UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Math 380

Fall 2006 Group G1

Graded Homework V Due Friday, October 13.

1. Compute the derivative of the function $x \mapsto \tan^{-1}(x) = \arctan(x)$; use it to compute $\int_{a}^{b} \frac{dx}{x^{2}+1}$, where $a, b \in \mathbb{R}$ (in terms of $\arctan(a), \arctan(b)$), then to compute $\int_0^1 \frac{dx}{x^2 + x + 1}$. With a change of variables, compute the integral $\int_0^{\frac{\pi}{2}} \frac{\cos(x)dx}{2-\cos^2(x)+\sin(x)}$.

2. Compute the area of the domain D in the two following cases :

(a) D is in the quarter-plane x ≥ 0, y ≥ 0 and is delimited by the curves y² = x³, y = x.
(b) D is the set of all x, y ≥ 0 such that x^{2/3} + y^{2/3} ≤ 1.
For the second one, you may begin with the change of coordinates u = x^{1/3}, v = y^{1/3}; you may also use the

fact that $\int_{0}^{\frac{1}{2}} \sin^{2}(\theta) \cos^{2}(\theta) d\theta = \frac{\pi}{16}$ (Proving this equality will give some extra credit on the homework).

3. Compute the integral $\iint_D f(x,y) dx dy$ in the following cases : (a) $f(x,y) = e^{x+y}$ and $D = \{(x,y) \in \mathbb{R}^2 : |x-y| \le 1, |x+y| < 1\}$. (b) $f(x,y) = x^2 - 2y$, D is the interior of the ellipse of equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (c) $f(x,y) = x^2 + y^2 - 2y$, D is the circle of center (1, 1) and radius 1. (d) f(x,y) = xy, D is the domain of all (x,y) such that $x, y \ge 0$ and $x^2 + \frac{y^2}{4} \le 1$. (For (a), (b) and (c), you should use a change of variables adapted to the domain you are integrating on)