Graded Homework V

Due Friday, October 13.

1. Compute the derivative of the function $x \mapsto \tan ^{-1}(x)=\arctan (x)$; use it to compute $\int_{a}^{b} \frac{d x}{x^{2}+1}$, where $a, b \in \mathbb{R}$ (in terms of $\arctan (a), \arctan (b))$, then to compute $\int_{0}^{1} \frac{d x}{x^{2}+x+1}$.
With a change of variables, compute the integral $\int_{0}^{\frac{\pi}{2}} \frac{\cos (x) d x}{2-\cos ^{2}(x)+\sin (x)}$.
2. Compute the area of the domain D in the two following cases :
(a) D is in the quarter-plane $x \geq 0, y \geq 0$ and is delimited by the curves $y^{2}=x^{3}, y=x$.
(b) D is the set of all $x, y \geq 0$ such that $x^{2 / 3}+y^{2 / 3} \leq 1$.

For the second one, you may begin with the change of coordinates $u=x^{\frac{1}{3}}, v=y^{1 / 3}$; you may also use the fact that $\int_{0}^{\frac{\pi}{2}} \sin ^{2}(\theta) \cos ^{2}(\theta) d \theta=\frac{\pi}{16}$ (Proving this equality will give some extra credit on the homework).
3. Compute the integral $\iint_{D} f(x, y) d x d y$ in the following cases :
(a) $f(x, y)=e^{x+y}$ and $D=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leq 1,|x+y|<1\right\}$.
(b) $f(x, y)=x^{2}-2 y, D$ is the interior of the ellipse of equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) $f(x, y)=x^{2}+y^{2}-2 y, D$ is the circle of center $(1,1)$ and radius 1 .
(d) $f(x, y)=x y, D$ is the domain of all (x, y) such that $x, y \geq 0$ and $x^{2}+\frac{y^{2}}{4} \leq 1$.
(For (a), (b) and (c), you should use a change of variables adapted to the domain you are integrating on)

