
well-founded if it has no infinite branches; one can then define inductively the rank
(relative to T) pr(s) of an element s € A<% as follows:

or(s) =sup{pr(s ~a)+1:s ~ae T}

In particular, if s does not belong to T or is a terminal node of T, then pr(s) = 0.
The rank of T, p(T), is the supremum of the ranks of all elements s € A<%“; when
T is nonempty this is equal to p7(@). The rank of a countable well-founded tree is
a countable ordinal.
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The reason why this is relevant for our purposes is the following observation.
Fix (for the remainder of this section) a minimal homeomorphism ¢ of a Can-
tor space X and define, for any ¢ € Homeo(X), a tree T(g) on the countable set
Clop(X) of clopen subsets of X by the following condition:

(U, ..., Uy) € T(g)) < (Vi <n—1Up C Ujand Vi < nVx € U; g(x) # (pii(x)) :

The map g — T(g) is Borel (for the compact topology on the space of trees on
Clop(X) described above), and g € [¢] iff T(g) is well-founded.

Note that T(g) has finite rank if, and only if, there exists a finite clopen parti-
tion Uy, ..., U, of X such that g coincides with a fixed power of ¢ on each U; or,
equivalently, if ¢ belongs to [¢] and {n: 3x € X g(x) = ¢"(x)} is a finite subset
of Z. The set of all elements satisfying these conditions is a countable subgroup
of [¢], which is known as the topological full group of ¢. Topological full groups
of minimal homeomorphisms are important objects in their own right, though we
will not say much about them (and not prove any results concerning them); let us
simply point out the fact that the rank of T(g) captures whether g belongs to the
topological full group of ¢ as evidence that this rank is a natural and potentially
useful invariant.

It is clear from the definition that [¢] is co-analytic: ¢ € Homeo(X) does not
belong to [¢] iff

dx e XVn e Zg(x) # ¢"(x).

This shows that the complement of [¢] is the projection of a G4 subset of the Polish
space Homeo(X) x X. By Suslin’s theorem, [¢] being Borel is then equivalent to it
being analytic, in which case the set 7, = {T(g): g € [¢]} is an analytic subset of
the set of all well-founded trees. This is only possible if the ranks of elements of 7,
are bounded above by a common countable ordinal (this is a classical, non-trivial
result of descriptive set theory, see [Kec95| 35.23]).

So we need to prove that the ranks of trees of the form T(g) are not bounded
above by a countable ordinal. The usual, simple technique to construct well-
founded trees of arbitrarily large rank is to build them “from the root” - for in-
stance, to obtain a tree of rank « + 1 from a tree T of rank «, just copy T below a
node that is linked to the root of the tree, as in the picture below.

Similarly, to obtain a tree of rank greater than sup(«;,) from a countable family
of trees of rank «,, just link the root to countably many vertices, each of which is
the root of a tree of rank «,,.

This procedure is not adapted to the way our trees T(g) are defined, because
changing something high up in the tree (i.e. modifying ¢ on some clopen set U)
forces one to also change everything below (g also is modified on any clopen sub-
set contained in U) , thus completely modifying the tree, so one cannot simply
copy things easily. This makes the work a bit painful, but also points to our sal-
vation: it is, at least intuitively, possible to modify a tree of the form T(g) “from
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the bottom” - namely, take a terminal node, and change what g does on the corre-
sponding clopen set to make it as complicated as g is on the whole space. Roughly
speaking, this corresponds to replacing a well-founded tree T with a new tree such
that any terminal node of T is now the root of a new copy of T - thus increasing
the rank. The corresponding picture now looks like this.

Note that just adding a vertex below each terminal node of T would not be
enough: it would create a new tree of rank 1+ p(T'), which might be equal to p(T)
if p(T) is infinite, for instance 1 + w is equal to w. The set of countable ordinals
« such that 4+ a = « for all B < a is unbounded, as is easy to see. So one really
needs to copy a tree of rank at least p(T) below each terminal node to be sure to
increase the rank of T.

This intuitive idea can be turned into a (somewhat messy) proof, thus showing
that [¢] is not analytic. The sketch of proof we discussed seems to adapt easily to
any countable group (only the definition of the trees T(g) must be adapted, and
this is is not hard), but I do not know if the actual proof can be made to work: our
main technical tool to do the “copying” is a result of Glasner-Weiss stating that if
A, B are clopen subsets of X such that i(A) < u(B) for any ¢-invariant measure .,
then there exists an element g in the topological full group of ¢ such that g(A) C B
(this is also what one needs to prove Theorem [2.22). No analogue of this is known
in general, even for countable amenable groups.

This concludes our panorama of Polish groups, with the exception of one im-
portant example: the isometry group of the Urysohn space (and its variants),
which we turn to now.

3. URYSOHN SPACES

3.1. Construction of Urysohn spaces. After proving that /o (N) contains an iso-
metric copy of any separable metric space [FrélQ], Fréchet [Fré25] asked the fol-
lowing question: does there exist a separable metric space with the same property?
This provided the impetus for Urysohn’s research and subsequent discovery of
the space which now bears his name, published in the posthumous paper [Ury25].
Right after finishing the construction of this space, Urysohn drowned while on
vacation in France with Alexandrov; [Ury25] was written by Alexandrov, who
along with Brouwer wrote down a large part of Urysohn’s work after his untimely
death (see the introduction of [Hus08|] for a detailed history of the discovery of
the Urysohn space, Urysohn’s death, and subsequent events; the special volume
[LPR™08] is a good general reference about the Urysohn space).

Banach and Mazur [Banb5]| shortly thereafter found another space showing that
the answer to Fréchet’s question is positive: they proved that C([0,1]), the space
of continuous functions on the unit interval, is isometrically universal. They even
proved more, namely, every separable Banach space embeds linearly isometrically
in C([0,1]), and this might have played a part in keeping the Urysohn space out of
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the spotlight, as a nearly-forgotten curiosity. But this space has another remarkable
property: it is characterized up to isometry as being the unique Polish metric space
which is both

o universal, i.e. U contains a copy of every separable metric space (that is the
property Fréchet was interested in).
e homogeneous, i.e. any isometry between two finite subsets of U extends to a
surjective isometry of U.
We will not present Urysohn'’s original construction; instead we discuss quickly
a more recent one, due to Katétov [Kat88]. This construction played a large part in
reviving interest in the study of the Urysohn space.
We begin with a convention: by an isometry between two metric spaces X, Y,
we mean a surjective, distance-preserving map from X to Y. Distance-preserving
maps which are not necessarily surjective will be called isometric embeddings.

Definition 3.1. Let (X, d) be a metric space. A Katétov map on (X,d) is a map
f: X — R* such that

Vxy € X|f(x) = f(y)| <d(xy) < f(x) + f(v)-
We let £(X) denote the set of all Katétov maps on X.

These maps correspond to one-point metric extensions X U {z} of X, via the
correspondence f(+) <+ d(z,-). This correspondence was already known to Haus-
dorff.

One may check that U is characterized among Polish metric spaces by the fol-
lowing property, commonly known as finite injectivity:

VA finite CUVfe&(A)IzeUVae Ad(z,a) = f(a).

In words: any abstract one-point metric extension of a finite subset of U is realized
inside U.

As a way to get used to back-and-forth constructions, let us see why a finitely
injective Polish metric space is homogeneous: assume that X is such a space, and
that ¢: A — B is an isometry between finite subsets of X. Let {x;};, be a count-
able dense subset of X. Using finite injectivity, one can build inductively finite sets
Ay, By and isometries ¢, : Ay, — B, with the following properties:

[ AQ = A,BO = B,q70 = Q.
e Foralln, Ay, C A,41, By C By41 and ¢,,41 extends ¢y,.
e Foralln, x, € Ap,r1 (“forth”) and x,, € By, (“back”).

Indeed, assume that the process has been carried out up to some rank 7, say
n = 2k (the case n odd is essentially the same). If x; € A, we have nothing to do;
else we may set A, 11 = A, U {xx}. The one thing we need is to define ¢, 1(xy);
this must be an element x € X which satisfies

Vy € And(y, x) = d(gn(y), x) -
Finite injectivity of X ensures that such an element exists; pick one, call it b, 11,
and set B;,11 = B, U {b,11}.

After w steps, Ug;: UA; — UB;is a densely-defined isometry with dense range
which extends ¢, and completeness of X ensures that Ug; extends to an isometry
of X onto itself. As is often the case, the “forth” step ensures that the map we
build is defined everywhere, while the “back” step (which, in this case, is just the
“forth” step applied to ¢~!) ensures that the map is onto.
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Using similar ideas, it is not hard to prove that a finitely injective Polish metric
space is also universal (here only the “forth” step of the construction is needed),
and that any two finitely injective Polish metric spaces must be isometric. Thus,
if such a space exists, it is unique up to isometry. It is also not hard to show that
homogeneity and universality together imply finite injectivity.

All this reduces the proof of existence of the Urysohn space to the construction
of a finitely injective Polish metric space. Katétov’s approach is based on the ex-
istence of a natural metric on £(X). Before introducing this metric, we note that
X naturally embeds in £(X) via x — d(x, -) (this is the degenerate case where we
“extend” X by adding a point that was already inside it).

Definition 3.2. The metric on £(X) is defined by the formula
d(f,8) = sup{|f(x) —g(x)[: x € X}.

This is indeed a metric (in particular, it takes only finite values); in geometric
terms, d(f, g) is the smallest possible distance d(zy, z¢) in a two-point metric exten-
sion X U {zy,z¢} such that d(zf, x) = f(x) and d(zg, x) = g(x) forall x € X.

The map x — d(x,-) is an isometric embedding from X to £(X) and in what
follows we identify X with the corresponding subspace of £(X). Then, one has
the remarkable relation

Vf e &(X) Vx € Xd(f,x) = f(x).

Unfortunately, £(X) need not be separable even when X is (see [Mel08] for a
detailed discussion of the conditions on X which ensure that £(X) is separable).
Still, all is not lost: to obtain a finitely injective space, we only care about one-point
extensions of finite subspaces; and if Y C X and f € £(Y), then f may be extended
to an element f of £(X) via the following formula (“shortest path through Y”):

Vx € X f(x) =inf{f(y) +d(x,y): y €Y}

This leads to the following definitions.

Definition 3.3. Let (X, d) be a metric space and f € £(X). We say that f is sup-
ported by A C X, or that A is a support of f, if one has

Vx € X f(x) =inf{f(a) +d(x,a): a € A}.

Definition 3.4. We denote by £(X, w) the subspace of all f € £(X) which have a
finite support.

By definition, for any finite A C X and any f € £(A), there exists f € (X, w)
extending f. Hence, if one wants to find an element having prescribed distances
to a finite subset of X, then one might do so inside of £(X, w). Itis straightforward
to check that £(X, w) is separable; the natural embedding from X into £(X) takes
its values in £(X, w), and any isometry ¢ of X uniquely extends to an isometry of
£(X) defined by

Vf € E(X,w) Vx € X ¢(f)(x) = flo™" (x)).

Then § uniquely extends to the completion £(X,w) (we take the completion
here to stay inside the domain of Polish metric spaces, but this is inessential), and

—

the homomorphism ¢ — ¢ is continuous from Iso(X) to Iso(£(X, w)).
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Katétov’s construction of the Urysohn space [Kat88] proceeds as follows: start
from a given Polish metric space (X, d) and set Xy = X. Then define inductively
an increasing sequence of metric spaces X; by setting X;,1 = &£(X;,w). Finally,
denote by X, the union of the X;s, and let Y be the completion of Xe.

Then Y is a Polish metric space, and the construction ensures that Y is approx-
imately finitely injective - that is, for any finite subset A of Y, any ¢ > 0 and any
f € E(Y), there exists y € Y such that |d(y,a) — f(a)| < eforalla € A. Using
completeness and an approximation process, one can prove that Y must actually
be finitely injective, and we have built a Urysohn space.

This construction is fairly flexible, which is why the title of this section mentions
Urysohn spaces, plural (see [DLPS07] for a full discussion of this flexibility): for
instance, one could have done the previous construction using only metric spaces
of diameter at most 1, obtaining in the limit the so-called Urysohn sphere, which
is the unique Polish space of diameter 1 which is both universal for Polish metric
spaces of diameter at most 1 and homogeneous.

We could have also stayed in the countable realm, considering only finite met-
ric spaces whose metric takes only rational values, and used Katétov’s tower con-
struction (without taking a completion at the end!) to build the rational Urysohn
space Ug; this space is the unique countable metric space with rational distances
which is homogeneous and universal for countable rational metric spaces. It was
originally built by Urysohn, who then proved that its completion is isometric to
the Urysohn space; whenever we mention Ug we think of it as sitting densely
inside U.

Here we see our first example of a phenomenon that will play an important
role later on: a “continuous” structure (in this case, the Urysohn space) is well-
approximated by a countable substructure (the rational Urysohn space); further,
the automorphism group of the structure is well approximated by the automorphism
group of the countable substructure, which is a Polish permutation group; for
instance in this case, given any isometry ¢ of U and any ¢ > 0, there exists an
isometry ¢ of Ug such that d(¢(x), (x)) < e for all x (see for instance [CV06]).

3.2. Isometry groups of Urysohn spaces. Uspenskij [Usp90] was the first to put to
use a very nice property of Katétov’s construction (the notations of which we keep
here): any isometry of X = Xj extends to an isometry of X; = &(Xo,w), which
extends to an isometry of X, = £(Xj,w), etc., eventually defining an isometry of
U Xj, which in turn extends to its completion, that is as we know isometric to the
Urysohn space.

In this way, we obtain an isometric copy of X embedded in the Urysohn space
U, with the property that any isometry of X extends naturally to an isometry of
U, and the mapping that assigns to a isometry of X its natural extension to U is
a continuous homomorphism from Iso(X) to Iso(U). Since any Polish group is a
subgroup of the isometry group of some Polish metric space (actually, any Polish
group is the isometry group of some Polish metric space, see [GKO03al), this shows
that any Polish group embeds, as a topological group, into the isometry group
Iso(U). We just sketched the proof of the following theorem.

Theorem 3.5 (Uspenskij [Usp90]). Iso(U) is a universal Polish group, i.e, it contains
an isomorphic copy of any Polish group.
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This result rekindled interest in the Urysohn space, which is now a relatively
well-known object, at least among logicians. Uspenskij [Usp04] subsequently proved
that U is homeomorphic to the Hilbert space; many results have been proved over
the past fifteen years or so, and rather than try to sum all of these up I will simply
refer the reader to the special volume [LPR™08] and references therein.

Theorem 3.6 ([Mell0b]). Iso(U) is homeomorphic to a separable Hilbert space.

This is a common feature in large infinite-dimensional groups. Due to a result of
Toruniczyk and Dobrowolski [DT81], proving this reduces to showing that Iso(U)
is an absolute retract, which in turn follows from the fact that its topology admits
a basis which is stable under taking finite intersections, contains the whole space,
and is such that all its elements have trivial homotopy type (see [vM89]). The
proof is technical and I will not try to explain it here.

It was recently proved by Tent-Ziegler [TZ13a] that Iso(U;) is a simple group;
actually, using model-theoretic methods inspired by stability theory, they proved
that if ¢ € Iso(U;) and 1 € N are such that there exists a satisfying d(a,g(a)) > 1,
then any element of Iso(Uj ) can be written as a product of at most 7 - 2% conjugates
of gand g~ 1.

In the unbounded case, it is clear that Iso(U) is not simple: the group of bounded
isometries, i.e. all isometries ¢ € Iso(U) such that d(g(x),x) < M for some M
and all x, is a nontrivial normal subgroup. Tent and Ziegler [TZ13b] showed that
the quotient of Iso(U) by the subgroup of bounded isometries is simple: for any
unbounded isometry ¢ € Iso(U), every other element of Iso(U) is a product of
at most 8 conjugates of g. As far as I know, it is an open problem whether the
group of bounded isometries is simple; it is not very hard to see that Iso(U) is
topologically simple, i.e. has no nontrivial closed normal subgroups. I believe that
this fact was first pointed out by K. Tent; at least, I heard it from her.

An interesting, and poorly understood so far, object is the uniform metric on
Iso(U) (or its bounded counterpart Uj), defined by

dy(8,h) = sup{d(g(x) h(x)): x € U}

Of course this might take the value +oo; replace this d,, by 11—"% (with the conven-
tion co/co = 1) if that causes a philosophical problem. This uniform metric was
studied in the last part of [BM13] (joint work with D. Bilge, part of his PhD the-
sis for which E. Jaligot and I were the advisors), the results of which were partly
superseded by Tent-Ziegler’s work. It was proved in that paper, using Baire cat-
egory methods, that any element of Iso(U) (or Iso(U;)) is a commutator and that
for all n > 2 there exists an element g, of order # in Iso(U) such that any other
element of Iso(U) is a product of (at most) four conjugates of g,. In the case of Uy,
we proved that there is a 2-Lipschitz homomorphism F: (R, |- |) — (Iso(Uy,d,)
which maps 1 to g»; as an immediate corollary, one obtains that (Iso(Uy),d,) is
path-connected (which of course also directly follows from simplicity of Iso(Uy)).

The above technique, while fairly successful in the bounded case, does not ap-
ply to the study of the group of bounded isometries of the Urysohn space U; the
main problem is that this group is not a Polish group (it is a dense, meager sub-
group of Iso(U)). The question of whether this group is simple remains open;
more generally, there are many examples of Polish groups when one knows that
there exists a maximal normal subgroup, which is meager, and investigating its
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normal subgroup structure is an interesting and challenging problem. In the case
of Iso(U), a natural candidate for a smaller normal subgroup is the path-connected
component of 1 in (Iso(U), d, ), motivating the following result.

Theorem 3.7. The group of bounded isometries of U is a geodesic space when endowed
with the uniform metric (and in particular it is path-connected).

Proof. Modulo some easy arguments, it is enough to prove that, for any g € Iso(U)
withd,(g,1) = 1, there exists h € Iso(U) satisfyingd, (h,1) = % andd(g(x), h(x)) =
% forall x € U (in particular, we have d, (g, h) = %, and we have found a midpoint
between g and 1 in (Iso(U), d,;), which is what we need here; the stronger condi-
tion makes the inductive construction that follows easier). To that end, we follow a
back-and-forth construction, building an increasing sequence of finite subsets A,
and isometric maps h,,: A, — U satisfying the following conditions:

(1) U, A and Uh,(A,) are dense, and h,, 1 extends hy, for all n.

(2) Forallnand alla € Ay, d(hy(a),a) < } and d(hy(a), g(a) = 3.

For this construction to be possible, it is enough to be able to start with (A, )
satisfying the second point above, and any x € U, and extend h to AU {x} in
such a way that the second condition is still satisfied (note that this condition is
symmetric in & and h~!, so the back step and the forth step are essentially the
same). So, we consider f € £(h(A)) defined by f(h(a)) = d(x,a). We first check
that we can realize f inside U by z which is such that d(z,g(x)) = 1; note that,
since the distance from z to each h(a) is already prescribed, the set of possible
values for d(z,g(x)) is an interval [«, 8], with

a = max |d(g(x), h(a)) — d(x,a)| = max|d(g(x), h(a)) — d(g(x), g(a))] -

Hence a < max,c d(h(a),g(a)) = %; and similarly

p = mind(g(x),h(a)) +d(x,a) = mind(g(x), h(a)) +d(g(x),g(a)) =

acA acA

N =

So, it is indeed compatible with the triangle inequality to set d(z, g(x)) = 1. Hav-
ing done this, we still need to define the distance of z to x; we want to make it as
small as possible, and for this the best we can do (since we already set d(z, g(x)) =
1\ =

5) is to set

1
d(z,x) = max(max(|d(x,a) — d(x, h(a)|, [d(x,g(x) — 5| )
acA 2
By assumption on &, we know that for all a we have |d(x, a) — d(x, h(a))| < d(a, h(a)) <
1; and since d(x, g(x)) belongs to [0, 1], we also have |d(x, g(x) — | < 1.
So, we can indeed find z € U realizing f over h(A), such that d(z,g(x)) = %
and d(z,x) < % Setting h(x) = z, we are done.
]

3.3. Linearly rigid metric spaces. We turn to the study of a surprising property
of the Urysohn space; we are concerned here with isometric embeddings of metric
spaces into Banach spaces. This type of problem goes back at least to Fréchet;
as we saw above, he proved in [Frél0] that every separable metric space embeds
isometrically in the Banach space /«(N). We also mentioned Banach-Mazur’s
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theorem which states that C([0,1]) is isometrically universal. They even proved
that any separable Banach space linearly isometrically embeds in C(][0, 1]); this fact
actually follows from the existence of an isometric embedding, but this was proved
much later by Godefroy and Kalton [GK03b].

A result analogous to Fréchet’s theorem, due to Kuratowski, states that every
metric space X embeds in C,(X), the Banach space of all continuous bounded
functions on X endowed with the supremum norm. Such an embedding (often
called Kuratowski embedding) is easy to describe: fix a basepoint xo € X, and con-
sider the map from X to C,(X) defined by

x = (fery—d(y,x) —d(y, xo)) -

The Kuratowski embedding above depends in a nontrivial way on the choice of
basepoint xy. Another possibility to define an embedding, which was apparently
considered first by Kantorovitch [Kan42] in the context of compact metric spaces,
and then in general by Arens-Eells [AE56], is to embed X in the so-called Lipschitz-
free Banach space over X. Let us quickly recall one possible definition of this space.
It depends formally on a choice of basepoint xy € X; to simplify the notation be-
low, denote by Lipy(X, xo) (or just Lipg(X) when there is no danger of confusion)
the space of all Lipschitz maps f on X such that f(xp) = 0, and denote by K(f)
the Lipschitz constant of f € Lipy(X, xg) (note that K(f) is a complete norm on
Lipo(X, x0))-

Given zy,...,z, € Xand a4,...,a, € R, define

I iﬂizih = sup{iaif(zi): f e Lipo(X, x0), K(f) <1}

This is indeed a seminorm on the vector space of all (formal) combinations of
elements of X, identifying xo € X with the origin of that vector space. Taking
the completion of that space, we obtain the Lipschitz-free Banach space F (X, xp).
This space is a predual of Lipg(X, xo). Note that, in this case, the dependence on
the choice of basepoint is inessential: if vy is another choice of basepoint, then
the spaces Lipg (X, xo) and Lipg(X, yo) are isometric via the map f — f(-) — f(vyo),
and this induces a canonical isometry of the predual spaces F (X, xo) and F (X, o).
Accordingly, in the following we shall denote this space simply by F(X).

For information about Lipschitz-free Banach spaces, we refer the reader to Weaver’s
book [Wea99] and Godefroy—Kalton's article [GKO3b]. Even though it is only tan-
gentially related to our concerns here, let us explicitly state the beautiful result of
Godefroy and Kalton [GKO03b] alluded to above, the proof of which uses Lipschitz-
free Banach spaces: consider a separable Banach space X and a Banach space Y,
and assume that there exists an isometric embedding from X into Y. Then there
must exist a linear isometric embedding from X into Y. This theorem becomes false
if one no longer assumes X to be separable.

A curious mind may then ask: can there exist a space X such that all these em-
beddings coincide? That is, do there exist metric spaces which can be embedded
in a Banach space in a unique way (modulo a choice of basepoint)?

Definition 3.8. Let (X, x() be a pointed metric space. We say that X is linearly rigid
if, whenever B, B’ are Banach spaces and ¢: X — B, ¢': X — B’ are isometric
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embeddings mapping xy to 0, one has:

ai(l’/(]/i) |5
1

n n
Vay,...,ap € RVyq,...,yn € X|| Zai(p(yi)HB = |
=1 =

1

1

Note that, if X is linearly rigid, then any Banach space generated by X must
coincide with F(X) under the natural identification, so the choice of basepoint is
again inessential.

The question of existence of linearly rigid spaces does not seem to have been
considered until an example was found by M. Randall Holmes [Hol92]. Work-
ing on a question of Sierpinski [Sie45] concerning isometric embeddings of the
Urysohn space in C([0,1]), he proved the following remarkable result (reformu-
lated to fit our terminology).

Theorem 3.9 (Holmes [Hol92]|). The Urysohn space is linearly rigid.

The original proof of that result is rather intricate and difficult to follow, in
large part because Holmes was concerned with Sierpinski’s question, and not lin-
ear rigidity. The curious reader may consult [Hol08] to read Holmes’ account of
his proof, how it came about, and the intuition behind it; his result seems to have
gone largely unnoticed for fifteen years or so . Then, as interest in the proper-
ties of the Urysohn space grew, Holmes’ paper was finally noticed and studied
(L. Nguyen Van Thé seems to have played a major part in popularizing Holmes’
result; it is him who told me about it. I think he is also the originator of the termi-
nology Holmes space to denote the unique Banach space spanned by an isometric
copy of the Urysohn space) and a natural question appeared: can one give a char-
acterization of linearly rigid metric spaces?

Such a characterization was obtained, simultaneously and independently, by F.
Petrov and V. Vershik on one side, and myself on the other side; this led to the
publication of a joint paper [MPV08], where our two proofs are presented. Below,
I will quickly discuss “my” version of this proof (improved by an anonymous
referee). That proof came about by analyzing and simplifying the arguments of
[Hol92].

Definition 3.10. Let (X, x() be a pointed metric space and f € Lipg(X,xp). Let
F = {x0,x1,...,x,} C X, and f in the unit ball Br of Lip(F, xo). We say that f is
extremal if f is an extreme point of Br.

Remark 3.11. To understand what this means in terms of metric geometry, note
that extremality of f is equivalent to the fact that, up to reindexing F, there exists
j < n such that one of the following things happens:
o f(x;) =d(xo,x;) foralli < j,and f(x;) = sup{d(xo, xx) — d(x;, x¢): k < j}
foralli > j.
o f(x;) = —d(xp,x;) foralli <j,and f(x;) = inf{—d(xo, xx) +d(x;, x¢): k <
j}foralli>j.
The first line means that f takes values that are as large as possible (given that
f is 1-Lipschitz and f(xo) = 0) on x1,...,xj, and then as small as possible (given
the first j values) on Xjt1s-rXn; the second line means that — f satisfies that con-
dition.

1at the time of writing, there are 13 papers citing [Hol92|] in the MathSciNet database. The earliest
of those was published in 2007.
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We are ready to state our characterization of linearly rigid metric spaces.

Theorem 3.12 ([MPV08]|, Theorem 2). A pointed metric space X is linearly rigid if and
only if it satisfies the following condition:

For all finite F C X, and all extremal f € Lipo(F), there exist ¢ > 0 and z € X such
that

Vx € Fd(z,x) =c+ f(x).

It it immediate from the above theorem that U is linearly rigid, indeed we see
that linear rigidity has a Urysohn-type flavor. We also see, however, that there
are many different examples besides U: for instance, the integer-valued Urysohn
space Uy is also linearly rigid, and one can cook up many different examples using
the above characterization and a Katétov-inspired construction.

Let us mention a curious byproduct of the proof. Recall that for x € X we
denote by fy the 1-Lipschitz map defined by fx(y) = d(x,y) —d(x, xo). Then, we

let fr, = fx ;f Y. These maps are again 1-Lipschitz, and one may define another
isometric embedding of X in a Banach space by first setting

I ZaixiH = Sup{zaifx,y(xi)5 x,y € X}

and then taking the completion of that normed space. We call this embedding
the two-point embedding, and the corresponding norm the two-point norm. Clearly,
if X is linearly rigid, then the two-point norm and the Lipschitz-free norm must
coincide. Surprisingly, the converse turns out to be true (this is a corollary of the
proof of Theorem 3.12] which we present below).

Theorem 3.13 ([MPVO8]). A metric space X is linearly rigid if, and only if, the two-point
norm and the Lipschitz-free norm coincide.

Hence, to show that all possible norms coincide, one simply must show that
two of them, explicitly defined, coincide. Since the Lipschitz-free norm | - ||, is
the largest possible norm defining an isometric embedding of X in a Banach space
(this is clear from the Hahn-Banach theorem), its appearance is not surprising.
The role of the two-point norm is more mysterious; in particular, it does not seem
to be a “minimal” compatible norm in any reasonable sense of the word.

A word to the wise: there exist spaces such that the norm corresponding to the
Kuratowski embedding x — fy and the Lipschitz-free norm coincide, yet are not
linearly rigid. This is why we had to consider the two-point norm above; actually
it is obvious that any 3-point metric space is an example of this phenomenon. My
co-authors also built a family of examples on 4 points, and we conjectured that
there are no other finite examples, which has since been confirmed by Zatitskif
[Zat10].

The referee of [MPV08] gave a very nice interpretation of the argument I used to
prove Theorem[3.12] The following version of the statement is due to him (her?), as
is the functional-analytic proof below, most notably the use of Milman’s theorem
instead of a cumbersome computation. I am very grateful to the referee for that
nice argument; not knowing his/her name it is unfortunately impossible to give
proper credit. Unfortunately, this argument did not make it into the published
paper, which is part of the reason why I decided to discuss linearly rigid spaces in
detail here: I feel that this is the “right” proof of the result, and to my knowledge
it was never made publicly available.
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Theorem 3.14. Let B denote the unit ball of Lipy(X), and D denote the weak* closure of
{fx: x € X}. Then the following statements are equivalent:
(i) X is linearly rigid.
(ii) B is the weak* closed convex hull of D.
(iii) The extreme points of B are contained in D.

It is not hard to see, using the Milman and Krein-Milman theorems, that (i)
and (i) are equivalent, and that both are equivalent to the criterion appearing in
Theorem [3.12] (it is worth noting here that each fy is an extreme point of B).

Proof. The proof uses in an essential way the fact that Lipy(X) is the dual of F(X)
(via the natural identification : (f,Y a;x;) = Y a;f(x;)).

Let us begin by proving that () implies ({iil). Since X is linearly rigid, the norm
on F(X) must coincide with the two-point norm. Then we must have, for all
¢ € F(X), that

: _ =ty .
sup{(f,¢): f € B} = sup{{=—~",¢): v,y € X}
This means (via a standard application of the Hahn-Banach theorem) that the
closed convex hull of %(D — D) is equal to B, and then Milman'’s theorem (see
e.g [Die84, p.151]) implies that the set of extreme points of B must be contained in
3(D — D). Since each f; is an extreme point, we see that f, € —D, hence (D — D)
is a subset of the convex hull of D, and (i) holds.

Now, let us see why (i) implies (@). To that end, let X be isometrically embedded
in a Banach space Z in such a way that xg is mapped to 0 and Z is the closed linear
span of X. We identify X with its image in Z (and xo with 0 € Z).

Denoting by J, the element corresponding to x in the natural embedding of X
in F(X), we must show that the map T: é, — x is an isometry. This is equivalent
to showing that its adjoint map is a surjective isometry; in other words, we want
to prove that every 1-Lipschitz map f on X such that f(xg) = 0 is the restriction
to X of some z* belonging to the unit ball of Z*. Since we are assuming that (i)
holds, we must simply show that this is true for every fy, x € X.

Fix x € X. Since — fy is extremal, we must have — f, € D. Fix some finite F C X
containing 0, and ¢ > 0; we may find y € X such that

Vz € FU{x} |fx(2) + fy(2)] < e

Applying this to z = x, we obtain ||x|| + ||y|| < ||x — y|| + € (recall that fy(z) =
Iz — x| = {lxD)-
Hence we have, forall z € F:

lz— x|+ llz =yl <e+llxl[ + [yl < llx—yll + 2.

Consequently,
VzeF|z—x|+llz =yl = [lx —y[ <2
Using the Hahn-Banach theorem, we may pick ¢r € Z* such that ||¢r|| = 1 and
pr(y —x) = [lx —yl.
We claim that |¢r(z) — fx(z)| < 2¢eforall z € F. To see this, we use the fact that
@r is 1-Lipschitz, linear, and that points of F look like they are “between” x and y.
We have ¢r(z) < ¢r(x) + ||z — x||, which yields

¢r(z) = fx(2) < @r(x) + [|x]].
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Similarly, ¢r(z) > ¢r(y) — |ly — z||, and this gives
9r(2) = fx(2) = 9r(y) — llz =yl + [Ix]| = [l — x]I.

Hence we have

¢r(z) = fx(2) 2 (9r(y — %) = Iz =yl = Iz = x[D) + l[x]| + @£ (x)
(ly = xll = llz = yll = lIz = x[) + [|x]| + @£ (x)
lx]l + @r(x) —2¢

We have obtained the following inequalities, valid for any z € F:

1]l + @r(x) =26 < 9r(2) = fe(2) < [|x[| + @r(x) -

This is in particular true for z = 0, so that 0 < ||x|| + ¢p(x) < 2¢, and we
have proved as promised that, for any finite F C X and any ¢ > 0, we may find
¢or € Z* with ||¢p|| = 1 and such that |pr(z) — fx(z)| < 2e for all f € F. Using
the compactness of the unit ball of Z* for the weak topology, we obtain ¢ € Z* of
norm 1 and such that ¢;x = f. g

v

The unique Banach space spanned by an isometric copy of the Urysohn space
seems to be known now as the Holmes space, in honor of M.R Holmes. A con-
sequence of the Godefroy—Kalton theorem mentioned above is that this space is
linearly isometrically universal for all separable Banach spaces; it would be inter-
esting to know more about its geometry, but the definition makes it hard to ap-
proach, and Lipschitz-free Banach spaces are notoriously difficult to understand.

One can use our characterization to show that no bounded metric space can
be linearly rigid; as a consequence, the Urysohn sphere is not linearly rigid. Still,
from the explicit computations used in my original proof, one sees that it is in
some sense “locally” rigid: given any finite set A of sufficiently small diameter
(an explicit constant can be computed, 1/10 works, for instance), the norm of any
linear combination of elements of A is uniquely determined.

4. BAIRE CATEGORY IN THE SPACE OF ACTIONS

We now turn to a different type of question, viewing actions of countable groups
on some structures via the prism of Baire category. We fist concern ourselves with
the problem of extending a measure-preserving action of a subgroup to a measure-
preserving action of a larger group, and explain how it fits into a more general
framework.

Answering a question of Halmos, Ornstein proved in [Orn72] that there exist
elements of Aut(y) without a square root. The proof involved the construction
of aperiodic transformations which only commute with their powers; it is clear
that such transformations cannot have roots of any order. Different examples,
with uncountable centralizer, were subsequently found [FGK88]. Still the question
remained: is this a generic phenomenon? Or does a generic element of Aut(y)
admit a square root? King [Kin00] provided a positive answer to that question;
his proof is fairly long and technical, but was made considerably more accessible
shortly thereafter by de la Rue and de Sam Lazaro [dIRdSLO3], who built on King’s
ideas to show that a generic element of Aut(y:) embeds in a flow.

The search for n-th roots is part of a more general type of problems. Indeed, con-
sider a countable group I', and a subgroup A < I It is natural to wonder whether
a A-action on (X, p) (or any other mathematical structure) can be extended to a
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l-action. If I' = Z and A = 2Z, this is the same question as asking whether the
generator of a given 2Z-action admits a square root. The Baire-category version
of that question also makes sense once one has introduced the right definitions,
which we recall now.

Given a Polish group G, and a countable group I, the space Hom(T, G) of all
homomorphisms from T to G is a closed subspace of G, thus is a Polish space in
its own right. When G is the automorphism group of some mathematical struc-
ture, Hom(T, G) coincides with the space of actions of T on that structure. One can
consider Baire category notions inside this space; it will be important for us that G
acts naturally on Hom (T, G) by conjugacy:

(8- 7)) = g7(7)g

When I' = F, is a free group on n generators, Hom(I', G) may be identified

with G”; when T = Z¢, Hom(T, G) can be identified with the set C,(G) of all
commuting n-tuples of elements of G:

Cu(G) = {(81/---,8n) € G": Vi, j gigj = g;8i} -
Under these identifications, the conjugacy action of G on Hom(T', G) coincides
with the diagonal conjugacy action of G on G" and C,,(G):

8 (g1,---,8n) = (83187, 88n8 ™) -

Below, we will use the notation C(G) to denote C;(G), i.e. the set of commuting
couples of elements of G. We also denote by C(g) the centralizer of an element
g of G; whenever A is a subset of a Polish group G, we let (A) denote the closed
subgroup generated by A.

Before discussing in more detail questions related to extensions of generic ac-
tions, and studying generic properties of monothetic subgroups, we need to ex-
pand our Baire category toolbox.

-1

4.1. Some more Baire category notions.

Definition 4.1. Let X be a topological space, and G be a group acting on X by
homeomorphisms. The action is said to be topologically transitive if, for any nonempty
open subsets U, V of X, there exists g € G such that gU NV # @.

When X is a second-countable Baire space, topological transitivity of the action
G n X is equivalent to the existence of a dense G-orbit: indeed, the assumption of
topological transitivity is the same as saying that, for any nonempty open U C X,
the set {x: G-xNU # @} is dense, and this set is open since the action is by
homeomorphisms. Thus, taking the intersection of all these sets as U ranges over
a basis for the topology of X, one obtains a dense G set, each element of which
has a dense orbit.

Using the fact that a Baire-measurable, non meager subset of a Polish space X
must be comeager in a nonempty open set, one obtains the following fact.

Theorem 4.2 (first 0 — 1 topological law). Let X be a Polish space, and G ~ X be a
topologically transitive action. Then, any Baire-measurable, conjugacy-invariant subset
A of X is either meager or comeager.

Whenever G is a topological group acting on a topological space X, we will
make the assumption that the maps g — g - x and x — g - x are continuous; when
G and X are Polish, this is equivalent to the map (g, x) + g - x being continuous
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(see e.g. [Kec95| 9.14]). From the first 0 — 1 topological law, we see that if G is a
Polish group acting continuously and topologically transitively on a Polish space
X, then the G-orbits are either meager or comeager (orbits are clearly analytic, thus
Baire-measurable; actually orbits are Borel in this setting but we do not need this
here).

Now seems like a good time to mention an important result of Effros [Eff65].

Theorem 4.3 (Effros [Eff65]). Let X be a Polish space, and G be a Polish group acting
continuously on X. Then the following are equivalent, for any x € X:

(1) G- xis comeagerin G - x.
(2) G- xisa Gssubset of X.
(8) The map g — g - x is an open map from G to G - x.

The fact that the third item above implies the second is a consequence of a the-
orem of Hausdorff stating that a continuous, open, metrizable image of a Polish
space is also Polish.

Now, let us come back to our first concern in this section: given countable
groups A < T and a Polish group G, does a generic A-action extend to a I'-action?
In the cases we will consider, the action G ~ Hom(A, G) has a dense orbit; we are
asking whether the image of the restriction map Res: Hom(T, G) — Hom(A, G) is
comeager and, since this set is analytic and conjugacy-invariant, this is equivalent
to proving that it is not meager.

A common approach, popularized by King [Kin86], is via the so-called Dougherty
lemma.

Definition 4.4. Let X, Y be topological spaces, and f: X — Y be a continuous map.
An element x € X is said to be a point of local density for f if, for any neighborhood

U of x, f(x) belongs to the interior of f(U).

Lemma 4.5 (“Dougherty’s lemma”). Assume that X,Y are Baire topological spaces,
f: X = Y is continuous and the set of elements of X which are points of local density for
f is dense. Then f(X) is not meager.

As a partial converse, if one assumes additionally that X is second-countable,
the image of {x € X: x is not a point of local density of f} is meager; thus points
of local density must exist for f(X) to be nonmeager.

Definition 4.6 ([MT13b]). Let X,Y be Polish spaces. We say that f: X — Y is
category-preserving if it satisfies one of the following equivalent conditions:

(1) For any comeager A C Y, f~1(A) is comeager.

(2) For any nonempty open U C X, f(U) is not meager.
(3) For any nonempty U C X, f(U) is somewhere dense.
(4) {x € X: xis a point of local density of f} is dense in X.

This definition was introduced in a joint work with T. Tsankov [M113b], using
only the first three items of the list above; the equivalence with the fourth item
(and the fact that this notion was fairly classical) was only noticed in [Mel12]]. The
term “category-preserving” is meant to recall the classical notion of “measure-
preserving”maps. This choice is motivated by the following result, which is to the
measure disintegration theorem the same as the Kuratowski—Ulam theorem is to
the Fubini theorem.
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Theorem 4.7 (IMT13bl])). Let X,Y be Polish spaces, and f: X — Y be a category-
preserving map. Let also A be a subset of X with the property of Baire. Then the following
assertions are equivalent:

(1) Aiscomeagerin X.
) {y: AN f~Yy) is comeager in f~'(y)} is comeager in Y.
Using symbols:

(V'xe X Ax)) & VyeYVixe fl(y) Alx)) .

This result seems to have been formulated for the first time in [MT13b], which
is a bit surprising since it is both useful (as we will soon see) and not very hard to
prove. Particular cases of if appear in various places in the literature. The proof
works by showing that, if f: X — Y is a category-preserving map from a Polish
space to another, then there exists a dense G subset A of X such that f: A — f(A)
is open; f(A) must be comeager since f is category-preserving, and is Polish since
it is a continuous, open image of a Polish space. Noting that the proof of the
classical Kuratowski-Ulam theorem as presented for instance in [Kec95] extends
to continuous, open maps between Polish spaces, one obtains the desired result.

4.2. Centralizers of generic elements. The most basic infinite, countable group is
certainly Z; understanding actions of Z on some structure is of course the same
thing as understanding elements of the automorphism group of that structure. In
this section we describe an approach to proving that, in some Polish groups, cen-
tralizers of generic elements are as small as possible. This phenomenon first ap-
peared in work of Chacon-Schwartzbauer [CS69], who proved that, for a generic
g € Aut(p), the centralizer of g coincides with (g) - in other words, a generic
monothetic subgroup of Aut(y) is maximal abelian (recall that we only consider
closed subgroups here). Itis easy to prove that the same is true in U(#H ), using spec-
tral theory; T. Tsankov and I also managed to establish the same result for Iso(U)
[MT13b]. Let us discuss a general simple approach that can be used to prove this
type of result for a Polish group G.

Our approach uses properties of category-preserving maps; crucially, we estab-
lish that the restriction map P: C(G) — G (identified with the projection on the
first coordinate) preserves category as soon as

4.1) {(g,h): () = (g h)}is dense in C(G) .

Indeed, assume (4.I) holds, and let O be dense and open in G. Let U be a
nonempty open subset of C(G); we may find (g1, g2) € U such that (¢1) = (g1,£2),
so for some n we have (g1, 8}) € U. Using the density of O and the continuity of
group operations, there must exist g close to g1, belonging to O, and such that
(g,¢") € U. This shows that P~1(O) is dense. Hence, assuming (), the restric-
tion map from C(G) to G preserves category.

Clearly, £.I) holds as soon as the set of all (g, /1) generating a finite cyclic group
with ¢ as a generator is dense, or (since the map (g, ) — (gh, h) is a homeomor-
phism of C(G)) as soon as

4.2) {(g,h): g hhave coprime finite orders}is dense in C(G).

This property is satisfied both for G = Aut(y) and G = Iso(U); this is a conse-
quence of a multi-dimensional version of Rokhlin’s lemma in the first case [Con73],
and of a modification of a construction of Pestov and Uspenskij in the second
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case (see [PUOQ6] for the original result and [MT13b] for the required modification).
Note in passing that #.2) is very unlikely to hold in a permutation group, so this
technique can only be successfully applied in “continuous” structures.

Let us explain now why @.I) implies that the centralizer of a generic element
coincides with the closure of its powers; assume that G is a Polish group satisfying
the condition. Then we have

V*(g,h) € C(G)h e (g).

From this, and the fact that the restriction map is category-preserving, we deduce
that
V'ee GY'he C(g)he(g).

The above sentence says that, for a generic g € G, the closed subgroup generated
by g is comeager in the centralizer of g - thus the two must coincide, and we have
proved that the centralizer of g coincides with (g). Let us sum up.

Theorem 4.8 (reformulation of ideas from [MT13bl]). Let G be a Polish group such
that {(g,h) € C(G): (g) = (g, h)} is dense in C(G). Then the centralizer of a generic
element of G coincides with the closed subgroup it generates - in other words, a generic
monothetic subgroup of G is maximal abelian.

The groups Aut(u), U(H) and Iso(U) all satisfy these conditions.

4.3. Extensions of generic actions. Fix a Polish group G, a countable group I' and
a subgroup A < I. As we saw, one cannot expect in general that any element
of Hom(A, G) extends to an element of Hom(T, G) - for instance, we saw that
there exist elements of Aut(u) without square roots, and I proved in [Mel08] that
the same is true for Iso(U). Here we focus on the question of whether generic
elements of Hom(A, G) can be extended to generic elements of Hom(T, G); we
describe a way to tackle this kind of problem when I' is abelian, and G is a Polish
group such that there exist dense conjugacy classes in Hom(T', G) for any abelian T
This problem usually reduces fairly easily to the case when I' is finitely generated,
simply because open sets in Hom(T', G) only impose conditions on finitely many
elements of I', so we add the assumption that I is finitely generated. Then one
can use the structure theory of finitely generated abelian groups to decompose the
problem into easier sub-problems.

First, one needs to understand the case when A is finite; for G = Aut(u) or
Iso(U), this is easy: there exists an element 77y with comeager conjugacy class in
Hom(A, G) for any finite abelian A, and this element can be extended to an action
of any finitely generated abelian supergroup of A. From this one obtains that the
restriction map Res: Hom(I', G) — Hom(A, G) is category-preserving: given any
nonempty open U in Hom(T, G), the Effros theorem implies that Res(U) N G -
7y is open and nonempty in the comeager set G - 7, so it cannot be meager in
Hom(A, G).

Next comes the case where A = nZ and I' = Z; as we saw when discussing
King’s theorem, we are asking whether the map g — ¢" is category-preserving. To
my knowledge, we lack efficient general techniques to solve this type of question;
King’s theorem shows that this property holds for G = Aut(u), and it is an open
problem for G = Iso(U).

Then, one needs to understand what happens when A = Z4, T = Z*. Using the
same argument as when we studied the restriction map from C(G) to G, one sees
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that the restriction map from actions of Z* to actions of Z¢ preserves category as
soon as

(4.3) {(g1,---,8k): (§1,---,8) = (g1)} is dense in Ci(G) .

If @.3) is satisfied, then a similar line of reasoning enables us to deal with the
case of Res: Hom(Z* x F,G) — Hom(Z? x F,G) for d < k and F a finite abelian
group (we skip the details).

We turn to the case Z¢ < Z¢ x F. An obvious necessary condition for an action
7 of Z% to extend to an action of Z? x F is that there exists a copy of F in the
centralizer of 77(Z%); thus this has to be true for a generic 7 € Hom(Z4,G) if
we are to hope that the restriction map Res: Hom(Z* x F,G) — Hom(Z%,G) is
category-preserving. It follows from the conditions we have imposed thus far on

our group that a generic 71(Z9) is the same as a generic 77(Z), so we need to know
that a generic 77(Z) contains infinitely many elements of order n for all n > 2.
This is known to hold for Aut(u) [SE04]. Using the fact that a generic action in
Hom(Z*, G) is free ergodic, and that the conjugacy class of such an action is dense
(see e.g. [Kec10] for details), one sees that the image of Res being nonmeager is
enough to ensure that Res is category-preserving in that case.

The final step is to understand Z% x F; < 79 x F,, where F; < F, are finite
abelian groups. It is not hard (using Theorem /7)) to see that the corresponding

restriction map preserves category as soon as a generic 71(Z4) is divisible, which
is equivalent under our current assumptions to a generic 71(Z) being divisible.
This follows from assumptions we already made on the group, namely that the
restriction map from Z?2 to Z preserves category, and that a generic element admits
roots of any order. As another example of application of Theorem .7 let us give
details of this proof. Our starting assumption is that, for any integer n,

V'¢eGifeGg=f".

We know that, for a generic pair (g,h) € C(G), we have (g,h) = (g) = (h), sowe
can write

v*(g,h) € C(G) Cg) = C(h) = (g) and 3f € G h = f”

The f in the above line must belong to C(h), and using category-preservation we
may write the above line as

VigeG(Vhe(g)3f (g h=f").
Thus, for a generic g, the homomorphism f — f" of the abelian Polish group (g)
has a comeager range, hence it is surjective, proving that (g) is divisible.
Let us sum up the properties of G that were used to prove that the restriction
map Res: Hom(T, Aut(y)) — Hom(A, Aut(p)) preserves category for any pair of
finitely-generated abelian groups A < I

o {(g1,---,8): (1) = (g1,---,8) } is dense in Ci(G) for all k.

e The map g +— g" preserves category for all # > 1 (which, along with the
previous assertion, is enough to obtain that a generic 77(Z) is divisible and
coincides with the centralizer of 77(1))

e The centralizer of a generic element contains a copy of any finite abelian
group (equivalently it contains infinitely many elements of order # for any
integer n > 2).
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For a general Polish G, the third condition might be too weak to show that
the restriction map Res: Hom(Z? x F,G) — Hom(Z%, G) preserves category for
every finite F. I believe that in “natural” cases this condition (along with the two
others) should be sufficient.

These three conditions all hold for Aut(y), and the first is known to hold for
Iso(U) while the other two are open. These questions essentially reduce to un-
derstanding the maps g +— ¢" in Iso(U); a proof that these maps are category-
preserving would probably lead to a complete positive solution of the problem.

In the case of G = Aut(y), we obtain the following result.

Theorem 4.9 ([Mell2]). Let I be a countable abelian group and A be a finitely-generated
subgroup of T. Then the restriction map Res: Hom(T,G) — Hom(A, G) is category-
preserving.

I'asked in [Mel12]] whether this result extends to non-finitely generated A; Ageev
[Agel2] shows that such is not the case. Given a countable abelian group G, he
completely described the set of its subgroups H for which it is true that a generic
H-action can be extended to a free G-action (in particular, his results extend the re-
sults of [Mel12]). Also, one cannot expect such a result to hold in general outside
of the domain of abelian groups; for instance, Ageev [Age89] proved that a generic
element of Aut(y) is not conjugate to its inversd. Hence, a generic measure-
preserving Z-action cannot be extended to an action of a nontrivial semidirect
product Z x F.

In [Mel12], I also pointed out an example (found with the help of B. Sévennec) of
a polycyclic group I' with a central subgroup A = Z such that a generic measure-
preserving A-action cannot be extended to a I'-action. This example depends on
the result of Chacon-Schwartzbauer [CS69] stating that the centralizer of a generic

g € Aut(p) coincides with {¢": n € Z}.

4.4. Extreme amenability. A topological group G is extremely amenable if any con-
tinuous action of G on a compact space has a global fixed point. The first examples
of extremely amenable groups, obtained in 1975 by Herer—Christensen [HC75] ,
were examples of abelian “exotic” groups, which do not admit strongly contin-
uous unitary representations; note that exotic groups are amenable iff they are
extremely amenable, and all abelian groups are amenable. The question of the ex-
istence of extremely amenable groups was first raised by Mitchell [Mit70]). In the
early eighties Gromov and Milman proved that U(# ) is extremely amenable, as a
consequence of the phenomenon of concentration of measure on euclidean spheres
of large dimensions, an avatar of the isoperimetric inequality [GM83]. Since then,
many large topological groups have been proved to be extremely amenable, for in-
stance Aut(p) (Giordano-Pestov [GP07]) and Iso(U) (Pestov[Pes02]). A compre-
hensive discussion of extremely amenable Polish groups may be found in Pestov’s
book [Pes06].

Definition 4.10. Let K be a compact metrizable group, and (X, i) a standard prob-
ability space. The group L°(K) is the group of all measurable maps from (X, )
to K, identified if they coincide outside of a set of measure 0, endowed with the

i only recently noticed that this also follows from an earlier result of del Junco, who proved that
the powers of a generic transformation form a disjoint family [d]81].
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topology of convergence in measure, which in this case is induced by the metric

4(£,8) = [ AF(x),8(0)dp()
(d is any compatible distance on K)

Then L%(K) is a Polish group, and Azuma’s inequality may be used to prove
that L°(K) is a Lévy group (Glasner [Gla98]; Furstenberg-Weiss), which implies
that it is extremely amenable (for the definition of a Lévy group and other facts
related to extreme amenability that we do not discuss in detail, see e.g. [Pes06]).

Definition 4.11. A Polish group G is said to be monothetic if there exists ¢ € G such
that (g) is dense. We say that G is generically monothetic if this holds for a generic
g€G.

It follows from a classical result of Halmos-Samelson [HS42] stating that any
compact abelian connected metrizable group is generically monothetic, that L(K)
is generically monothetic for any such K ([Gla98] for K = T). This can be proved
with a simple Baire category argument similar to one that can be found in [Kec10,
p.26]. Along the same lines, L°(K) is topologically 2-generated whenever K is com-
pact, metrizable and connected, this time as a consequence of the same Baire cate-
gory argument and the fact that any such K is topologically 2-generated (Schreier—
Ulam [SU33]). The fact that L°(T) is monothetic was first noticed by Glasner
[Gla98].

The starting point of the work that led to [MT13b] was the following observa-
tion.

Theorem 4.12 (IMT13bl)). Let G be a Polish group, and I' be a countable group. Then
the set

{m € Hom(T, G): 7(T) is extremely amenable}
is Gs in Hom(T, G).
Sketch of proof. Fix a compatible left-invariant metric d on G. It follows from ([Pes06],

2.1.11) and an easy argument that 77(I") is extremely amenable if, and only if, the
following condition is satisfied:

Ve > 0 VA finite C T 3B finite C T Vc: B — {0,1}
Jie{0,1} Iy eTVaec A3 cc (i) d(n(ya), m(d)) <e.

At first glance, there are too many quantifiers involved for this to be a G5 con-
dition; however this intuition is false, because many of the quantifiers range over
finite sets. O

Corollary 4.13. Assume that G is a Polish group such that
{(gn): ((gn)) is extremely amenable }

is dense in G“. Then G is extremely amenable.
Actually, to show that G is extremely amenable, it is enough to prove that

{(gn): ((gn)) is contained in an extremely amenable subgroup of G}

is dense in G%.
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Sketch of proof. The set {(gx): ((gn)) = G} is dense G; in G¥ for any Polish G, so
if the first assumption is satisfied the Baire category theorem along with Theorem
[4.12] for actions of the free group on countably many generators give the desired
conclusion.

Now, assume that the second, weaker assumption holds, and U is a nonempty
open subset of G*. Without loss of generality, we may assume that U = V x G
where V is open in some G”. Our assumption gives us (go, ..., gm-1) € V which
generate a subgroup contained in an extremely amenable H < G. Let (h;);<, be
dense in H. Then the sequence (go, - ..,$m—1,M0,11,...) is dense in H and belongs
to V. O

This enabled T. Tsankov and I to give in [M13b] a new proof of the extreme
amenability of Iso(U), U(#H) and Aut(u). The same scheme applies in all three
cases, and the most complicated fact used in the proofs is the extreme amenability
of groups of the form L°(K) where K is compact metric. For instance, let us give a
proof along those lines of the extreme amenability of U(H).

Sketch of proof of the extreme amenability of U(H ). It is enough to show that

{(g1,---,8n): (g1,--.,8n) is contained in an isomorphic copy of some L°(U(m))}

is dense in U(#H)" for all n. So we start by picking a nonempty open O C U(H)";
we fix a Hilbert basis (¢;) of H. One can find (g1,...,gx) € O and m < w such
that (g1,...,¢n) acts trivially on H(m)+ = Span(e;);>,,, and any element of U (H)
which agrees with (g1, . .., gm) belongs to O; we identify U(m) with the pointwise
stabilizer of H(m)".

The action U(m) ~ H(m) extends to an action LO(U(m)) ~ L?*(H(m)), and
the latter is a Hilbert space, which we can identify with H in such a way that con-
stant functions in L°(#(m)) are identified with # (m). The image of (g1,...,gm)
under this identification is an element (h, ..., hy;) of U(H) which coincides with
(g1,---,8m) on H(m), thus belongs to O, and ((hy, ..., hy) is contained in an iso-
morphic copy of LO(U(m)). O

4.5. Generic monothetic subgroups. The fact that extreme amenability is a G;
condition naturally leads one to wonder whether a generic element of some fixed
Polish group G generates an extremely amenable subgroup.

Recall that a countable, abelian group is unbounded if there is no upper bound
on the order of its elements.

Theorem 4.14 (IMT13Dbl). Let I be a countable, unbounded abelian group and G be one
of Aut(u), U(H) or Iso(U). Then the set {rr: 7(T) = LO(T)} is dense in Hom(T, G);
therefore, the generic 7t(T') is extremely amenable.

Actually, the above result holds in somewhat greater generality, and one can
write down an algebraic condition such that the extreme amenability of a generic
7(T) holds (for I' abelian) exactly when T satisfies this condition, and I' cannot
densely embed in an extremely amenable group if this condition fails. I will not
go into this level of detail here and focus on the case of Z below.

The “therefore” part above follows from the facts that extreme amenability is
a Gs condition, and that L°(T) is extremely amenable. In each case, the proof
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proceeds by showing first that {7r: 77(T) is contained in a closed copy of L°(T)} is
dense, then by perturbing slightly 7t so that 77(I') becomes dense in L°(T).

In the case of U (), using spectral theory, we actually proved a much more pre-
cise result: if T' is unbounded abelian, then the set {7r: 77(T) =2 L°(T)} is comeager
in Hom(T', U(H)) (we will see a different proof of this fact below). This leads to the
following question (and now, we focus, as promised, on the case I' = Z for clarity
of the exposition): what can one say about the generic properties of monothetic
subgroups of G, when G is Aut(u) or Iso(U)?

We already know that, in all three cases, a generic monothetic subgroup is max-
imal abelian and extremely amenable. In U(/;), this completely characterizes the
group up to isomorphism: the spectral theorem tells us that a maximal abelian
subgroup of U(/) must coincide with the unitary group of a separable abelian
von Neumann algebra, and only one of those is extremely amenable: the unitary
group of L®(X, u) when (X, ) is atomless, and this group is isomorphic to L(T).
Thus, we obtain in a fairly soft way (much more painlessly than in our original
proof of this result, at any rate) that a generic monothetic subgroup of U(H) is
isomorphic to L°(T).

Question 4.15. Does the same property hold in Aut(u)?

Evidence towards a positive answer to that question was recently found by
Solecki [Sol14], who proved that the closed subgroup generated by a generic ele-
ment of Aut(y) is a continuous homomorphic image of a closed subspace of L°(R),
and contains an increasing chain of finite-dimensional tori whose union is dense.

One could also ask whether the same property holds in Iso(U); we do not even
know whether a generic monothetic subgroup is divisible, a property which is
presumably much easier to establish. However, it was pointed out by C. Rosendal
(private communication) that a generic element of Iso(U) does not generate a copy
of L%(T). To see why, first recall that a Polish group has property (OB) if, whenever
it acts by isometries on a metric space (X,d) such that for all x the map g —
gx is continuous, then every orbit is bounded (in the case of Polish groups, this
is equivalent to saying that all continuous isometric actions on separable metric
spaces have bounded orbits).

Let me sketch Rosendal’s argument: to prove that L%(T) has property (OB), it
follows from [Ros09b] that we need to prove that for any neighborhood V of 1
there exists a finite subset F and an integer n such that G = (FV)". A basis of
neighborhoods of 1 in L%(T) is given by sets of the form

Ve ={g: p({x:d(g(x),1) > ¢}) <}

Now, it is easy to see, by cutting (X, j) into n pieces each of measure < ¢, that for
such an 7 one has L(T) = V/".

However, a generic isometry of the Urysohn space has unbounded orbits (for
instance, because for any fixed x and N the set {g € Iso(U): Vnd(x,¢"(x)) < N}
is closed and has empty interior, so the set of isometries for which the orbit of x
is bounded is meager in Iso(U)), thus generates a group which does not satisfy
property (OB). Hence a generic element of Iso(U) does not generate a subgroup
isomorphic to L%(T); this property might hold for Iso(Uy), as far as I know, but
there is no compelling evidence towards that being true (again, one should first
understand whether a generic monothetic subgroup is divisible in that case).
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Above, it was essential for us that the maximal abelian subgroups of U(# ) are
easy to classify; the same would be true in unitary groups of separable von Neu-
mann algebras: the point is that when the spectral theorem holds it is very useful,
unfortunately it is specific to von Neumann algebras (though L. Farah pointed out
to me that a weaker form of spectral theorem holds for general C*-algebras). This
leads to the following, probably hopeless, problem.

Question 4.16. Can one classify the maximal abelian subgroups of Aut(X, u)? Of
Iso(U)?

While there may be a faint glimmer of hope that something can be said in
Aut(X, ), I would not be surprised if the situation in Iso(U) were extremely wild
- for instance, if any (noncompact?) abelian Polish group were isomorphic to a
maximal abelian subgroup of Iso(U).

We have not addressed perhaps the simplest, most natural question about Baire
category in Hom(I', G): when are conjugacy classes meager? When do comeager
classes exist? It turns out that this is harder to investigate than it looks at first; we
will come back to this at the end of the next section, after introducing the language
of metric model theory and some related ideas.

5. FIRST-ORDER LOGIC AND POLISH GROUPS
5.1. Classical first-order logic and Fraissé classes.

5.1.1. Basics of classical first-order logic. What is a mathematical structure? Cer-
tainly, it is a set, along with various operations or relations of particular interest.
For instance, a graph could be defined as a set, along with a binary relation (which
is, say, irreflexive and symmetric); a group is a set, endowed with operations of
multiplication and inverse, and perhaps it makes sense to distinguish the neutral
element too.

Definition 5.1. A first-order structure is a tuple M = (M, (R;)er, (f)jej) where:
e M,I, ] are sets.
e Each R; is a subset of some M".
e Each f; is a function from some MFi to M.

The R;’s are called relations, and the fj’s are called functions. Of course, one
might also want to consider functions from some M* to some M!, but considering
their coordinates these functions reduce to M-valued functions. Also, one might
want to consider distinguished constants (for instance, the neutral element of a
group); we consider them as functions from MO to M. So, above, n; is to be under-
stood as being a positive integer, while k; is a nonnegative integer.

Definition 5.2. A first-order language is a tuple £ = ((R;, m;)ic1, (fj, k;)je) where
e [isa set, and each m; is a positive integer.
e ]isaset, and each k; is a nonnegative integer.

Each R; is called a relation symbol, and each f; is called a function symbol; in the
particular case when k; = 0 we say that f; is a constant symbol

Given a structure M, one can then consider its language; conversely, given a
language L, one can introduce the class of L-structures, which are all the first-
order structures whose language is equal to L.
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Given a language £, a L-structure M and a symbol belonging to £, we call
the corresponding relation or function on M the interpretation of that symbol. We
always assume that our languages contain a special binary symbol, which is inter-
preted by the equality relation, and will not mention that symbol in our notations.

Note that there is a choice of language to be made when deciding how to turn
a mathematical structure into a first-order structure; for instance, as we pointed
out above, one might want to include a particular symbol to denote the neutral
element of a group, or be content with symbols for multiplication and inverse,
or even just for multiplication. Why would one make one choice rather than the
other? This is where semantics come into play - so far, our discussion is purely on
a syntactical level.

Definition 5.3. Let £ be a first-order language. Formulas are built inductively; first
one defines terms as follows:

e Any variable symbol is a term.
e Any expression f(ty,...,t,) is a term, where f is a n-ary function symbol
of £L,and t4,...,t, are terms.
(in particular constant symbols are terms)

e If R is a n-ary relational symbol and t4,...,t, are terms then R(ty,...,t,)
is a formula.

e For any formula ¢, its negation —¢ is a formula.

e For any formulas ¢, i their conjunction ¢ A ¢ and disjunction ¢ V ¢ are
formulas.

e For any formula ¢ and any variable symbol x, Vx ¢ and 3x ¢ are formulas.

Here, what matters most is that we do not allow quantification on subsets
of the structure, or on “external” objects, such as the integers for instance, nor
do we allow infinite conjunctions and disjunctions. So, while the formula Ji €
{1,...,N} ¢' = 1is a valid first-order formula in the language of groups (once it
is written in the form \/’_; ¢’ = 1), 3i € N* ¢ = 1is not. This is a crucial point for
the development of first-order logic and the validity of the compactness theorem;
we will not really use any first-order logic (except as a guide for intuition), so I
will not go into detail here (see [Hod93|, [Poi85] or [TZ12] for an introduction to
first-order logic and model theory).

There is a natural notion of meaning of a formula inside a model, defined in-
ductively; for instance, consider the formula in the language of groups (X, -1 e)
¢(x,y): x x y = e. This formula (with two free variables x, y) is true in the group
(Z,+,—,0) when x = 2,y = —2; we write (Z,+, —,0) = ¢(2,—-2). It is false for
instance for x = 14,y = 3. So one can express the fact that x and y are inverses
of one another by the first-order formula ¢. If a formula has no free variables, for
instance the formula ¢: Vx x> = 1, then this formula will simply be true (or satis-
fied) or false in any given L-structure. The formula ¢ above is satisfied by a group
exactly when all elements of that group have order 2. We write M |= ¢ if ¢ is true
in M.

The choice of language clearly influences which formulas one can write in a
first-order way, thus affecting the theory of a L-structure M, which is the set of all
first-order formulas (without free variables) which are true in M.

We can also define what a substructure of a first-order structure M is: N is a
substructure of M if the universe of N is contained in the universe of M, both
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structures have the same language, and the relations and functions of N are the
restrictions of the relations and functions of M. Here again, the choice of language
influences what substructures are: if we include inverse and neutral element along
with multiplication in the language of groups, for instance, then a substructure of
a group is exactly a subgroup; this is no longer true if we remove one of these
symbols.

This concludes the first part of our crash-course on first-order logic; mostly
what needs to be remembered from the above are the notions of language, struc-
ture, and substructure. Now we come to the reason why we are interested in
first-order structures here: their automorphism groups.

Definition 5.4. Let M = (M, (R;)er, (f;)jej) be a first-order structure. An auto-
morphism of M is a bijection g: M — M such that:

e Foralli € I, for all i = (my,...,my) such that n; = k, one has M |=

R;(m) < M = Ry(g(1m)) (where (i) = (g(m1), - .., g(my)).)
e Forallj € ], forall m = (my,...,my) such that k; = k, one has f;(m) =

fi(g(m)).
These groups are of particular interest to us when the structure is countable,
that is, when it universe is. Below we use the word countable to mean an infinite

set equinumerous with w; we say that a set is at most countable if it is finite or
countable.

Definition 5.5. Let M be a countable first-order structure. The permutation group
topology on its automorphism group Aut(M) is the topology of pointwise con-
vergence with respect to the discrete topology on M; explicitly, a basis of open
neighborhoods of the identity is given by subsets of the form

{g € Aut(M): Va € A g(a) =a}
where A ranges over all finite subsets of M.

When M is (N, =), the corresponding automorphism group is the permutation
group of the integers S, endowed with the topology we discussed in the first
section of this text. In general, one may always assume that M = N. Since any
automorphism must induce a bijection of the universe, the automorphism group
Aut(M) is then a subgroup of S«; the permutation group topology is the topology
on Aut(M) that is induced from the Polish topology on Se. It is easy to check that
Aut(M) is a closed subgroup on Se or, equivalently, that Aut(M) endowed with
this topology is a Polish group in its own right.

Theorem 5.6 (folklore). Let G be a closed subgroup of Seo. Then there exists a first-order
structure M (with a countable language) such that G is isomorphic, as a topological group,
to Aut(M) endowed with its permutation group topology.

Proof. As a subgroup of Seo, G naturally acts on N and more generally on any N,
For any integer k > 1, let O = {Oy;}icj, be an enumeration of all orbits of the

action G ~ N¥. Then consider a language with exactly |I;| relational symbols Ry ;
for each k, and turn N into a £-structure M by setting
M ‘: Rk,z'(fl) &ne Ok,i .

Clearly, G is a subgroup of Aut(M). Consider a finite set A = {ny,...,n} C N
and an automorphism f of M. Then (ny,...,n;) € Oy; for some i, and f(Oy;) =
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Oy i, which means exactly that there exists ¢ € G such that g(72) = f(71). We have
just shown that, given any finite subset A of N and any f € Aut(M), there exists
¢ € G which coincides with f on A. In other words, G is dense in Aut(M); since
G is closed in S, it is also closed in Aut(M), so G = Aut(M). O

Automorphism groups of first-order structures actually are nonarchimedean Pol-
ish groups, which means that the neutral element admits a basis of open neigh-
borhoods made up of open subgroups. This is clearly not true for all Polish groups
(for instance, a connected Polish group cannot have a nontrivial open subgroup),
so not all Polish groups are isomorphic, as topological groups, to automorphism
groups of first-order structures. But those are actually completely characterized by
being Polish and nonarchimedean: a Polish nonarchimedean group naturally em-
beds into S (for any open subgroup V of G, one can consider the natural action
of G on G/V, and glue all these actions along each other as V ranges over a basis
of neighborhoods of 1; the corresponding action of G on a countable set gives us
the desired embedding).

Note that one could still wonder whether any Polish group is isomorphic, as an
abstract group, to a subgroup of Se; this question was asked by Ulam [[Ula60] for
50(3,R) and more generally for Lie groups; the answer was proved to be posi-
tive for many matrix groups by Kallman [Kal00]; see also Thomas [1ho99]. Now
we know plenty of examples of Polish groups which do not admit any nontrivial
homomorphism to S, and we will see some of those later on.

One last remark before forging ahead: there are many ways to turn a nonar-
chimedean Polish group into the automorphism group of a countable first-order
structure; some properties of the structure will be independent of this choice, but
others will not, which is important to keep in mind.

5.1.2. Fraissé classes. It is often the case that “universal” structures have very large
automorphism groups. One way to quantify this “largeness” is via the action of
the group on the structure.

Definition 5.7. A first-order structure M is said to be homogeneous if any isomor-
phism between two finitely generated substructures extends to an isomorphism of
the whole structure.

When the structure is relational (that is, there are only relation symbols in its
language), finitely generated structures are always finite; this is false in general
when the language contains functions. For instance, the substructure of (Z,+,0)
generated by 1 is N; the substructure of (Z, 4+, —,0) generated by 1 is Z.

A crucial observation, due to Fraissé, is that one can characterize homogeneous
first-order structures by properties of their finitely generated substructures.

Definition 5.8. Let £ be a countable first-order language, and K be a class of
finitely generated L-structures. We say that:

o [C is countable if it contains only countably many elements up to isomor-
phism.

o [ is hereditary if, whenever B belongs to K and A is a finitely generated
L-structure which embeds in B, A must belong to K.

o [ has the joint embedding property (JEP) if any two elements of K embed in
a third one.
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o K has the amalgamation property (AP) if, given A, B, C € K and embeddings
x: A — B, B: A = C, there exists D € K and embeddings i: B — D,
j: C = D such thatioa(a) = jop(a) for alla € A. Schematically, the
following diagram commutes.

A/B\D
N

A class satisfying all the properties above is called a Fraissé class.

The amalgamation property is probably the most mysterious at first glance;
note that it does not necessarily imply the joint embedding property, because we
are not assuming that the empty structure belongs to X, or even that K contains an
initial object. Let us discuss a simple example: the class of finite graphs, which for
us are structures in a language with a binary relation symbol R which is irreflexive
and symmetric. Countability and hederitarity are obvious in that case; we allow
graphs to be empty so the amalgamation property will imply the joint embedding
property in that case. It is easy to amalgamate two graphs I';,I'; over a common
subgraph A: simply form the disjoint union I'y U T, then identify both copies of
A; keep the edges of I'1 and I'; and add no new ones.

Amalgamating groups over a common subgroup is somewhat more compli-
cated, but of course the amalgamated free product is the construction we need in
that case. However, there are uncountably many finitely-generated groups up to
isomorphism, so they do not form a Fraissé class. Finite groups do, however, and
the reader is invited to think up a good way to amalgamate finite groups in such a
way that the amalgam remains finite and, more generally, to try to come up with
examples of Fraissé classes of her own.

Definition 5.9. Let M be a countable first-order structure, with language £. The
age of M is the class of all L-structures which are isomorphic to a finitely generated
substructure of M.

Clearly, the age of any countable structure is countable, hereditary and satisfies
the joint embedding property.

Theorem 5.10 (Fraissé [Fra54]). The age of a homogeneous countable structure is a
Fraissé class.

Proof. We only need to check the amalgamation property; let A, B and C be three
elements of the age of K and «, § be embeddings from A to B, C respectively. We
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may assume that A, B, C are substructures of K, and (by homogeneity) that «, 8
are restrictions to A of automorphisms of K, which we still denote by «, .

Then, let D denote the substructure of K generated by a~!(B) and $~!(C). D
is finitely generated, and is an amalgam of B, C over A.

Using a back-and-forth construction, Fraissé proved a converse of the above
result, in the following strong sense.

Theorem 5.11 (Fraissé [Fra54]). Let K be a Fraissé class in a countable language L.
Then there exists a L-structure K which is homogeneous and whose age is equal to K.
This structure is unique up to isomorphism and is called the Fraissé limit of K.

Uniqueness up to isomorphism is easy to obtain from countability and homo-
geneity. The structure K is characterized by the following property, which should
make more or less clear how to construct K via repeated embeddings and amal-
gamations (recall Katétov’s construction of the Urysohn space): for any finitely
generated substructure A of K, any B € K, and any embedding i: A — B, there
exists B C K containing A and an isomorphism from B to B which coincides with
ionA.

This characterization is sometimes called Alice’s restaurant axiom: everything
you can imagine is already there.

Let us consider again the class of finite graphs: the Fraissé limit of the class
of finite graphs is the Radd graph R, which is characterized among all countable
graphs by the following property: for any disjoint subsets A, B of R, there exists
an element x of R such that there is an edge from x to every element of A and
to no element of B. This is the translation of Alice’s restaurant axiom for graphs;
interestingly, there is also a probabilistic construction of this object. Consider a
graph on N built in the following way: for each i < j, flip a coin; if the coin lands
on heads, put an edge between i and j, and do not put an edge otherwise. Clearly,
with probability 1, the axiom we just wrote down will be satisfied, because, once
we only consider j > max(A, B), the probability to put an edge between j and all
elements of A and no element of B is a fixed strictly positive number, hence such
a j will appear with probability 1. In general, one cannot hope for such simple
probabilistic constructions of Fraissé limits, but this is still an interesting area, with
some promising recent developments which unfortunately fall outside the scope
of this text.

We saw other examples of homogeneous structures: Urysohn spaces. For in-
stance, the rational Urysohn space Ug may be seen as a homogeneous structure in
the language with countably many binary relational symbols (dg),cq+, by setting

Ug Fdg(x,y) & d(xy) =q.
We let the reader think of how one can amalgamate metric spaces.

In the end of this section, we will discuss some other examples. Going back to
Polish groups for a moment, we note that the construction of Theorem 5.6l actually
shows that, for any nonarchimedean Polish group G, there exists a homogeneous
countable structure M, in a countable relational language, such that G is isomor-
phic (as a topological group) to Aut(M).

5.1.3. Free amalgams. There is a situation where amalgams are particularly simple:
free amalgamation. In this section, we assume that all languages are relational and
countable; the material discussed here comes from [BM13]].
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Definition 5.12. Let £ be a countable relational language, A, B, C be three £-
structures and a: A — B, f: A — C be two embeddings. The free amalgam of
B, C over g, 3 is the structure M, where:

e The universe M of M is the quotient of the disjoint union B LI C by the
equivalence relation which identifies a(a) and B(a) for all elements of A
(and identifies only those elements)

e Relations in M come only from tuples entirely contained in B and tuples
entirely contained in C, and are such that the natural inclusion maps from
B, C to M induce embeddings of L-structures.

Informally: glue together the two copies of A, copy the relations from B and C,
and add no other relations. Below we will simply say that this structure is the free
amalgam of B, C over A (the embeddings should always be clear from the context).
Using the same idea, we can freely amalgamate any family of £-structures over a
common substructure A.

Some classes are stable under free amalgamation (we say that they satisfy the
free amalgamation property), for instance the class of all graphs is; the amalgamation
procedure we described to show that the class of finite graphs is a Fraissé class
was exactly free amalgamation. Most classes are not stable under free amalgama-
tion: for instance, the class of finite rational metric spaces certainly is not, since
there must be a distance between any pair of elements, so we must add relations
between elements of B\ A and C \ A.

Free amalgamation behaves very well with respect to automorphisms, in the
sense that it enables one to glue automorphisms together (which is also possible
for rational metric spaces, and indeed in many cases where there exists a “natu-
ral” amalgamation procedure). It turns out to be possible to reproduce Katétov’s
construction of the Urysohn space in any free amalgamation class.

Definition 5.13. Let K be a Fraissé class in a countable relational language £, with
the free amalgamation property. We let K, denote the class of all at most countable
L-structures whose age is contained in .

For instance, if K is the class of all finite graphs, then K, is the class of all (at
most) countable graphs. Assuming that K has the free amalgamation property, it
is easy to check that K, is also stable under free amalgamation.

Definition 5.14. Let A, B be L-structures such that B = A U {b}. The quantifier-free
type of b over A is the set of all formulas ¢ with at most one free variable x, with
parameters in A, such that B |= ¢(b).

A quantifier-free type (q.f type for short) over some L-structure A is a set of
formulas with at most one free variable x such that there exists a structure B con-
taining A and an element b of B such that our set of formulas is exactly the q.f type
of b over A.

We recall that all our Fraissé classes are assumed to be infinite. In particular,
for any A € K, there exists at least one q.f type over it which does not come from
an element of A. To each q.f type p over A one can associate a unique L-structure
whose universe is of the form A U {b}, where b realizes the q.f. type we started
from; we call this the structure associated to p (if p contains a formula x = a for
some a € A, then B = A, otherwise A is strictly contained in B).
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For A € Ky, we say that a q.f. type p over A is finitely induced if there exists
a finite substructure M of A and a q.f. type q over M such that the structure as-
sociated to p is the free amalgam over M of A and the structure associated to g.
Note that there are only countably many finitely induced q.f. types over a given
Ac K.

Definition 5.15. Let K be a Fraissé class of L-structures with the free amalgama-
tion property, and A € ICi,. We let £(A) denote the L-structure obtained by form-
ing the free amalgam over A of the structures associated to all the finitely induced
q.f. types over A.

There is an obvious natural embedding of A into £(A), and we always see A
as a substructure of £(A) via this embedding. Now, given a Fraissé class K with
the free amalgamation property, we can simply mimic Katétov’s construction of
the Urysohn space: start from any A € K, and construct a tower of elements in
Ko by setting My = A, M; ;1 = £(M;). The limit M, = UM; must then be the
Fraissé limit of K. It is clear that automorphisms of M extend to automorphisms of
M., and one can check that this induces a continuous embedding of permutation
groups. Let us sum up.

Theorem 5.16 ([BM13])). Let K be a Fraissé class with the free amalgamation property,
with Fraissé limit K, and M be a countable structure whose age is contained in K. Then
there exists an embedding i: M — K such that all automorphisms of M extend to auto-
morphisms of K, and this extension map can be taken to be a continuous group embedding
from Aut(M) to Aut(K).

This construction can be tweaked a little bit. For instance, at each step, we
could let M; ;1 be the free amalgam of two copies of £(M;) over M;; then any
automorphism of M; extends uniquely to an automorphism of M, that swaps
the two copies of £(M;). This idea can be used to prove the following result.

Theorem 5.17 ([BM13])). Let K be a Fraissé class with the free amalgamation property,
with Fraissé limit K, M be a countable structure whose age is contained in IC, and n > 2
an integer. There exists an automorphism ¢wm of K such that @i, = 1, and the set of fixed
points of pwm is isomorphic to M.

The construction ensures that M and N are isomorphic iff ¢\ and @N are conjugate;
the map M +— @wm can be turned into a Borel reduction of the isomorphism relation of
elements of ICy, to the relation of conjugacy in Aut(K).

We do not discuss definitions of Borel reducibility, and refer the reader to [BK96],
[Gao09], [Hjo0O] or [Kec02] for background. The remainder of this section can be
safely skipped by readers unfamiliar with this theory. Let us note that the above
result implies that the relation of conjugacy among, say, involutions of the ran-
dom graph, is universal among Borel actions of S.; the same result is true if one
replaces the random graph by any one of the Henson graphs. The reason this
holds is that, in each of these cases, the isomorphism relation among elements of
K is universal for actions of Se, and the above result gives us a reduction of this
relation to the conjugacy relation of involutions in Aut(K) (involutions could be
replaced by elements of any fixed finite order, of course). The fact that the relation
of conjugacy in the automorphism group of the random graph is universal among
Borel actions of S« was originally proved, differently, by Coskey-Ellis-Schneider
[CES11].
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The main reason why I discussed the constructions above in some detail is that
they lead to a question I find intriguing: what are the possible complexities for the
relation of isomorphism of elements of X,?

Question 5.18. Let K be a Fraissé class with the free amalgamation property. Is it
true that the relation of isomorphism of elements of K, is either smooth or uni-
versal for Borel actions of Se?

5.1.4. An example: good measures. Fraissé classes may appear in somewhat unex-
pected places; we discuss an intriguing example related to topological dynamics.
First, consider the class of all finite boolean algebras, say in the language with con-
stant symbols for the emptyset and the whole space, as well as function symbols
for union, intersection and complement. This is a Fraissé class - the amalgamation
procedure may be checked by using product algebras, for instance: indeed, let A
be a common subalgebra of two finite boolean algebras B, C. Then D = B x Cisa
finite boolean algebra, and the diagonal embedding a +— (a,4) amalgamates B and
Cover A. The limit of this class is easily seen to be the countable atomless boolean
algebra B, whose Stone space is a Cantor space X (the Boolean algebra of clopen
subsets of X is isomorphic to Be). So, the automorphism group Aut(Bs) and the
homeomorphism group Homeo(X) are isomorphic as topological groups.
Now, let us increase the complexity of our class a little bit.

Definition 5.19 (Akin [AkiO5]). Let X be a Cantor space. A good measure on X is a
Borel measure y# which is atomless, has full support, and is such that for any clopen
A, B such that u(A) < u(B), there exists a clopen C C B such that p(A) = u(C).

It follows from a result of Glasner-Weiss [GW95| Proposition 2.6] we already
mentioned that, whenever ¢ is a uniquely ergodic homeomorphism of a Cantor
space X, the unique g-invariant measure is a good measure. A beautiful theorem
of Akin [AkiO5] states that the converse is also true: given a good measure y on a
Cantor space X, there exists a homeomorphism ¢ on X such that y is the unique
g-invariant measure.

Definition 5.20. Given y a good measure on a Cantor space X, we define its clopen
value set V() as the set of all values (V) as V ranges over clopen subsets of X.

Whenever V is the clopen value set of a good measure, it is easy to see that V' is
countable, contains 0 and 1, is the intersection of a subgroup of R and [0, 1], and is
dense in [0,1]. Any such set will be called a good value set.

Akin pointed out in [AkiO5] that for any good value set V there exists a good
measure y such that V. = V(u). Let us see this from the point of view of Fraissé
theory: fix a good value set V, and consider the language £y made up of the
language of boolean algebras expanded by unary relational symbols i, for all ¥ €
V. We may then consider the class of Ly-structures A which are finite Boolean
algebras and are such that, when one sets (u(a) = r) iff A |= u,(a), one defines
a probability measure on A. One can check that this defines a Fraissé class, the
limit of which is a countable atomless Boolean algebra endowed with a probability
measure whose set of values is equal to V. Looking at the Stone space, one can see
the limit as a Cantor space endowed with a good measure y such that V(u) = V.
We thus see that to any good value set corresponds a good measure.

Using back-and-forth as usual, it is straightforward to check that, if y is a good
measure on a Cantor space X and A, B are finite subalgebras of clopen subsets
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of X, any isomorphism from A to B extends to a homeomorphism of X which
preserves yi. Hence the algebra of clopen sets on X endowed with the measure y is
the Fraissé limit of the class of finite boolean algebras endowed with a probability
measure taking its values in V(y). In particular, two good measures with the
same clopen value set must be isomorphic, a fact which is proved very differently
in [AKki05].

As we saw earlier, there is no Polish topology on the full group of a minimal
homeomorphism of a Cantor space X; for Z-actions, the closure of the full group
is still a complete invariant for orbit equivalence (this is pointed out in [IM13], and
follows easily from results of Giordano-Putnam-Skau [GPS95]), thus a natural
object to study.

We focus on the case of a uniquely ergodic homeomorphism ¢ of a Cantor space
X, call py the unique ¢-invariant measure, and H, the group of all homeomor-
phisms of X which preserve p. Then the same argument we used to prove that
there is no Polish group topology on [¢] shows that the Polish group topology on
H,, is unique; it follows from the arguments of [BM08] that any nontrivial normal
subgroup of H; contains its derived subgroup, so to decide whether H, is simple
as an abstract group we need to know whether every element of Hy is a product
of commutators. A case where this is particularly easy to prove is when H, has a
comeager conjugacy class: assume that such is the case, call () the comeager class,
and let k be any element of H,. Then k() N () must be nonempty, so there exists
g€ Qand f € Hy such thatkfgf ! =g, ork = gfg '}, ie kisacommutator.
Using an argument due to Rosendal and Solecki [RS07], one can also see that when
H,, has a comeager conjugacy class then it has the automatic continuity property.

We are led to the question of whether Hy, has a comeager conjugacy class; this is
a well-studied question for Polish groups in general, well-understood in the case
of subgroups of S« since work of Kechris-Rosendal [KR07] extending a study ini-
tiated by Hodges-Hodkinson-Lascar-Shelah [HHLS93] . Kechris and Rosendal
approached this problem using a Fraissé-theoretic point of view: let K be a Fraissé
class with limit K, and denote by Iy the class made up of all pairs (A, ¢) such
that A is an element of IC and ¢ is a partial automorphism of A. Then the existence
of a dense conjugacy class in G = Aut(K) is equivalent to saying that /Cs,; satisfies
the joint embedding property. Intuitively, pairs (A, ¢) encode basic open sets in
G, and the joint embedding property says that any two basic open sets have con-
jugates which intersect, equivalently, that there exists a comeager set of elements
with a dense orbit.

The existence of a comeager conjugacy class may similarly be expressed in
terms of the class Ksy, but is a bit trickier; say that a class F of finite structures
has the weak amalgamation property if, given any A € F, there exists an embedding
i: A — B € F such that any two superstructures of B belonging to F can be
amalgamated over A - the corresponding diagram is as follows.
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Kechris—Rosendal [KRO7] proved that there exists a comeager conjugacy class
in Aut(K) if, and only if, KCs,¢ satisfies both the joint embedding and weak amalga-
mation properties. The weak amalgamation property is sometimes easy to check
in presence of the following phenomenon: when, given any (A, ¢) € gy, there
exists (B, ¢) € Kaut in which (A, ¢) embeds and such that ¢ is a global automor-
phism of B. We then say that K has the weak extension property. When looking at
things from the angle of the action of Aut(K) on K, the weak extension property
says that elements with finite orbits are dense in K. Typically, the weak extension
property is difficult to prove or just plain false, while the joint embedding prop-
erty holds in many examples. The following result was proved in joint work with
T. Ibarlucia.

Theorem 5.21. Let y be a good measure on a Cantor space X. Then the set of elements of
finite order is dense in the group of homeomorphisms which preserve y.

Using Akin’s theorem linking good measures and minimal homeomorphisms,
this result can be considerably reinforced, as was pointed out by K. Medynets.

Theorem 5.22 (Essentially Grigorchuk-Medynets [GM12]). Let ¢ be a minimal home-
omorphism. Then @] contains a dense locally finite subgroup.

The proof of the above theorem uses in an essential way the existence of Kakutani—
Rokhlin partitions (and the fact that, up to replacing ¢ by another minimal homeo-
morphism which is orbit equivalent to it, one can always assume that [[¢]] is dense
in [¢]).

Going back to the existence of dense/comeager conjugacy classes in the auto-
morphism group of a good measure, the previous theorems tell us that the exten-
sion property always holds; unfortunately, the joint embedding property is not
always satisfied, as the following simple example shows.

Example 5.23. Assume that y is a good measure, that 1/n € V(u), and that « is
a cyclic permutation of atoms of measure 1/n. Let B be any clopen set different
from the empty set and the whole space, and let § be an automorphism fixing B
and X \ B. Assume that the partial automorphisms «,  jointly embed in some -
preserving automorphism J; identify B with its image via this embedding. Since
« embeds in J, B must be split up in n subsets of equal measure (the trace on B of
the atoms which are permuted by «); thus 1.(B) /n must belong to V().

Thus, we see that if H, satisfies the joint embedding property, then 1/n €
V(u) = V(u)/n = V(u). This condition is clearly not always satisfied; for in-
stance, it fails when V is the smallest good value set containing 1/2 and 1/ and
1t is the good measure such that V(y) = V.

Analyzing the counterexample above, one can give a characterization, in terms
of the structure of V/ (1), of exactly when there exists a dense conjugacy class in Hy,.
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This is satisfied in particular when V() is the intersection of a Q-vector subspace
of R and [0, 1], (in which case there is a comeager conjugacy class, a fact already
proved by [AkiO5]) or of a subring of R and [0, 1].

In most cases I am aware of, the conjunction of the joint embedding property
and the weak extension property is sufficient to obtain the weak amalgamation
property (usually, one can produce a class of finite structures endowed with a
global automorphism which is cofinal in the class of finite structures with a partial
automorphism, and satisfies the amalgamation property); it appears not to be the
case in Fraissé classes of measures.

One can also use the density of elements of finite order and results of [BM08] to
show that Hy, is always topologically simple, or, more generally, that the closure of
the full group of any minimal homeomorphism is topologically simple (hence, the
same is true for the full group itself), see [IM13]. The following problem remains
open.

Question 5.24. Is the full group of a minimal homeomorphism a simple group?
What about its closure in Homeo(X)?

There are other intriguing questions; we already mentioned Akin’s theorem
stating that for any good measure y on a Cantor space X there exists a minimal
homeomorphism ¢ of X such that y is the unique @-invariant measure. Can this
result be recovered using the Fraissé-theoretic approach we used here? Can it be
extended to more general situations?

Question 5.25. Given a Cantor space X, can one give a characterization of all the
compact, convex sets of measures K such that there exists a minimal homeomor-
phism of X for which K is the set of all g-invariant measures?

By a result of Downarowicz [Dow91]], any abstract Choquet simplex can be ob-
tained in such a way - so the question is about how the Choquet simplex sits in-
side the set of measures on the Cantor space (a natural candidate is to ask for a
“goodness” condition as in the case of singletons, as well as asking that the ex-
treme points of the simplex be mutually singular; Dahl [Dha08] obtained such a
characterization for finite-dimensional simplices in her thesis).

5.2. Metric structures and Fraissé classes.

5.2.1. Moving from the discrete to the continuous setting. As we saw, Fraissé theory
provides a fairly versatile tool to approach structures with somewhat different fla-
vors, the unifying feature being homogeneity. However, the class of Polish groups
one can capture using classical Fraissé theory is limited to nonarchimedean Polish
groups, so for instance connected Polish groups look unapproachable in this way.
Still, at least in an intuitive sense, many classical structures of analysis look just as
homogeneous as those from first-order logic: for instance, think of a Hilbert space,
or of the Urysohn space... A way to use Fraissé-theoretic ideas to study the au-
tomorphism groups of such structures goes through the formalism of continuous
first-order logic, or metric model theory. This formalism had a precursor in Henson’s
work on logics adapted to the study of Banach spaces, and was introduced by
Ben Yaacov and Usvyatsov in its current form [BUI0Q]; its basic properties were
developed in [BYBHUOS].

We will not actually be using any tools from logic, (most notably, no compact-
ness theorem), so our definitions are fairly relaxed.
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Definition 5.26. A metric structure is a tuple M = ((M,d), (R;)ie, (f;)jej) such
that

e (M,d) is a complete metric space.
e Each R;: MK — Risa Lipschitz map.
e Each f;: M"i — M is a Lipschitz map.
When (M, d) is separable, we say that M is a Polish metric structure.

As in the discrete setting, 0-ary functions are considered as named constants. A
continuous language is then what one would expect, with the added wrinkle that
the language includes a Lipschitz constant for each R; and each f;. For instance,
the language of real Banach spaces could be written as (0,4, (-1)1er) Where 0
is a constant, + is a 2-Lipschitz map, and each -, is |A|-Lipschitz. The distance
function plays the same role as equality does in the classical, or discrete, setting;
in particular, we always assume that the distance is part of our language, as a
distinguished binary 1-Lipschitz predicate.

Many definitions (substructure, embedding ...) extend seamlessly from the dis-
crete setting to the continuous one.

Definition 5.27. Let M = ((M,d), (R;)ie, (f)jey) be a metric structure. An auto-
morphism of M is a bijection g of M onto itself such that
e Forall m € M* and each i such that k; = k, R;(i71) = R;(g(1)). In particu-
lar, ¢ must be an isometry of (M, d).
e For all 7 € MF and each j such that nj =k, fj(m) = fi(g(m))

The automorphism group Aut(M) of a Polish metric structure M is then a
closed subgroup of the isometry group of (M, d) (endowed with the pointwise
convergence topology), so is a Polish group itself.

When M is a metric structure and (ay, ..., a,) is a finite tuple of elements of M,
we denote by (ay, ..., a,) the substructure of M generated by ay, ..., ay.

Definition 5.28. We say that a Polish metric structure M is homogeneous when
it is true that, for any ay,...,a4, € M, for any ¢ > 0, and for any embedding
f:{ay,...,ay) — M, there exists an automorphism g of M such that d(g(a;), f(a;)) <
e for all i.

In other words: an isomorphism between finitely generated substructures of M
can be approximated arbitrarily well by an automorphism of M, the approxima-
tion taking place on the images of the generators of the first substructure. Naming
generators is a price to pay when dealing with structures whose language includes
functions; of course this is not necessary when the language is relational, since
finitely generated substructures of M must then be finite. Controlling what hap-
pens on finitely many elements is really just a way of saying that we are working
with the pointwise convergence topology on Aut(M).

Then, the same argument as for discrete structures leads to the following obser-
vation.

Theorem 5.29 ([Mell0Oal). Let G be a Polish group. There exists a homogeneous Polish
metric structure M such that G is isomorphic, as a topological group, to Aut(M).

Here, one can wonder to what extent the ¢ in the definition of homogeneity is
important: it seems natural to ask for exact homogeneity. Very recently, I. Ben Yaa-
cov answered a question of mine and proved that there exist Polish groups (even,
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Roelcke precompact) which cannot act transitively, continuously and isometrically
on a complete metric space; such a group cannot be realized as the automorphism
group of an exactly homogeneous metric structure. Also, there are natural exam-
ples of homogeneous metric structures which are not exactly homogeneous (for
instance, the Gurarij space, which we will discuss later on), and it certainly seems
that accepting the intrusion of ¢ here is the right thing to do. We will see shortly
that this is crucial when working with Fraissé classes in the metric setting, via the
example of the Gurarij space.

For now, let us recall that, when considering topologies on isometry groups, we
pointed out two choices: the pointwise convergence topology, and the uniform
convergence topology. Given any Polish metric structure M, one can endow its
automorphism group G with the metric of uniform convergence d,,, defined by

du(g ) = sup{d(g(x), h(x)): x € M}

(truncated for instance at 1 if allowing infinite distances causes moral issues). This
dy is always complete and bi-invariant (i.e. it is impervious to multiplications on
the left and the right), which are certainly desirable qualities. But it is in general
not separable, and often close to discrete (or outright discrete), and it might seem
at first glance that it cannot give much information. It turns out that this metric
can sometimes be used in conjunction with the Polish topology; let us make an
abstract definition to describe the corresponding object.

Definition 5.30. A Polish topometric group is a triple (G, T,9), where
(1) (G, 7)is aPolish group
(2) 9is abi-invariant distance on G, refining 7.
(3) dis T-lower semicontinuous, i.e. each set {(g,h): d(g, h) < r} is T-closed.

These assumptions (which imply that d is complete) are satisfied when G is the
automorphism group of a Polish metric structure, endowed with the topology of
pointwise convergence and the metric of uniform convergence. Actually, what
matters is not really the metric d but the uniformity it generates, but we will de-
scribe everything in metric terms (the reader should keep in mind that replacing
0 by an equivalent metric, as long as the third assumption remains satisfied, is of
no consequence). Starting from any Polish group G, there exists a left-invariant
metric d inducing the topology of G (this 4 is usually not complete, as we saw; any
two such distances generate the same uniformity, called the left uniformity). Then
one can define a metric d by setting

d(g, h) = sup{d(gk,hk): k € G}

Clearly 0 is T-lower semicontinuous, bi-invariant, and refines 7. One can also
show that 0 is always complete when (G, ) is Polish (one says that Polish groups
are Raikov-complete). Thus (G, T, 9) is a Polish topometric group, and 9 induces the
coarsest uniformity among all metrics turning (G, T) into such a structure. Most of
the time we will be working with this d. We call the uniformity generated by o the
minimal bi-invariant uniformity, and will abuse notation somewhat by calling mini-
mal bi-invariant metric any metric which generates this uniformity (and satisfies the
third topometric axiom).
Two remarks are in order here.

e Given a Polish group (G, ), we saw in Theorem that there exists a
Polish metric structure M whose automorphism group, endowed with the
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topology of pointwise convergence, is isomorphic to G. If one builds this
structure in the same way as we did earlier in the discrete case, then the
uniform metric on Aut(M) induces a minimal bi-invariant metric on G.

e If (G, 7) is a Polish group isomorphic to Aut(M) for some Polish metric
structure M, then the uniform metric on Aut(M) is not necessarily mini-
mal. For instance, given G = S%, one can embed G into S, and then make
G act on N; the associated uniformity is discrete. But it is easy to see that
the minimal bi-invariant uniformity on G is the trace on G of the product
of the discrete uniformities on each factor, which is not discrete.

Mostly out of curiosity, let us note the following problem.

Question 5.31. Let (G, T,0) be a Polish topometric group. Under which condition
does there exist a metric structure M such that (G, 7,9) is isomorphic, as a topo-
metric group, to Aut(M) endowed with the topology of pointwise convergence
and the metric of uniform convergence?

As far as I am aware, it is not even excluded that all Polish topometric groups
have this property, even though that seems highly unlikely to me.

Let us now describe what Fraissé classes become in the metric setting; met-
ric Fraissé classes were first considered in [Sch07], but our presentation follows a
more streamlined and efficient approach presented in [Benl12]; what we present
here is more restrictive than what can be found in [Ben12| but is sufficient for our
purposes.

As in the classical, discrete setting, we consider a class K of finitely generated
metric structures in some fixed metric language £, and we want to state conditions
on K that are equivalent to being the age of a homogeneous structure (the age
of a continuous structure being defined exactly as in the discrete setting). Some
properties must be satisfied by the age of any structure.

Definition 5.32. Let K be a class of finitely generated metric structures in some
metric language £. We say that

(1) K satisfies the hereditary property (HP) if any finitely generated substructure
of an element of X belongs to K.

(2) K satisfies the joint embedding property (JEP) if any two elements of K em-
bed in a third one.

So far, so good; but we need a condition that bounds the size of K, so that K
can be the age of a separable structure. In the discrete world that condition was
countability, clearly in the metric world it must be separability for an appropri-
ately chosen metric. To introduce this metric, and since we allow functions in
our languages, it is useful to make the following convention: whenever we write
A = (d), we mean that A is generated by the tuple 2 = (a3,...,4a,); repetitions
are allowed in the enumeration (a1, ...,4,) (and the order in which elements are
enumerated matters).

Definition 5.33. Let K be a class of finitely generated metric structures in some
metric language £, satisfying (JEP). We denote by K;; the class of all structures
(a1, ...,a,) belonging to K, and define d,, on K, X IC,, by setting

dn((a), (D)) = inf sup d(a(a;), (b))

ap) i=1,.n
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where («, B) ranges over all pairs of embeddings of (@), (b) into a common struc-
ture C € K.

The assumption that (JEP) holds ensures that d,, takes finite values; d, mea-
sures how close two elements of K, can be mapped to one another, and saying
that d,,({a), (b)) = 0 does mean as expected that the two structures are isomor-
phic; the fact that the Lipschitz constants of the functional symbols are imposed
by the language is useful to check this when functions are present. Intuitively, d;,
should be a pseudometric, but the triangle inequality need not be satisfied under
the assumptions we are working with so far: given a structure witnessing that (),
(b) are close, and another structure witnessing that (b), (¢) are close, one can not
necessarily produce a structure witnessing that (a), (¢) are close - unless one can

glue together in some way the copies of b appearing in both structures.

Definition 5.34. Let K be a class of finitely generated metric structures in some
metric language £. We say that /C satisfies the near-amalgamation property (NAP) if
the following condition is satisfied:

For any ¢ > 0, any A = (4) € K, and any embeddings a: A — B € K,
B: A — C € K, there exists D € K and embeddingsi: B —+ D and j: C — D such

thatd(ioa(a;),jo B(a;)) < ¢ foralli.

When the class K satisfies both (JEP) and (NAP), it is easy to check that each d,
is a pseudometric.

Definition 5.35. Let /C be a class of finitely generated metric structures in some
metric language £, satisfying (JEP) and (NAP). We say that X has the Polish prop-
erty (PP) if each d,, is separable and complete.

We have finally listed all the properties characterizing the age of a homoge-
neous Polish metric structure.

Definition 5.36. Let K be a class of finitely generated metric structures in some
metric language £. We say that K is a Fraissé class if K satisfies (HP), (JEP), (NAP)
and (PP)

The following is not hard to prove.
Theorem 5.37. The age of any homogeneous Polish structure is a Fraissé class.

The converse is harder, especially if one allows functions; Ben Yaacov’s proof
[Ben12] introduces an interesting formalism (leading to a formal weakening of the
notion of Fraissé limit in the metric context), which we do not discuss here.

Theorem 5.38 ([Benl2]). Let K be a Fraissé class of finitely generated metric structures
in some metric language L. Then there exists a unique homogeneous Polish metric struc-
ture whose age is equal to KC. We call this structure the Fraissé limit of K.

The simplest non-discrete example of a Fraissé class is given by the class of all fi-
nite metric spaces, whose limit is the Urysohn space. Going in the other direction,
the infinite-dimensional, separable Hilbert space H is certainly homogeneous, so
its age is a Fraissé class. The same goes for a standard atomless probability alge-
bra, which is the Fraissé limit of all finite probability algebras. In all these cases,
one can replace near amalgamation by exact amalgamation, and the limit is homo-
geneous in a stronger sense than what we asked for, namely one can set ¢ = 0 in
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the definition of homogeneity; this is not always possible. One of only two exam-
ples of this that I know at the moment is the Gurarij space, which we discuss now
(the other example is L” lattices which we will not discuss).

Let us consider the class of all finite-dimensional normed vector spaces, in a
language whose symbols (besides the norm/distance) are 0, 4+, and (- ) cq (with
the appropriate Lipschitz constants). As pointed out in [Benl2], this is a Fraissé
class; let us see why (NAP) holds in this case. Consider three finite-dimensional
normed vector spaces X, Y, Z and isometric embeddingsi: X — Yand j: X — Z.
Then endow the direct sum Y & Z with the I'-norm:

1y, 2)ll = [yl + =[] -

Next, let N denote the closed subspace {(i(x), —j(x)): x € X} of Y & Z, and let E
be the space (Y & Z)/N, with the quotient norm

1(y, 2)|| = inf{|[(y, 2) + (i(x), =j(x))[|: x € X}
Then Y isometrically embeds in E via a: y — [(y,0)], Z isometrically embeds in E
via B: z — [(0,z)], and for any x € X one has

woi(x) = [(x,0)] = [(0,x)] = Boj(x).
Hence the class of finite-dimensional normed vector spaces satisfies (NAP), ac-
tually one even has exact amalgamation. Joint embedding follows immediately
(take X = {0}), and separability of each (/C;;, d) is an immediate consequence of
the existence of a universal separable Banach space. The fact that each (KCy;, dy) is

complete is easy once one knows how to compute the distance between structures:
givenE = (ay,...,a,) and F = (b, ..., b,), C. Ward Henson (see [BYH14]) proved

that
du(E, F) = sup{[[| }oriall — 1 }_ribill[ - Yo lril =1}

So the class of finite-dimensional Banach spaces is a Fraissé class. Its limit is
the unique universal homogeneous separable Banach space, an object which was
built by Gurarij [Gur66] and whose uniqueness up to isometry was proved by
Lusky [Lus76]. A simple proof of existence/uniqueness of the Gurarij space was
published recently by Kubis-Solecki [KS13]. Note that the usual Banach-theoretic
characterization of the Gurarij space G is not quite the same as the Fraissé-theoretic
version one obtains via the Fraissé-theoretic approach, see [Ben12].

An interesting point here is that, while the class of finite-dimensional spaces
amalgamates exactly, no universal Banach space can be exactly homogeneous: this
is because the norm must have points of differentiability (this is true in any sepa-
rable space by a classical result of Mazur [Maz33]), while universality implies that
it cannot be differentiable everywhere. A linear isometry cannot map a point at
which the norm is differentiable to a point at which it is not; so the group of linear
isometries of G cannot act transitively on one-dimensional subspaces, showing
that G is not homogeneous (this line of reasoning was explained to me a long time
ago by G. Godefroy). This shows that allowing for small errors in the definition of
homogeneity is useful to capture some natural examples.

As a Fraissé limit, the Gurarij space is certainly analogous, in the setting of Ba-
nach spaces, to the Urysohn space; this analogy was taken further by Ben Yaacov
[BY14], who adapted Katétov’s construction of U, showing in the process that any
separable normed space embeds in G in such a way that all its isometries extend,
and the extension map can be taken to be a group homomorphism. Consequently
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Aut(G) is a universal Polish group. This analogy with the Urysohn space, and the
fact that the Urysohn space generates a unique Banach space (the Holmes space,
discussed at the end of the second section), makes it tempting to believe that the
Holmes space and the Gurarij space are one and the same. Surprisingly, this turns
out to be false, see [FWO0S].

5.2.2. Hjorth's oscillation theorem revisited. Hjorth’s oscillation theorem is the first
example that made me realize that continuous logic could be used to translate re-
sults known to hold for closed subgroups of S to the context of general Polish
groups; this process was initiated by a suggestion of S. Solecki while I was a post-
doc in the University of Illinois at Urbana-Champaign. The results of this section
were published in [Mel10al.

In [KPTO05], Kechris, Pestov and Todorcevic established a link between topolog-
ical dynamics and combinatorics, relating the so-called finite oscillation stability
of subgroups G of S, with combinatorial properties of a Fraissé class of which G
is the automorphism group (we will get back to this in the next section). This led
them to formulate a notion of oscillation stability for isometric actions of topolog-
ical groups. The discussion below is mostly taken from [Pes06].

Definition 5.39. Let G be a metrizable topological group with a compatible left-
invariant distance 6. The left-completion of G, denoted by G, is simply the metric
completion of (G, 9).

Note that G naturally acts on G by isometries; G does not depend on the choice
of left-invariant metric §, in the sense that any two left-invariant metrics on G
(compatible with its topology) will produce isomorphic G. This happens because,
as we already mentioned, Cauchy sequences are the same for all left-invariant
distances (it would probably be more natural to work with uniformities here, since
what we are really using is the left uniformity of G).

Also, G is in general not a group but is always a semigroup in which multipli-
cation is jointly continuous. By a right ideal of G we mean a subset of G which is
invariant under multiplication on the right.

If (X,d) a Polish metric space and G is a subgroup of the isometry group of
(X,d), one can naturally view G as a semigroup of isometric embeddings of (X, d)
into itself.

Definition 5.40. Let G be a Polish group, and f: G — R be a left-uniformly contin-
uous function, which one may then uniquely extend to G. Say that f is oscillation

stable if for every ¢ > 0 there exists a right ideal Z of G such that the oscillation of
fonZis less than e.

Definition 5.41. Let a Polish group G act continuously and by isometries on a
Polish metric space X. Say that the action of G is oscillation stable if every Lipschitz
function f: X — R is oscillation stable. If the action of G is not oscillation stable,
say that it has distortion.

For instance, saying that the action of the unitary group U(¥;) on the unit sphere
of ¢; has distortion turns out to be equivalent to Odell and Schlumprecht’s cele-
brated solution to the distortion problem for ¢, [OS94] (note, however, that ¢, is
the only separable Banach space in which the notion of distortion as presented
here and the classical functional-analytic notion of distortion coincide).
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It is then natural to ask, given some action of a Polish group G, whether it has
distortion or not. In particular, Kechris, Pestov and Todorcevic asked whether
there exists a nontrivial group G such that the action of G on G does not have
distortion. Answering this question, Hjorth proved the following result.

Theorem 5.42 (Hjorth [HjoO8])). Let (X,d) be a complete separable metric space, and
G < Iso(X,d) be a group of cardinality bigger than one. Then there exists x9,x1 € X
and uniformly continuous

f:{(mxp, mx1): me G} — [0,1]

such that for any p € G there exist

(Yo, v1), (20,21) € {(o(7(x0)), p(m(x1))): 7 € G}
with f(yo,y1) = 0and f(zo,21) = 1.

As was pointed out by Hjorth, this theorem has as an easy corollary the fact
that for any non-trivial Polish group G the left-translation action of G on G has
distortion.

In the same paper, Hjorth proves a version of this theorem for automorphism
groups of first-order countable relational structures.

Theorem 5.43 (Hjorth [HjoO8]l). Let M be a homogeneous relational countable first-
order structure such that |Aut(M)| > 1. Then there exist a function f: M?> — {0,1}
and (ag,a1) € M? such that for any morphism p: M — M one can find (by,by) and
(co,c1) in the image of p?, with the same quantifier-free type as (ap,ay) and such that
f(bo,by) = 1 while f(cp,c1) =0.

After stating Theorem Hjorth points out that “a weaker form can be de-
rived from the final theoremll, [and] its proof is easier” . Looking at Theorem
with continuous logic in mind, it is tempting to formulate the following statement.

Theorem 5.44. Let M be a homogeneous relational Polish metric structure such that
|Aut(M)| > 1. Then there exist a uniformly continuous f: M? — [0,1] and (ag,a1) €
M2 such that for any morphism p: M — M one can find (by,b1) and (co,c1) in the
image of p?, with the same quantifier-free type as (ag,a1) and such that f(bg,by) = 1,
f(co,c1) =0.

(Actually, one can take f to be Lipschitz in the above statement and in Hjorth’s
theorem, but I stick to uniform continuity since this was Hjorth’s original formu-
lation).

It is clear that this result implies Theorem given an homogeneous count-
able first-order relational structure M, one may use the same idea as in the proof
of Theorem[B.6]to turn it into a homogeneous relational Polish metric structure (de-
noted by M) by endowing the universe of M with the discrete metric and, for
any relation symbol R of the language of M, introducing a {0, 1}-valued predicate
symbol Ryt defined by Ryt (111, ..., my) =0 <> M |= R(my, ..., my). Then M e
satisfies the assumptions of Theorem[5.44] and morphisms of M and M, are the
same. If f is the function yielded by Theorem[5.44] then f defined by f(m,m') =0
if f(m,m") < 1, and 1 otherwise, shows that the conclusion of Theorem[5.43 holds.

}j.e, Theorem[5.42]in our notation.
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It is also easy to see that Theorem [5.42 implies Theorem [5.44l We do not detail
the proof here, but it is a straightforward consequence of the fact that, when M
is approximately homogeneous, the left-completion of Aut(M) coincides with the
set of morphisms from M into itself, and morphisms preserve quantifier-free type.
Perhaps more interestingly, Theorem [5.44] implies Theorem indeed, assume
that we are in the situation of Theorem[5.42] Then, one may find a countable family
of predicates (R;) such that (X, d, (R;)) becomes an approximately homogeneous
Polish metric structure M, with G as its automorphism group, and Theorem [5.44]
enables one to show that the conclusion of Theorem 5.42holds.

To sum up this brief discussion: Theorem whose statement is just the con-
tinuous logic translation of Theorem unsurprisingly implies Theorem
and turns out to be equivalent to Hjorth’s oscillation theorem. Interestingly, one
may combine Hjorth’s ideas from his proof of Theorem 5.43] and some of his ar-
guments to establish Theorem [5.42] to provide a proof of Theorem [5.44] which is
simpler (at least, shorter) than the original proof. I will not go into detail here;
work on Hjorth’s theorem is what convinced me that the language of metric struc-
tures could be useful to study properties of Polish groups.

5.3. Extremely amenable Polish groups. Recall that a Polish group is extremely
amenable if any continuous action of G on a compact space has a fixed point.
Earlier, we gave a proof that extreme amenability of a countable group was a G;
condition (in the right framework); this was based on an intrinsic characterization
of extreme amenability of a Polish group G in terms of the left translation of G on
itself.

Definition 5.45. Let G be a group acting by isometries on a metric space (X, d),
and let f be a function from X to R. We say that f is finitely oscillation stable if for
every finite F C X and every & > 0 there exists g € G such that the oscillation of f
on gF is less than e.

We say that the action G ~ X is finitely oscillation stable if every bounded
Lipschitz function f: (X,d) — R is finitely oscillation stable.

Theorem 5.46 (Pestov [Pes06]). Let G be a Polish group, and {d;}ic; be a directed
collection of left-invariant pseudometrics inducing the topology of G. Then G is extremely
amenable if, and only if, each action G ~ (G, d;) is finitely oscillation stable.

Of course, one could simply consider one left-invariant metric in the character-
ization above; but, if G is the automorphism group of some metric structure M,
then there is a natural collection of pseudometrics inducing the topology of G.

Definition 5.47. Let M be a Polish metric structure and G be its automorphism
group. For any finite A C M we define a pseudometric d 4 on G by setting

da(gh) = sup{d(g(a), h(a)): a € A}
The family {d 4}, as A ranges over finite subsets of M, induces the topology of G.

One could let A vary only over some dense subset of M and still induce the
topology of G. What matters to us is that extreme amenability of Aut(M) depends
on how Aut(M) acts on its finitely generated substructures; when M is homoge-
neous, this means that one can expect a characterization of extreme amenability in
terms of the properties of the age of M. In the discrete setting, such a characteriza-
tion was obtained in the seminal [KPT05], following earlier work of Pestov. To see
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in action, in a simple setting, some of the ideas behind that work, let us discuss a
striking combinatorial proof of extreme amenability of a Polish group.

Theorem 5.48 (Pestov [Pes98]). The automorphism group of (Q, <) is extremely amenable.

Proof. Let G = Aut(Q, <), and A be a finite subset of Q, of cardinality n. We need
to show that the left-translation action of G on (G, d 4) is finitely oscillation stable;
(G, d 4) naturally identifies with the set X of all n-element subsets of Q, endowed
with the discrete metric, and on which G acts diagonally. Since we are looking
at Lipschitz functions on a discrete set, we may as well focus on functions taking
values in {0,1}; so, what we are aiming to prove is that, for any map f: X —
{0,1}, and any finite subset F of X, there exists ¢ € G such that f is constant on
gF.

Let B denote the (finite) union of all the elements of F, and denote its cardinality
by m. The map f is a coloring of all subsets of Q of cardinality 7, with two colors,
and the finite version of the Ramsey theorem tells us that there exists N such that,
whenever we color n-elements subsets of an N element set with two colors, there
exists a m-element subset which is monochromatic. Let B be any subset of Q of
cardinality N; there exists a subset B of B of cardinality m such that f is constant
on subsets of B with cardinality 7. One can pick ¢ € G such that ¢F = B, and f is
constant on gF, as desired. O

The appearance of the Ramsey theorem in the proof above, and of maps de-
fined on the space of copies of a given finitely generated substructure, is not a
coincidence: indeed, if K is a Fraissé class with limit K, and G = Aut(K), then the
oscillation stability of each action G ~ (G, d ) is equivalent to a Ramsey-theoretic
property of K.

Definition 5.49. Let K be a Fraissé class of discrete finitely generated structures.

Given A,B € K, we let (11:

) denote the set of substructures of B which are iso-
metric to A.
Say that K has the Ramsey property if, for any A < B € K, and any k € N, there

C) — {1,...,k}, there exists By € (g)

exists C € K such that, for any map c: A

such that c is constant on (3?) .

The map ¢ above is usually called a coloring; the Ramsey property could be
stated equivalently using colorings with only 2 colors instead of any finite number
of colors.

Whenever G < Sy is a closed subgroup, G acts on the compact set of orders
on N; so, if G is extremely amenable, then G must fix an ordering on N since
the space of orderings is a compact space on which G acts continuously. In par-
ticular, S is not extremely amenable, a fact which was first observed in [Pes98].
This observation also implies that, whenever G = Aut(K), where K is the Fraissé
limit of some Fraissé class KC, all elements of X must be rigid, i.e. have trivial auto-
morphism group, and one may as well assume that the language of K contains a
binary symbol < which is interpreted by a total ordering in K. Following [KPT05],
we then say that K is a Fraissé order class. One of the main results of [KPTO05] is the
following.
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Theorem 5.50 ([KPTO5]). Let G be a closed subgroup of Seo. Then G is extremely
amenable if, and only if, G = Aut(K), where K is the Fraissé limit of a Fraissé order
class with the Ramsey property.

As pointed out in [KPT05], every Fraissé order class such that G is the automor-
phism group of its limit must have the Ramsey property, so the above result does
not depend on the way G is represented as the automorphism group of a Fraissé
limit. One could replace the statement that X is an order class by asking that K is
made up of rigid structures.

Now, our task is to translate Theorem to the context of general Polish
groups. At first glance, something seems to go awry: many natural metric Fraissé
limits whose automorphism group is known to be extremely amenable (the stan-
dard atomless probability algebra, the separable infinite-dimensional Hilbert space,
the Urysohn space ...) are made up of very much non-rigid structures, and no or-
dering is to be found. As it turns out, the ordering, which plays a very important
role in the discrete setting, is a bit of a red herring here: what one needs to un-
derstand is that, if A is a rigid structure, then the set of copies of A inside B is the
same thing as the set of embeddings from A to B. So, the Ramsey property could be
restated in terms of embeddings.

Definition 5.51. Let IC be a metric Fraissé class. For any A, B € I, let AB denote
the set of all embeddings from A to B, and turn it into a metric space by setting

Va, B € 2B, d(a, B) = sup{d(a(a),B(a)):a c A}.
A coloring of AB is a 1-Lipschitz map from 4B to [0, 1].

The fact that colorings are asked to take values in [0, 1], and to be 1-Lipschitz, is
somewhat inessential - all that really matters is that they take value in a compact
metric space and their behavior is controlled by the metric on embeddings.

Definition 5.52. Let I be a metric Fraissé class, and A, B, C be elements of K. For
any B € BC, set

AC(B) ={Boa:ac B}
the set of embeddings of A in C which factor through .

Once we agree that we should be coloring embeddings when working in the
continuous setting, the analogue of finding a copy By of B in C such that a coloring
Bo
A
on AC(B). With this in mind, the Ramsey property naturally translates to the
following.

is constant on < ) is finding B € BC such that a coloring has small oscillation

Definition 5.53. Let K be a metric Fraissé class. We say that X has the approximate
Ramsey property for embeddings (ARP) if the following condition is satisfied:

For any A < B € K, and any ¢ > 0, there exists C € K such that, for any
coloring ¢ of AC, there exists B € BC such that the oscillation of c on AC() is less
than e.

When the class is made up of discrete structures, we are just reformulating the
Ramsey property in terms of embeddings rather than substructures. When the
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class is made up of rigid structures, we recover the usual Ramsey property; how-
ever, the Ramsey property for embeddings is stronger, since it actually forces the
structures to be rigid.

As in the discrete setting, this condition turns out to be a reformulation of the
finite oscillation stability of the action of (Aut(K),d,) for any finite A C K, and
we obtain the following result (unpublished joint work with T. Tsankov).

Theorem 5.54 ([MT13al)). Let K be a metric Fraissé class, and G be the automorphism
group of its limit. Then G is extremely amenable if, and only if, K has the approximate
Ramsey property.

Taking advantage of the continuous setting, one can formulate a formal weak-
ening of the approximate Ramsey property which is equivalent to it (for instance,
this enables one to work with a dense subclass of K rather than the whole of K).
Unfortunately, even this weakening seems very hard to prove, and we were unable
to use Theorem to obtain interesting new examples of extremely amenable
Polish groups. One obvious candidate would seem to be the automorphism group
of the Gurarij space; while I failed to prove that it is extremely amenable, this was
recently achieved by Bartosové, Lopez-Abad and Mbombo, who proved that the
class of finite-dimensional Banach spaces has the approximate Ramsey property.

Theorem 5.55 (f). The automorphism group of the Gurarij space is extremely amenable.

It is not clear to me whether Theorem [5.54] can really be useful; it was of some
use as a guide towards obtaining the following result, joint with Nguyen Van Thé
and Tsankov.

Theorem 5.56 ([MNT14]). Let G be a Polish group. Then the following are equivalent.

(1) The universal minimal flow of G is metrizable and has a comeager orbit.
(2) There exists a closed subgroup G* such that the right uniformity on G/G”* is

precompact, and the universal minimal flow of G is the action G ~ G/G*.

Shortly after we proved this theorem, Andy Zucker [Zucl4] announced results
that imply in particular that in the important case of subgroups of Se one can
remove the assumption of existence of a comeager orbit in the first item above; that
is, this assumption is always satisfied for nonarchimedean Polish groups when
their universal minimal flow is metrizable. It is an open problem whether one can
do away with this assumption in general. One could also wonder whether some
of the ideas presented above could be used to make Zucker’s approach work for
general Polish groups; there appear to be significant difficulties to overcome before
achieving this.

5.4. Ample generics. When looking at the question of simplicity of full groups of
minimal homeomorphisms, and their closures, we already noticed that the exis-
tence of an element with a comeager conjugacy class was a desirable, and strong,
property for a Polish group G to have. This property is usually not satisfied (for
instance P. Wesolek [Wes13] recently proved that no nontrivial locally compact Pol-
ish group can have a comeager conjugacy class); it can be particularly enlightening
when one thinks of G as the automorphism group of some structure. Indeed, the
action of the generic element on the structure should be intimately linked with the

IThere seems to be no preprint yet; to be updated.
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structure’s properties, despite the fact that having a comeager orbit is expressible
purely in terms of the group. Actually, as was first noted by Hodges-Hodkinson—
Lascar-Shelah [HHLS93] , existence of generic tuples in G" for all n provides a tool
to reconstruct the structure from its automorphism group as an abstract group (in
a model-theoretic sense that I will not go into; this also depends on earlier results
of Ahlbrandt-Ziegler [[AZS86]).

Definition 5.57 ([KR07])). Let G be a Polish group. We say that G has ample generics
ifforalln € N there exists (g1,...,9n) € G" such that the diagonal conjugacy class
{(kg1k™1, ..., kgnk™1): k € G} is comeager in G".

The notion above was introduced, using a somewhat more flexible (and opaque
to me) definition, in the context of permutation groups in [HHLS93] ; the above
formulation, which makes sense for general Polish groups, comes from [KR07].

Recall that a Polish group G has the automatic continuity property if, whenever
H is a separable topological group, any homomorphism from G to H must be
continuous. Any Polish group with the automatic continuity property must have
a unique Polish topology compatible with its group structure (since an abstract
group isomorphism between Polish groups which is continuous must also have a
continuous inverse), and automatic continuity is a strictly stronger property. To
see that the two properties are different, one can for instance note that Kallman
[Kal76] proved that the group of p-adic integers has a unique Polish topology com-
patible with its group structure; but, as observed in [Ros09al Example 1.6], any un-
countable abelian compact Polish group admits a non-continuous homomorphism
into Se. Indeed, any infinite abelian group has a subgroup of countable, infinite
index; if the ambient group G is compact then this subgroup cannot be open, and
the left-translation action of G on the coset space produces a discontinuous action
of G on a countable set, which is the same thing as a non-continuous mapping
from G into Se.

It was proved in [HHLS93] that, whenever G is a closed subgroup of S. with
ample generics, G must satisfy the small index property, i.e. any subgroup of G
with countable index must be open. This last property is equivalent to saying that
any homomorphism from G to S« is continuous (in one direction, use the fact
that the topology of S has a basis consisting of open subgroups, which are of
countable index; in the other direction, look at the action of G on its quotient by
some countable subgroup). The following stronger result is due to Kechris and
Rosendal [KRO7].

Theorem 5.58 (Kechris—Rosendal [KRO7]]). Let G be a Polish group with ample gener-
ics. Then G satisfies the automatic continuity property.

Using the weak amalgamation property we mentioned in an earlier section,
Kechris and Rosendal also provided a Fraissé-theoretic characterization of closed
subgroups of S, with ample generics. These appear to be fairly common among
automorphism groups of highly homogeneous discrete structures - for instance,
Seo has ample generics (which is easy to show by hand), as do the automorphism
group of the random graph, the isometry group of the rational Urysohn space...

It is only very recently that examples of Polish groups with ample generics and
which are not isomorphic to a subgroup of S« have been discovered, by Malicki
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[Mal] and Kaichouh-Le Maitre [KLM]. In the automorphism groups of nondis-
crete metric structures that we encountered so far, conjugacy classes are mea-
ger. For Iso(U) this is a result of Kechris (published in a paper of Glasner-Weiss
[GWO08]). For U(H), one can find a proof of meagerness of conjugacy classes in
[GWO08]], while Kechris [Kec10] refers to Nadkarni’s book ([Nad98], Chapter 8); I
do not know who first proved the result. For Aut(u), [GW08] points out that mea-
gerness of conjugacy classes follows from a result of del Junco [dJ81], and Kechris
[Kec10] attributes meagerness of conjugacy classes there to Rokhlin.

So, automatic continuity via ample generics seems to be a non-starter in those
cases. However, these groups do have dense conjugacy classes, at least (Kechris—
Rosendal [KR07] for Iso(U), Rokhlin for Aut(y)); and we already noticed that the
uniform metric could be of interest - in analysis, one is used to neglecting small,
uniformly controlled errors, or at least to working with them.

Definition 5.59. Let (G, 7,9) be a Polish topometric group, and A be a subset of
G. We set

(A)ce ={g€G:Tac Ad(g,a) < ¢}

Then, the next best thing after a conjugacy class is the uniform closure of a con-
jugacy class. To make notation a bit simpler below, we denote by Conj(g) the
diagonal conjugacy class of § € G".

Definition 5.60. Let (G, T,d) be a Polish topometric group. We say that G has
ample generics if, for any ¢ > 0 and any 7, there exists § € G" such that (Conj(g)) ¢
is comeager.

If (G, ) is a Polish group, 0 is the coarsest bi-invariant distance refining 7, and
(G, 7,9) has ample generics then we say that (G, T) has metric ample generics.

Note that saying that (G, T,0) has ample generics iff there exists § such that the
uniform closure of Conj(§) is comeager; we call such elements metric generics.

It seems somewhat unlikely at first that G might have metric ample generics if
it does not have ample generics to start with: indeed, if we assume that there exists
a dense conjugacy class, then the fact that d is 7-Baire measurable and bi-invariant
imposes that there exists some r > 0 such that {(g,h): d(g,h) = r} is comeager.
Thus 0 looks to be almost constant (and discrete) from the point of view of T.
Also, if there are dense conjugacy classes and no comeager one, then they are all
meager; so, we are hoping to take a meager set, expand it by taking an arbitrarily
small tubular neighborhood for an almost discrete metric, and obtain something
comeager. As it turns out, this can actually happen, as shown by the following
examples.

Theorem 5.61 ([BYBM13]). The Polish groups Aut(u), U(H ) and Iso(U) all have am-
ple metric generics.

The key point to prove this is that, in each case, there is a countable substructure
sitting inside the continuous one, whose automorphism group has ample gener-
ics (when endowed with its permutation group topology) and is a very good ap-
proximation of the automorphism group of the continuous structure. One way to
formalize this is as follows.
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Definition 5.62. Let M be a Polish metric structure, and N be a (classical) count-
able structure. We say that N is a good approximating substructure if the following
conditions are satisfied:
e The universe of N is a countable dense subset of the universe of M.
e Any automorphism of N extends to an automorphism of M and (under
the obvious identification) Aut(N) is dense in Aut(M).
e For every open subset U of Aut(N) (in its permutation group topology)
and any ¢ > 0, (U) < is open in Aut(M).

For instance, the countable atomless rational probability algebra (the Fraissé
limit of all finite probability algebras with measure taking only rational values) is
a good approximating substructure of the standard atomless probability algebra;
the rational Urysohn space is a good approximating substructure of the Urysohn
space. By playing Banach-Mazur games, one can then show the following result,
which implies in particular that, if N is a good approximating substructure of M,
and Aut(N) has ample generics as a permutation group, then Aut(M) has ample
metric generics.

Theorem 5.63. Let N be a good approximating substructure of a Polish metric structure
M. Then, whenever A C Aut(N) is comeager (for the permutation group topology of
Aut(N)), the uniform closure of A is comeager in Aut(M) (for the Polish topology of
Aut(M)).

So far, all our examples of Polish groups with ample metric generics come from
structures with a good approximating substructure, making one wonder whether
this is a general phenomenon. This might simply be a consequence of our lack of
examples.

Ample metric generics for a Polish topometric group can be used, in some sense,
to translate questions about the topology to (formally easier, and trivial when the
metric is discrete) questions about the metric. For instance, using the ideas of
[KRO7] and some additional work to take care of the ¢’s, we proved the following
result in [BYBM13].

Theorem 5.64. Let (G, T,0) be a Polish topometric group with ample generics, H be a
separable topological group, and ¢: (G,9) — H be a continuous homomorphism. Then
¢: (G,T) — H is continuous.

This applies in particular to Iso(U), U(H) and Aut(p). We claimed earlier that
the uniform metric in these groups was almost discrete; since it should not be hard
to prove continuity of homomorphisms starting from an almost discrete group,
we look well on our way to proving automatic continuity for these groups. The
situation is actually somewhat more complicated.

Theorem 5.65.

(1) The group Aut(u) has the automatic continuity property ([BYBM13]).
(2) The group U(H ) has the automatic continuity property (Tsankov [Tsal3]).
(3) The group Iso(U) has the automatic continuity property (Sabok [Sab13]).

In the first two cases, the original proof uses Theorem .64 (even though, as
was pointed out to me by M. Malicki, one could bypass the notion of ample met-
ric generics and work directly with the good approximating substructure and the
uniform metric; still, the interplay of metric and topology is fundamental in this
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argument) to reduce the question to continuity of homomorphism to separable
groups when the source Polish group is endowed with its uniform metric. In the
case of Aut(y), it turns out to be not too hard to obtain the desired result, by
following an argument of Kittrell-Tsankov [KT10] which they used to prove auto-
matic continuity of full groups of ergodic, probability-measure-preserving actions
of countable groups. The case of U(H ) requires more ingenuity and technical skill,
and was dealt with by T. Tsankov [Tsa13].

Automatic continuity for the isometry group of the Urysohn space was proved
very recently by Sabok [Sab13]|], using a different method; his method can be used
to obtain automatic continuity for Aut(y) and U(H) as well, though this leads to
more complicated, less transparent proofs (to my tastes at least). Still, his tech-
nique appears to be more versatile, in that it captures the example of the Urysohn
space; both techniques seem powerless to tackle some natural classes of candi-
dates for the automatic continuity property, for instance, full groups of aperiodic,
non-ergodic probability-measure-preserving equivalence relations with countable
classes.

Once one is convinced that metric generic elements are interesting objects, it be-
comes worthwhile to try and give an “intrinsic” characterization of them. Rather
than try to define formally what I mean here, let me recall the following theorem
of Effros, which answers that question for generic elements.

Theorem 5.66 ([Eff65]). Let G be a Polish group acting continuously on a Polish space
X. Let x € X have a dense orbit. Then, the following are equivalent:

(1) The orbit G - x is comeager in X.

(2) The orbit map g — g - x is an open map from G to G - x.

(8) The orbit G - x is a Gs subset of X.

The characterization we are interested in, for metric generic elements, is similar
to the equivalence of the first two items above. The last item is interesting in its
own right, in that it shows that the set of generic elements is G;; one may then
wonder whether the same is true of metric generic elements in a Polish topometric
group.

The second condition above says that, for any open U C G, the set U - x is open
in G - x. The natural analogue of U - x in the topometric setting is given by sets of
the form (U - x)<¢; G - x could be left unchanged, replaced by its uniform closure,
or, more ambitiously, replaced by (G - x).. So we have three somewhat natural
candidates for a generalization of the Effros theorem to the topometric setting.

The use of ¢’s threatens to be cumbersome, so it is useful to subsume all of them
into a single object: the distance function. Instead of ¢ € G, what we are really
working with is the distance function d(g, -), and g being a metric generic element
is a property of the orbit of that function under the natural shift action of G. It
turns out to be possible to think of d(g, -) as being a point, in a setting where d
plays the role of the diagonal. We turn to a discussion of this approach before
going back to the promised topometric version of the Effros theorem.

5.5. Grey sets. Material in this section comes from [BYM13], joint with I. Ben Yaa-
cov.

Definition 5.67. Let X be a set. A grey subset of X is a function A: X — [0, +-o0].
Given A, B two grey subsets, we write A C B to mean that B(x) < A(x) for all
x € X.
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The terminology is meant to evoke scales of grey: rather than dealing with sets,
where things are black or white (belonging to the set or not), we want to deal
with distance to sets, where one can be more or less close to belonging. Of course,
subsets can be seen as grey subsets, via their zero-indicator functions: given A C X,

define
0 ifxeA
04(x) = {
co else

We use “square” versions of usual set-theoretic symbols when working in the
grey setting; thus, U denotes the infimum operation (analogous to the union),
while I denotes the sup (and, unfortunately, this runs contrary to the usual sym-
bols V for max and A for min).

The plan is to introduce a variant of descriptive set theory where subsets are
replaced with grey subsets, in order to avoid getting bogged down in epsilon-
tracking during proofs taking place in the topometric setting. When applied to
zero-indicators, the new notions should boil down to the usual notions. An ob-
vious problem with this approach is that there is no complementation operation
when dealing with grey subsets; this can be overcome but makes a few definitions
somewhat awkward.

5.5.1. Grey topology. Throughout, we assume that X is a completely metrizable
topological space.

A subset is open iff its zero-indicator is upper semi-continuous, closed iff its
zero-indicator is lower semi-continuous, and we have our first definition.

Definition 5.68. Let A be a grey subset of X. We say that A is open (respectively,
closed) if it is upper (respectively, lower) semi-continuous. We write A T, X when
A is an open grey subset of X.

It is straightforward to check that a union of open grey subsets is open, an in-
tersection of closed grey subsets is closed; consequently one can define the interior
A° and closure A of a grey subset A, and check the formulas

Vxe X A°(x)=limsupA(y) and A(x)=liminfA(y)
y*)x y*}x

Definition 5.69. A grey subset A T X is meager if there exists r > 0 such that
V*x € X A(x) > r. Itis comeager if V*x € X A(x) < rfor all r > 0, equivalently, if
A(x) = 0 for a comeager set of x.

In the above definition we feel the effect of the lack of a complementation oper-
ation, as we cannot say that a grey subset is meager iff its complement is comeager,
and the two definitions have a somewhat different flavor.

We write A C* B to mean that V*x € X A(x) > B(x), similarly for J*, =*. To
do descriptive set theory, we want to define Baire-measurable grey subsets; they
should be those which coincide almost everywhere (in the sense of Baire category)
with open sets.

Definition 5.70. Let A be a grey subset of X. Define
u(A) =| {foc, X: 0C* A}
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Then, as in usual descriptive set theory, it is always the case that U(A) C* A,
and we define A to be Baire-measurable if the reverse inclusion holds, namely,
A C* U(A). Itis not hard to see that this is equivalent to the existence of an open
grey subset B such that A =* B and, perhaps more interestingly, also equivalent to
the fact that A is a Baire-measurable function from X to [0, +oo]. I see this as a hint
that our definitions are the right ones; of course, an equally viable point of view is
that our definitions have so far only enabled us to recover a well-known concept
that certainly did not need grey subsets to be introduced.

Similarly, one could define a G5 grey subset either as the (grey) intersection of
countably many open sets, or a function A: X — [0, +-c0] such that A<, is G, for
all . Again, the two definitions coincide.

There is a notion of a grey subset being dense in another: simply say that A T B
is dense if A J B; similarly, one can define the relative closure of A in B as being
equal to A1 B. These notions have the expected properties; it is more tedious to
define what a relative open subset is, again due to the fact that there is no notion
of “grey complement” of a grey subset, so one cannot simply dualize the notion
of relative closure. However, a definition can be made to work: define the relative
interior of A C B as being equal to (A — B)° + B. Then one can say that a grey
subset of B is relatively open if it coincides with its relative interior; the important
example to keep in mind here is that, if U is an open grey subset of the ambient
space, then B + U is a grey open subset of B.

Armed with these definitions, we now can state (and prove rather straightfor-
wardly) a grey version of the Baire category theorem: a countable intersection of
dense open grey subsets of a G5 grey subset B of a complete metric space is dense
in B.

All this leads to a new version of the Kuratowski—Ulam theorem. Below, when
(Y, 7,0) is a Polish topometric space, X is a Polish space and f: X — Y is a con-
tinuous map, we define for ally € Y and all A £ X a grey subset A, of X (the
“fibre of A above y”) by setting A, (x) = A(x) 4 9(f(x),y) . Similarly, we define a
topometric variant of the image of A under f, by setting

(f(A))a(y) = inf A(x) +9(f(x),y) = inf Ay(x) .

In the particular case where f is the identity map from Y to itself, we simply denote
(id(A))s by (A)s. When A is a “true” subset of X this is equal to the 0-distance to
A.

Theorem 5.71 ([BYM13]). Let (Y, T,09) be a Polish topometric space, X a Polish space,
and rt: X — Y a continuous map. Assume that:

o Whenever U C X is open, (1tU), is open in Y.
e Whenever V.C YisopeninY, (V)yisopeninY.

Then the following conditions are equivalent, for a Baire-measurable A T X:

(1) The grey set A is comeager in X.
(2) Theset {y € Y: Ay is comeager in X} is comeager in Y.

The above Kuratowski—-Ulam theorem is, so far, the main payoff of grey topol-
ogy for us; when trying to prove an analogue of the Effros theorem in the topomet-
ric setting, it is useful to understand how the uniform metric and Baire category
interact (recall that, initially, it seemed unlikely that ample metric generics could
even exist outside of “usual” ample generics), in particular one needs to show that,
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whenever A is comeager in an open set O of a Polish group G and r is some posi-
tive real, then (A), is still comeager in (O),. This is the content of the following
corollary of our grey Kuratowski—Ulam theorem.

Corollary 5.72. Let (X, T,0) be a Polish topometric space, and assume that (V) is open
forany open V T X. Assume also that A T U T X, where U is open and A is comeager
in U. Then (A)y is comeager in (U)s,.

In particular, if A T X is 1-Lipschitz (relative to 0), then U (A) is also 1-Lipschitz.

Note that the compatibility assumption between topology and metric featured
above is automatically satisfied in a Polish topometric group.

Now we focus on grey subsets of (completely metrizable, not necessarily sepa-
rable) groups.

Definition 5.73. Let G be a group. For A, B T X, we define
AxB(g) = inf A(h)+B(k), AN x) = Ax7Y).
=8

The * operation is a form of convolution, and extends to grey subsets the group
operation of G as applied to subsets of G (identified with their zero-indicator func-
tion). One can then extend to the grey context several classical, and useful, prop-
erties of grey subsets of completely metrizable groups.

Lemma 5.74 (Pettis’ theorem for grey subsets). Let A, B be grey subsets of a completely
metrizable group G. Then U(A) « U(B) C A * B.

Now, let us go further, and try to see what a “grey subgroup” should be. A
subset H of a group G is a subgroup if the following conditions are satisfied: H is
nonempty, and HH~! C H.

Thus, a grey subgroup H T G should be a grey subset such that inf H = 0, and
Hx H~! C H. Explicitly, this last condition says that H(x) + H(y) > H(xy~!) for
all x,y € G. These two conditions imply that H(1) < inf,,—1 H(x) + H(y™!) =
2inf(H) = 0, from which the fact that H * H -1CH yields H = H -1 finally we
see that the conditions are equivalent to writing H(1) = 0, H(g~!) = H(g) and
H(gh) < H(g) + H(h) for all g, h. In other words, our grey subgroups are sim-
ply seminorms on G, which are themselves in natural bijection with left-invariant
pseudometrics on G. So the grey analogue of a subgroup is a left-invariant pseu-
dometric; hence one should expect that results concerning subgroups of permu-
tation groups should translate, using the topometric formalism, to results about
left-invariant pseudometrics.

One example of this phenomenon is the translation of the small index prop-
erty. Recall that a subgroup G of S has the small index property if any subgroup
of G of index strictly below the continuum is open. We know by now that this
property implies that any homomorphism from G to S« is continuous (and really,
for that one only cares about subgroups of countable index). Let us now try to
translate the small index property in the grey context. Thinking of a left-invariant
pseudometric as the counterpart of a subgroup, the obvious analogue of “index
strictly below the continuum”, that is, “cardinality of G/ H strictly below the con-
tinuum”, is “the density character of the metric space associated to the pseudomet-
ric is strictly below the continuum”. Since “open” translates to “continuous”, we
have a first candidate: “any left-invariant pseudometric on G of density charac-
ter strictly below 2% is continuous”; equivalently, any homomorphism from G to
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a metrizable group of density character strictly below 2%0 is continuous. This im-
plies that any homomorphism from G to a separable group is continuous (what we
called earlier the automatic continuity property); in the discussion above it would
also make sense to replace all instances of the words “strictly below 280" by the
word “countable”, and the proposed analogue of the (very) small index property
is then exactly the automatic continuity property. There is something wrong in
this picture, however: we are not taking the topometric structure into account at
all. Some compatibility between the pseudometric under consideration, and the
uniform metric on our topometric group, should be assumed.

Definition 5.75. Let (G, 7,0) be a Polish topometric group. We say that (G, 7,9)
has the small density property if, whenever d is a left-invariant pseudometric such
that the density character of (G, d) is < 2%, and d is Baire measurable with respect
to 9, d must be continuous.

Equivalently: any homomorphism from G to a metrizable group of density
character < 2% which is 9-Baire measurable is T-continuous.

In the definition above, one would not change anything if one replaced 0-Baire
measurability with d-continuity.

Theorem 5.76 ([BYM13]). Let (G, T,0) be a Polish topometric group with ample gener-
ics. Then (G, T,0) has the small density property.

This is essentially a variant of the automatic continuity theorem proved in [BYBM13],
though the approach via grey sets makes the proof neater and probably easier to
comprehend.

5.5.2. A topometric version of Effros” theorem.

Theorem 5.77 ([BYM13]). Assume that (X, T,0) is a Polish topometric space, and that
G is a Polish group acting continuously on X by t-homeomorphisms which are also o-
isometries. Assume further that, for any U open in X and any r > 0, the set (U) <, is
open. Assume also that x € X is such that G - x is dense. Then the following conditions
are equivalent:

1) G- is G,
2) G- xa is comeager.

or any open subset 0 ana anyr > U, X )<y 1S Open in <X .
(3) For any open subset U of G and any r > 0, (U is open in G - x°

(4) There exists y € G - % such that, for any open subset U of G and any r > 0,
(U-y)<risopenin G -y.

Note that all the assumptions above are satisfied when X = (G, 7,0) is a Polish
topometric group (or a power thereof) and G acts by (diagonal) conjugacy.

The only interesting implications here are @) = (@) and @) = (). As it turns
out, to close the implication diagram once one has proved the implication (@) = (@)
it is simpler to prove that @ = (@) and B) = (0); these implications are both
instances of a topometric variant of a well-known theorem of Hausdorff stating
that a metrizable space which is a continuous, open image of a Polish space is
Polish itself. I will only discuss the proof of ) = (3).

Proof of @) = @). Denote by 7t the orbit map ¢ — g¢-x. Fix a countable ba-
sis (Op)n<w for the topology of G; for any n (71Oy,), is Baire-measurable and 1-
Lipschitz (relative to d). Thenb.72]shows that U, = U((7tO,,),) is also 1-Lipschitz.
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Let QO = {y: Vn(7tO,)y(y) = Un(y)}. This is a T-comeager, d-closed subset. Also,
forany O C, G, (10)yM0q C, 0g.

Now, let B = {y: V*g € G g-y € Q}. This setis G-invariant, T-comeager, and 0-
closed. The first point is obvious, the second follows from the (usual) Kuratowski-
Ulam theorem, and to see why the third holds assume that b; € Band b € X
are such that d(b;,b) — 0. Then there exists a comeager set of ¢ € G such that
g b; € Qforall i, so since () is d-closed we get g - b € () for all such g,i.e. b € B.

It follows that G - x is contained in B; to conclude, it is enough to prove that
forallU C, G (tl)y; M0 C, 0p. To that end, let b; € B converge to b € B; there
exists ¢ € Gsuchthatg-b € Qand g-b; € Q) forall i.

Since (gl )y M0 &, 0, we have limsup(rgU)y(g-bi) < (mgU)y(gb), equiv-
alently lim sup(7tU )y (b;) < (7tU)y(b). O

5.6. Meagerness of conjugacy classes in the space of actions. We conclude this
text by discussing a topometric approach to proving that conjugacy classes are
meager in Hom(I', G) for some countable groups I' and Polish groups G - so far
this approach only really works when G is the isometry group of the Urysohn
space.

Assume that M is a Polish metric structure, and that G is its automorphism
group, which we turn into a Polish topometric group in the usual way. For any
finite A C M, denote by G4 the pointwise stabilizer of A, and assume that for
any € > 0 the set (G4)<, contains 1 in its interior. This is true for instance in the
standard atomless probability algebra, the Urysohn space or the Urysohn sphere;
the assumption is a bit stronger than what we really need but simplifies exposition
somewhat.

Fix a countable group I'. We may endow Hom(I', G) with a very strong uniform
metric deo, defined by deo(71,0) = SUpger dy(m(g),0(g)). Here d, denotes the
uniform metric on G = Aut(M); note that even if I = Z d is much finer than
d,, since we are taking a supremum over all elements of Z. In the case of Aut(u),
this metric is considered in [KecI0], where it is proved that conjugacy classes are
clopen in the topology induced by dc..

Now, assume that 7y € Hom(T, G) has a comeager conjugacy class. Then, for
any neighborhood U of 1, rp must belong to the interior of U - 7ty (where closure is
relative to the Polish topology on Hom(T, G), and - denotes the conjugacy action
of G on Hom(T, G)). Thus, under our assumption on M, 7y must belong to the
interior of the closure of (G4)<, - 7o for any finite A C M and ¢ > 0.

Let us focus on V = (G4)<¢ - 7p for a moment: assume that 7 belongs to this
set; then there exists 1 € G4 and g € (1)< such that m = gh - 7rp. Thus for any
a,b € Aand 7,6 € T we have that |d(7t(7y)a, t(6)b) — d(mo(7y)a, 77p(5)b)] is equal
to

|d(ghmo(v)h ™ g a, ghmo(8)h g~ 'b) — d(mo(y)a, o (6)b)|
< 2¢ + |d(hro(y)h ™~ a, hro(8)h~'b) — d(7t0 ()4, 710 (6)b) ]
= 2¢ + |d(hro(y)a, hrro(8)b) — d(7to(y)a, 710 (8)D)]

= 2¢.



POLISH GROUPS AND BAIRE CATEGORY METHODS 67

So for any 7w € V, we have forall 7,6 € 'and all 4,b € A that
|d(7t(y)a, 7(6)b) —d(mo(y)a, mo(6)b)| < 2e.

Note that the set of all 7 satisfying these conditions is closed in Hom(I', G), while
we know that the closure of V contains 7 in its interior: hence there exists an
open neighborhood W of 71y in Hom(T, G) such that

Ve e WYy,5 €T Va,b e Ald(rt(y)a, m(6)b) —d(mo(y)a, mo(6)b)| < 2e.

In other words, the map 7(y)a — 7my(y)a must be an isomorphism from 77(I') A
to 719(I') A up to a prescribed error 2¢: the finite number of constraints imposed by
the open set W must control the whole orbit 77(I') A up to a prescribed error. This
seems to be a very strong condition that is unlikely to hold when I' is infinite.

Theorem 5.78. For any infinite, countable group I', conjugacy classes are meager in
Hom(T, Iso(U)) and Hom(T, Iso(Uy)).

Proof. One can use the above criterion with A a singleton to derive a contradic-
tion. Let us give the proof for Iso(U): assume for a contradiction that my €
Hom(T,Iso(U)) has a comeager conjugacy class. There must exist an open sub-
set W of Hom(T', Iso(U)) containing 7ty and such that, forall 7 € Wand ally € T,
one has

|d(r(y)a,a) —d(mo(y)a,a)] < 1.
This implies that all elements of W have bounded orbits, or all elements of W have
unbounded orbits (depending on how 7 behaves).
Thus to derive a contradiction it is enough to prove that I'-actions with bounded
orbits and T-actions with unbounded orbits are both dense in Hom(T, Iso(U)).
This is easy to do. Indeed, let

O ={m:Vae AVy € Fd(n(vy)a,o(y)a) < ¢}

be an open subset (with A, F finite, ¢ > 0). Then consider the supremum M of
all distances between elements of {c(y)a: v € F,a € A}; let (X,d) be the met-
ric space 0(I')A. One can endow it with a new metric p = min(d, M); T still acts
isometrically on (X, p), which may be embedded in Iso(U); denote this new ac-
tion by 7. Using the homogeneity of U, and the fact that p,d agree on elements
{o(y)a: v € F,a € A} we obtain that 7t belongs to O, and has bounded orbits.
Thus the set of elements with bounded orbits is dense in Hom(T', G) for any count-
able group I'.

Now, let p be an unbounded left-invariant metric on I' (this exists because I’ is
countable infinite). The left-translation I' ~ (T, p) extends to an action 77: I' ~
U with unbounded orbits; thus we obtain two pseudometrics on I' x A which
are invariant when T acts on I' X A by left-translation on the first coordinate:
di((7,a),(6,0)) = d(c(y)a,c(8)b) and da((7v,4a),(6,b)) = d(7t(7)a, 7t(6)b). For
any r > 0dq + rdy is a pseudometric on I' X A which is invariant under the left-
translation action, and elements have unbounded orbits for d; + rd, under this
action. As r goes to 0, the values of di + rd, on F X A get arbitrarily close to the
values of d; on F x A, so for r small enough, using the homogeneity of U, we ob-
tain an action of I that belongs to O and has unbounded orbits. This concludes the
proof for Iso(U). One can use similar ideas to deal with Iso(U;) (looking at the
behaviour of d(7t(7y)a,a) as 7y goes to o0), though I will not give details here. [
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It would be much more interesting to be able to prove the same result for
G = Aut(yu); this is related to questions about complexities of some classifica-
tion problems. It is known since work of Foreman and Weiss [FW04] that con-
jugacy classes are meager in Hom(I', Aut(u)) for any infinite amenable I'. They
used entropy for amenable actions as an invariant that contradicts the possibility
of a comeager conjugacy class. This makes it tempting to believe that, using the
notion of entropy for measure-preserving actions of sofic groups (see e.g. [Bow10]
and [Ker13]), one could extend their result to all sofic groups. But entropy for
sofic groups is significantly more complicated than for amenable groups and at
the moment I do not know whether this approach can be fruitful in this generality.

While the approach discussed above leads to some partial results, it does not
seem to be powerful enough to solve the problem of existence of comeager con-
jugacy classes for all countable groups. In particular, it seems powerless to prove
that conjugacy classes are meager in the case of infinite groups with property (T)
(or, maybe, it suggests that groups with property (T) are a good place to look for
examples of groups for which there exists a comeager conjugacy class in the space
of measure-preserving actions).

I did not discuss the case of the unitary group in this section - this is because
Kerr-Li-Pichot [KLP10] proved that conjugacy classes are meager in Hom(I', U(#))
for any countable infinite group I'. They actually prove more, using an approach
based on operator algebras; maybe the approach discussed above can be used to
give a simpler proof than theirs in the case of countable groups.
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