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Martin Ziegler [7] and others have described games G for constructing
groups. If G is such a game and ¢ is a property, then we write G(¢) for the
form of G in which the second player wins if and only if the constructed
group has property ¢. Let us say that the property ¢ is determined (with
respect to G) if one of the two players has a winning strategy for G(¢); let
us say that G is wholly determined if every property ¢ is determined. In
their elegant recent book [3], Graham Higman and Elizabeth Scott
consider two games G for constructing groups, and they suggest [3, p. 85,
line 10] that both games should be wholly determined.

By Corollary 5.1 below, neither game is wholly determined. Both games
can be generalised from groups to other types of structure; I give necessary
and sufficient conditions for each game to be wholly determined, depending
on the type of structure. It is known that groups fail to meet the conditions
for either game.

1. PRELIMINARIES

A pre-game is a set of instructions for playing a game, but without the
criterion for deciding which player wins. One makes a pre-game into a
game by adding such a criterion.

We consider some pre-games of the following form. There are two
players, a male player V(belard) and a female player 3(loise). There is a
non-empty set of conditions, which are partial descriptions of structures.
This set is partially ordered by inclusion: p < g iff the condition g says
everything that the condition p says, and perhaps more besides. (For
games of this form I generally follow the notation of Chapter 2 of Hodges
[41)

The players play the pre-game G as follows. They choose conditions in
turn, so as to form an increasing chain (p,:n<w) of conditions; p, is
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chosen by player V if n is even, and by player 3 if n is odd. The player who
chooses p, is allowed to know what p,, .., p, _, were. At the end of the
play, the set p,=1J,.. P, determines a structure called the compiled
structure. Henceforth the letter A4 is reserved for the compiled structure.

By a property we mean a class ¢ of structures which is closed under
isomorphism. We say that a structure B has (or satisfies) ¢ if B lies in the
class. This notion extends in a natural way to sentences ¢: the structure B
satisfies ¢ if B is in the class of models of ¢. In fact it will often be
convenient to state properties as sentences about the compiled structure:
for example “the property that A4 is an abelian group” is the class of abelian
groups.

Let ¢ be a property and G a pre-game. Then the game G(¢) is played as
G. Player 3 wins a play of G(¢) if the compiled structure 4 has property
¢; otherwise player V wins.

A strategy o for player V in a game is a set of rules which tell player V
how to choose, depending on what conditions were chosen earlier in the
play. More formally, ¢ is a family of functions ¢’ (i even), such that
for each i, ¢’ is an i-ary function from the set of conditions to the set of
conditions. (In particular ¢® is a condition.) If p,,.., p, , were the
conditions chosen at the first i steps, then ¢ requires player ¥ to choose
p;=6'(po, ., pi_1)- Likewise a strategy for player 3 is a family ¢' (i odd).

A strategy in a game G(¢) is winning if the player who uses it will always
win, regardless of what the other player does. A property ¢ is said to be
enforceable (with respect to the pre-game G) if player 3 has a winning
strategy for the game G(¢). The property ¢ is coenforceable if player ¥V has
a winning strategy for G(not-¢). We say that a property p forces ¢ if player
3 has a strategy which enables her to win whenever player V chooses p, so
that p < p,.

Lemma 1.1. (a) A property ¢ is enforceable if and only if every
condition forces ¢.

(b) A property ¢ is coenforceable if and only if some condition
Jorces ¢.

(c) Every enforceable property is coenforceable.

(d) The conjunction of countably many enforceable properties is
enforceable.

Proof. (a) is immediate from the definition: a strategy for player 3 is
winning if it enables her to win regardless of how player ¥V makes his first
move. For (b), suppose first that ¢ is coenforceable, so that player V has
a winning strategy ¢ for G(not-¢). Let p be the condition ¢°. Then p forces
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¢. For suppose player V in a play of G(¢) chooses p, 2 p. Then player 3 can
choose p,, to be 6" *'(p, po, P1s «» Pas_1), fOr €ach n < w; this way she
will win. The converse is similar. Then (c) is immediate from (a) and (b).

(d) Suppose each property ¢, (i<w) is enforceable. Player 3 can
partition her infinitely many moves into countably many countable sets X,
(I <w). She can use the moves in set X, to make sure that the compiled
structure has property ¢,. |

2. THE ZIEGLER AND FRAISSE PRE-GAMES

To define a particular pre-game, we need to say first what the conditions
are and how they are partially ordered, and second how the compiled
structure is built out of the set p,. For example, the two pre-games which
Higman and Scott [13, p. 82f] discuss are as follows. In both of them the
players build a group.

G,. In Ziegler's pre-game a condition is a finite set of equations and
inequations (using a language with symbols for multiplication, inverse and
the identity element, together with countably many constants) which is
satisfiable in some group. The partial ordering “p < ¢” is simply inclusion.
When G(¢) is played, the compiled group is the group which is presented
by the set of all equations in p,,. (These games were introduced by Ziegler
[7] as a way of handling Abraham Robinson’s finite forcing construction.
Higman and Scott call the pre-game the “finite code of rules.”)

Gy. In Fraissé’s pre-game the conditions are finitely generated
groups; p<q if and only if p is a subgroup of ¢. The compiled structure
is the group p,. (This is essentially the “stable code of rules” of Higman
and Scott. Read on below for the connection with Fraissé.)

Both these pre-games can be widely generalised with the help of some
model theory. Let L be a first-order language, always assumed to be
countable. A structure with functions, relations, etc. to match the symbols
of L is called an L-structure; structures are assumed to have at least one
element. A theory in L is a set of sentences of L.

First we generalise Ziegler’s pre-game (Hodges [4] sections 2.3, 3.4). Let
T be a consistent theory in the language L. We say that T is inductive if
every union of a chain of models of T is again a model of 7. Let L(W) be
the language which results when we add to L a countable set W of new
constants known as witnesses. Let a condition be a finite set of atomic and
negated atomic sentences of L(W) which is consistent with 7. We partially
order the set of conditions by inclusion. At the end of a play, there is (up
to isomorphism) a unique L{W)-structure A" whose positive diagram is the



464 WILFRID HODGES

set of all atomic sentences deducible from T u p,,; we define the compiled
structure A to be A’ considered as an L-structure.

We shall call this the Ziegler pre-game on T. If T is the first-order theory
which axiomatises the class of groups (or for short, if T is the theory of
groups), then the Ziegler pre-game on T is exactly the pre-game G,
described above.

Next we generalise the Fraissé pre-game. The generalisation is implicit
already in a construction of Fraissé [2]. Let L be a countable first-order
language, and suppose K is a class of L-structures. We write K, for the
class of all finitely generated structures in K. We say that K is a Fraissé
class if K has the following properties: (1) If BeK and C is embeddable in
B then CeK. (2) K is closed under unions of countable chains. (3) If C,,
C,eKy, then there is a structure D in K, such that both C, and C, are
embeddable in D. (4) If B, C;, C,eKg, and B is a substructure of both C|
and C,, then there are a structure DeK; and embeddings ¢;:C,— D
(i=1, 2) which agree on B. In this setting a condition is a structure in Kg,,
and p<q iff p is a substructure of ¢g. Thus a play (p, :n<w) will be a
chain of structures, and we can define the compiled structure to be the
union p,,.

We shall call this the Fraissé pre-game on K. If K is the class of groups,
then K is a Fraissé class and the Fraissé pre-game on K is the pre-game G,
described above.

Since a Fraissé class K and the class of models of an inductive theory T
are both closed under unions of chains, it makes sense to speak of an
existentially closed (e.c.) structure in K or model of T. The next lemma
states the main reason why people have studied this type of construction.
(See, e.g., Hodges [4, Sect. 3.27] for the definition of e.c. in general; for
groups it reduces to the notion studied by Higman and Scott.)

LemMMA 2.1. Ler the setting be either an inductive theory T or a Fraissé
class K. Then the property “The compiled structure is an e.c. model of T
(resp. an e.c. structure in K’ is enforceable.

Proof. For the Ziegler case see Hodges [4, Corollary 3.4.3]. For the
Fraissé case the argument of Higman and Scott [3, Lemma 7.1(i)]
generalises.

A theory T is said to have the joint embedding property (JEP) if: for any
two models B, C, of T there is a model D of T in which both B and C are
embeddable. (The theory of groups has the JEP, with D=B8xC(C.)

LemMa 2.2, Let L be a first-order language and ¢ a property of
L-structures.
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(a) Suppose G is the Fraissé pre-game on a class K. Then ¢ is
enforceable if and only if it is coenforceable.

(b} The same holds for the Ziegler pre-game on an inductive theory T,
provided that T has the JEP.

Proof. Lemma 1.1 shows that enforceable implies coenforceable. For
the converse in (a), suppose that ¢ is a winning strategy for player V in
G(not-¢). Then player 3 can win G(¢) as follows. When player V has
chosen a condition p,, she uses property (3) of Fraissé classes to find a
condition p, 2 p, in which ¢° is embeddable. Thereafter she chooses p,, ,
to be a?(py, . Pan)

For the converse in (b), suppose ¢ is coenforceable. Then some condition
g forces ¢. To win G(¢), player 3 proceeds as follows. When player V has
chosen p,, she notes that since ¢ is a property of L-structures, it is not
affected by permutations of the set of witnesses; so there is a condition ¢’
which forces ¢ and has no witnesses in common with p,. Since p, and ¢’
are both satisfiable in models of 7 and 7T has the joint embedding property,
there is a model of T in which p, and ¢’ are satisfiable, and hence (since
po and ¢ have no witnesses in common) the set p,u ¢’ is satisfiable. Then
player 3 chooses p, to be p,u¢’, and thereafter she chooses as in case

(a). 1

3. WHEN Is THE ZIEGLER PRE-GAME WHOLLY DETERMINED ?

Throughout this section, 7 is a fixed inductive theory and we play the
Ziegler pre-game with respect to 7. By the dichotomy theorem (Theorem
4.2.6 in Hodges [4]), exactly one of the following is true:

(a) There is an at most countable set X of structures, such that (1)
it is enforceable that the compiled structure A4 is isomorphic to some struc-
ture in X, and (i1) if B is any structure in X, then it is coenforceable that
A is isomorphic to B.

(b) For every enforceable property ¢ there are continuum many non-
isomorphic finite or countable structures which have ¢.

Let us say that the theory T is good if (a) holds, and bad if (b) holds.

THEOREM 3.1. The Ziegler pre-game on a theory T is wholly determined
if and only if T is good.

Proof. Suppose first that T is good. If some structure B in the set X (as
in (a) above) fails to have property ¢, then player V can win G(¢) by
choosing B and playing so that A4 is isomorphic to B. If every structure in
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X has property ¢, then player 3 wins by playing so that A is isomorphic
to some structure in X.

Henceforth suppose that 7 is bad. By Lemma 1 it follows that there is a
family of 2“ non-isomorphic finite or countable models of T; list them
without repetition as (C,:a<2"). We say that an ordinal a<2“ is
constrainable if there is a condition which forces the property “A is
isomorphic to C,” At most countably many ordinals are constrainable,
since there are only countably many conditions.

Let us call a strategy for player V (resp. 3) a V-strategy (resp. I-strategy).
Since there are countably many conditions to choose from, there are 2¢
possible V-strategies. Likewise there are 2 possible 3-strategies. List all the
possible V-strategies and 3-strategies together as (o, : 8 <2”). We shall
choose the property ¢ so that ¢ defeats every a,.

By induction on f we build up chains (X;:8<2“) and (Y,:f<2%)
of subsets of 2, so that (i} for each f, X; and Y, are disjoint and have
cardinality <2, and (ii) for each #, X, , \X; and Y, \Y,; both have
cardinality at most 1.

To begin the chains, we put X,= ¢ and we take Y, to be the set of
constrainable ordinals. We take unions at limit ordinals.

When X, and Y, have been chosen, we consider the strategy 64, suppose
it is a V-strategy. Define Z to be {x<2”:when player V follows g, it is
possible for 4 to be isomorphic to C,}. We shall ensure that Z meets
Y, , . There are two cases to consider.

Case One. Z has cardinality 2. In this case we take some number y,
in Z\(X,U Yy), and we put X, , =X and Yy, =Y, u{y;}.

Case Two. Z has cardinality <2“. Now the condition a% forces the
property “The compiled structure is isomorphic to some C, with ae Z.”
Let 77 be the theory TUo}; then this same property is enforceable with
respect to 7. So T fails (b) above, and hence it is a good theory. There-
fore there are an ordinal y and a condition p for the pre-game on T’ such
that p forces “The compiled structure is isomorphic to C,”—<all this
property . So a?, u p forces the same for the pre-game on 7, and it follows
that y is constrainable, so that ye Y,< Y, ,. But also player 3 can play
against g, (taking o?,up as her first move) in such a way that ¥ holds; so
yeZ Weset Xy, =Xgand Y, , =7,

On the other hand suppose ¢, is an 3J-strategy; again put
Z={f<2”:when player 3 follows g,, it is possible for 4 to be
isomorphic to C,}. This time Z must have cardinality 2, since T is bad
and the property “A is isomorphic to some C; with fe Z” is enforceable.
We choose some x,eZ\(X,uY;), and we put X;,,=Xzu {xz},
Yo, 1 =Y,

Finally take ¢ to be the property “A4 is isomorphic to C, for some
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a€lJp.20Yp” We assert that ¢ is not determined. First, player V has no
winning strategy for G(#). For suppose o, is a strategy for him. By our
choice of Y, ,, we made sure that player 3 can play against o, in such
a way that A is isomorphic to some C, with ye Y,, . Hence 6, is not a
winning strategy for player V. A similar argument shows that player 3 has
no winning strategy. |

4. WHEN Is THE FRrRAISSE PRE-GAME WHOLLY DETERMINED?

Throughout this section, K is a fixed Fraissé class and we play the
Fraissé pre-game on K.

THEOREM 4.1. The Fraissé pre-game on K is wholly determined if and
only if there do not exist uncountably many non-isomorphic structures in K.

Proof. The proof needs some notions based on Fraiss¢ [2]. Fraissé¢
considered only structures without function or constant symbols, but many
of his arguments adapt at once to our setting.

First, an isomorphism type is an equivalence class of structures under the
relation of isomorphism. We write F for the set of isomorphism types of
structures in K. Since the language is at most countable, the cardinality
of F is at most 2.

Next, if B is any structure, the age of B, in symbols age(B), is the set of
all elements of F which are the isomorphism types of substructures of B.
Thus if B is countable, its age is countable.

Thirdly we say that a structure B in K is weakly homogeneous if for every
pair of structures C, D whose types are in the age of B, with C= D and
C < B, there is an embedding e¢: D — B which is the identity on C. By 54.2
in Fraissé [2], any two countable weakly homogeneous structures of the
same age are isomorphic.

We prove right to left in Theorem 4.1. Suppose that up to isomorphism,
K, is countable. Then the argument of 8.3 in Fraissé [2] shows that there
is a unique countable weakly homogeneous structure B of age K, and
that the property “A is isomorphic to B” is enforceable (and hence also
coenforceable). So player 3 has a winning strategy for G(¢) if B satisfies ¢,
and otherwise player V has a winning strategy for G(¢).

Thus right to leit holds in the theorem. For the converse, we suppose
henceforth that K, is uncountable (counting up to isomorphism).

LEmMMA 4.2. (a) The property “A is weakly homogeneous” s
enforceable.

(b) If for each n<w, B, is a finite or countable structure in K, then
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there is a structure C in K which is weakly homogeneous and at most
countable, such that each B, is embeddable in C.

(c} The class of weakly homogeneous structures is closed under unions
of chains.

Proof. This is all essentially in Fraissé [2, Sects. 5, 8]. | Lemma.

For any set X, we write 2,(X) for the set of all finite or countable
subsets of X. We say that a subset W of 2,(X) is closed unbounded in
Z,(X) if (1) W is closed under unions of countable chains, and (2) every
countable subset of X is a subset of some element of W. A subset of 2, (X)
is fat if it contains some closed unbounded set. We need the following facts:

LEmMMA 4.3.  For any uncountable set X:

(a) The intersection of countably many closed unbounded subsets of
P(X) is a closed unbounded subset of 2,(X).

(b) The set of all fat subsets of #,(X) is a countably complete non-
principal filter over Z, (X).

Proof. Cf. Kueker [6, Proposition 2.1]. For completeness, here is a
sketch. For (a), suppose s, (n<w) are closed unbounded sets and
s={, <. S.- Then s is clearly closed under unions of countable chains. If
Y e 2,(X), choose by induction on i an increasing chain (Y;: i< w) of sets
in 2,(X), with Y& Y, such that for each n < there are infinitely many
i with Y,es,. Then Y=1{)J,_, Y, is in s, for each n, and hence in s.

For (b), the set is certainly a countably complete filter #. If # was
principal, there would be a closed unbounded set se# such that
F={tc?,(X):s5c1t}. Choose some Yes. Since X is uncountable,
there is xe X\Y. Let 1 be {Zu {x}:Zes}. Then s & 1, but 7 is closed

unbounded and so re #. | Lemma

Let S be the set of all subsets of F which are of the form age(B) for a
finite or countable weakly homogeneous structure B in K. Thus S £ _(F).

LeEmMmA 44. (a) S is closed unbounded in 2 (F).

(b) If s€S8, then up to isomorphism there is a unique finite or
countable weakly homogeneous structure of age s.

Proof. (a) follows from (b) and (c) of Lemma 4.2. (b) is 5.4.2 of Fraissé
[2]. § Lemma

For each set W< 2 (F), let ¢, be the property which a structure B has
if age(B)e W.
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LEMMA 4.5. ¢, is enforceable if and only if W is fat.

Proof. The argument adapts Proposition 2.1(c) of Kueker [6].
Suppose first that ¢, is enforceable, and let ¢ be a winning strategy for
player 3 in the game G(¢, ). Let Y be the set of all those finite or countable
subsets of F which are closed under all the functions of ¢ (in the sense
that if / is odd and the isomorphism types of p,, .., p,_; are in Y, then
the isomorphism type of ¢'(pg, .., p;_,) is in Y too). Then Y is closed
unbounded in #,(F), and so by Lemmas 4.3(a) and 4.4(a), Y S is closed
unbounded in #,(F). To prove that W is fat, we show that YnSc W.

Suppose se Y S. Let J be the class of structures with age 5. Then
since s€ S, J is a Fraissé class by the proof of Fraissé [2, Theorem VI]. Let
G’ be the Fraissé pre-game on J. Because s is countable, we are in the first
case of Theorem 4.1, and it is enforceable with respect to G’ that the
compiled structure 4 will be weakly homogeneous with age s. But since s
is closed under the functions of ¢, player 3 can use ¢ in the pre-game G’
Imagine a play of G' in which player 3 uses ¢ and player V ensures that
A is weakly homogeneous with age s. We can also regard this play as a
play of the game G(¢ ) on K rather than J, and here player 3 is using a
winning strategy. So the age of 4 must lie in W, and hence se W as
required.

For the converse it suffices to show that if W is closed unbounded then
¢ 1s enforceable. Player 3 should play as follows. Whenever player V
chooses a condition p,,, she should use the unboundedness of W to find a
set 5,,€ W with p,,es,, and (when i>0) 5,;_, S s,,. Since s, is countable,
she can use a countable subset of her moves (and property (3) of Fraissé
classes) to ensure that each type in s,, appears in the compiled structure.
The result will be that age(4)=J,.., 5, which is in W since W is closed
under unions of countable chains. So player 3 wins G(¢,). [ Lemma

Now we can prove the remainder of Theorem 4.1. Let # be the filter of
fat subsets of #Z,(F). By Lemma 4.3(b), % is a countably complete non-
principal filter over #,(F). But 2 (F) has cardinality at most 2¢, and (by
a theorem of Ulam, cf. Jech [5, p.297]) there is no measurable cardinal
<2 It follows that & is not an ultrafilter. Hence there is some subset W
of #,(F) such that neither W nor its complement in #,(F) is in #. Then
neither ¢, nor ¢ . . is enforceable. So by Lemma 2.2(a), ¢, is not
determined. |

Condition (3) in the definition of a Fraissé class K is not essential. If we
drop it, we can define an equivalence relation ~ on Ky, by B~ C iff there
is D in K;, such that both B and C are embeddable in D. (Transitivity is
by (4) in the definition of a Fraissé class.) Call the equivalence classes the
components of K. In the Fraissé pre-game, player Vs first move decides
what component the conditions come from.
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Corollary 4.6. In this broader setting, the Fraissé pre-game on K is
wholly determined if and only if each of the components of Ky, is at most
countable (up to isomorphism).

Proof. Suppose first that each of the components is countable. Then for
each component ¢ there is a structure 8, whose age lies in ¢, such that it
is coenforceable that the compiled structure A4 is isomorphic to B,. It is
enforceable that A is isomorphic to at least one of the B,. Now the same
argument applies as for good theories in Theorem 3.1.

Second, suppose that some component ¢ is uncountable. The proof of
Theorem 4.1 shows that if the players are compelled to play within ¢, there
is an undermined property ¢. Now let  be the property “Either the age of
A lies outside ¢, or ¢ holds.” If player V puts the play of G(¥) into some
other component than ¢, then he loses. It follows that y is undetermined
with respect to G. |}

5. CONCLUSIONS

COROLLARY 5.1. Let G be either the Ziegler or the Fraissé pre-game for
groups. Then G is not wholly determined.

Proof. For the Ziegler pre-game, compare Theorem 3.1 with the fact
(Hodges [4, Theorem 4.1.6]) that the theory of groups is bad. For the
Fraissé pre-game, note that there are uncountably many non-isomorphic
finitely generated groups and use Theorem 4.1. |

There are useful classes of properties which are always determined. If L
is a first-order language, we write L, , for the language which is like L
except that conjunctions and disjunctions of countable sets of formulas are
allowed.

PROPOSITION 5.2. (a) Let T be an inductive theory in a first-order
language L, and G the Ziegler pre-game on T. Then every sentence of L is
determined. More generally, so is every sentence of L

wjw-
(b) Let K be a Fraissé class of structures for the first-order language
L, and G the corresponding pre-game. Then the same conclusion holds.

Proof. For (a) see Hodges [4, Theorem 2.3.47]. The proof of (b) is
similar; here is a sketch for the case when F is uncountable. To get the
effect of witnesses, we first rephrase the Fraissé game so that the domain
of each condition p is a proper initial segment of the ordinal w?. Then we
add to L a constant ¢, for each ordinal i < w?, so that ¢, names the element
i in p. Quantifiers can be replaced by countable conjunctions, writing
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Ni<o? 9(c;) in place of Vx¢(x). For each se § (as in Lemma 4.4) there is
up to isomorphism a unique finite or countable weakly homogeneous
structure B, of age s; if ¥ is a sentence, write W, for the set of s€.S such
that y is true in B,. Then we can show, by induction on the complexity of
Y, that for each quantifier-free sentence ¥, either W, or W, , is fat.
Lemma 4.5 concludes the argument. J

Problem. Generalise Theorem 4.1 to the situation where clauses (3) and
(4) are dropped from the definition of Fraissé classes.

For example, is the class of commutative rings wholly determined for
Fraissé games? One can ask the same question for Ziegler games; in this
case it is probably relevant that finitely generated commutative rings
are residually finite (Baumslag [1, p. 64]), so that we can assume we are
dealing only with locally finite rings.

Note added in proof. Saharon Shelah has indicated an answer.
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