Graded Homework X .

Due Friday, November 17.

1. Compute the surface integral $\iint_{S} x^{2} y^{2} z d \sigma$, where S is the portion of the cone of equation $x^{2}+y^{2}=z^{2}$ where $0 \leq z \leq 1$.
2. Compute the surface integral $\iint_{S} x z d \sigma$, where S is the surface parameterized by $\left\{\begin{array}{l}x=r \cos (\theta) \\ y=r \sin (\theta) \\ z=\theta\end{array} \quad 0 \leq r \leq R\right.$, $0 \leq \theta \leq \pi$.
3. Compute the surface integral $\iint_{S}\left(x+y^{2}+z^{3}\right) d \sigma$, where S is the boundary of the cube given by the inequalities $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
4. Let H be the portion of hyperboloid parameterized by $\left\{\begin{array}{l}x=u \cos (v)-\sin (v) \\ y=u \sin (v)+\cos (v) \\ z=u\end{array}, 0 \leq u \leq 1,0 \leq v \leq 2 \pi\right.$.
(a) Show that the surface area of H is equal to $2 \pi \int_{0}^{1} \sqrt{2 u^{2}+1} d u$.
(b) Define $\operatorname{sh}(t)=\frac{e^{t}-e^{-t}}{2}, \operatorname{ch}(t)=\frac{e^{t}+e^{-t}}{2}$. Show that $1+\operatorname{sh}^{2}(t)=\operatorname{ch}^{2}(t)$. Use this to compute the area of H.
