UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Fall 2006
Math 380 Group G1

Graded Homework VII .
Due Friday, November 3.

1. Use two different methods to compute the circulation of the vector field V' on the curve C, in the following
cases :

(a) V(z,y) = (xy,z — y), C is the triangle with vertices (0,0), (0,3), (1,—1) and is oriented clockwise;

(b) V(z,y) = (zy,e¥), and R is the circle of center (0,0) and radius 3, oriented counterclockwise.
Correction. (a) There are three line integrals to compute. The first is given by the parameterization z(t) = 0,
y(t) =3t,0 <t <1;thesecondisz(t) =t, y(t) =3—4¢t,0<t <1;and the thirdis z(¢t) =1—¢, y(t) =¢t—1,
0 <t <1 (Of course, there are other possible parameterizations!).

1
The first line integral is then / (0+ (0 —3¢).3)dt = —g ; the second is
0

! ! 4 17 13
/ (t(3—4t).1+ (t — (3 —4t)).(—4))dt = / (—4t® — 17t +12)dt = 375 T 12 = 5
0 0
1 1
1 4
Finally, the third integral is/ (A=t).t=1).(-D)+@2-2t)1)dt = | (*—4t+3)= 3~ 2+3= 3 Thus,
0 0
9 13 4
we eventually obtain that I = / w2y dr + (v —y)dy = —3 + 5 + 3= -1

c
Green’s theorem tells us that (denoting by T the interior of the triangle)

= —//T (l—x)dxdy:—/:_o (/yiju—x)dy)dx: —/061_0(1—95)((3—433)—(—33))@, s

1:/ (1-2z)(—32°+6x—3)de=-1+3-3=-1.
0

(b) First, using a line integral, we have, using the usual parameterization for a circle :

2 . 2m )
J = /C rydr+eYdy = /0 ((9 cos(t) sin(t))(— cos(t)+e® sin(t) (3 cos(t)))dt = /0 (=9 cos®(t) sin(t)+3 cos(t)e Sm(t))dt

2m
J= {3 cos3(t) + €3 Sin(t)} =0
0
Denoting by D the disk delimited by C, Green’s theorem gives

JZ//D(O—y)d;vdy:—//Dyda:dy:O.

2. For each of the following "differential forms" P(x,y)dx+Q(z,y)dy, determine whether there exists a function
0 0
f such that P(z,y)dz + Q(z,y)dy = 8—fdx + a—fdy; is it exists, find such a function.
€T Y
(a) P(z,y) =" +y, Qz,y) = 2y.
(b) P(z,y) = 2y?, Q(z,y) = 2%y.
(c) Px,y) = 2zycos(z®y) + 1, Q(z,y) = 2° cos(zy) + eV

o°P 0

Correction (a) One has — =1, and — = 0; thus, — # —Q, and this shows that there exists no function

dy Ox dy Ox
f such that P(z,y)dz + Q(x,y)dy = %dx + ﬁd

'Y yy)ay = or Ay Y-
oP 0 2y2

(b) This time one can see that o =2xy = a—f s flxy) = TY s easily seen to be such that

0 0
P(z,y)dz + Q(z,y)dy = 9 4o + idy-

or dy



oprP 0
(c) This time we see that i 2z cos(22y) — 223y sin(z?)y = 8—Q, so we know that there exists a function
Y x
f with the desired property. To find it, we integrate with respect to = with y constant, and with respect
to y with o constant ; this yields f(z,y) = sin(2?y) + = + g(y), and f(z,y) = sin(z?y) + e¥ + h(z); thus
f(z,y) = sin(x?y) + z + €Y is a solution, which is easily verified by computing the partial derivatives of f.
Remark. Pay attention to the fact that in (b) and (c¢) f is not the only solution; any function of the form

f(z,y) + ¢, where ¢ is a constant, is also a solution.

3. (a) Prove that the integral / (6x + 2y)dx + (6y + 22)dy has the same value whenever v is a positively
oriented curve from A = (0,0) tg B = (1,1). Check this by computing this integral in the case where v is a
straight line segment, and v is an arc of the parabola of equation y = 22.

(b) Find a function f such that its gradient at the point (z,y) is equal to (6x + 2y, 6y + 2x) ; explain why this
function enables one to compute easily the integrals of the preceding question.

Correction. (a) The functions P(z,y) = 6z + 2y and Q(z,y) = 6y + 2x are continuously differentiable in R?

P
and 86— =2= Z—Q Thus the integral [ Pdx + Qdy is independent of path.
Y z

For the first example, a parameterization of the curve 1 is x(t) = y(t) = ¢, 0 < ¢t < 1, so one obtains
1
/ (6x 4 2y)dx + (6y + 2z)dy = / ((6t 4 2¢)1 + 6t + 2t).1)dt = 8.
- t=0

For the second example, the curve 7o may be parameterized by setting x =t, y =2, 0 < ¢t < 1, so one gets
1 1
/ (62 + 2y)dz + (6y + 2x)dy = / ((6t + 2t*)1 + (6t> + 2t).2t)dt = / (12¢% 4 6t> 4+ 6t)dt =3+2+3=38..
71 t=0 0

(b) To find f , one first considers y as a constant, and computes an integral in terms of z, which gives that
f(x,y) = 322 + 2yzx + g(y), where g is some function of y; doing the same for y, one obtains f(x,y) =
3y? + 2xy + h(z). These two identities indicate that the function f(x,y) = 3y? + 2xy + 3y? should work, and
a direct verification shows that it is indeed the case. of

Since the line integrals that we computed above are of the form / g—fdx + a—dy (where the line integral is
x Y

computed on some curve between (0,0) and (1,1), their value is f(1,1) — £(0,0) =3+2+3 —0=8.

4. A cardioid is a curve of equation (in polar coordinates) r = (1 + cos(f)), 0 < 8 < 27. Compute the area of
the domain delimited by a cardioid ; for this, use € as a parameter, and use trigonometric relations to show
that x(0)y'(0) — y(0)z'(0) = 1 + 2 cos(f) + cos?(#) (why does this help ?).

Correction. Denoting the cardioid, oriented counterclockwise, by -, Green’s theorem gives that the area A

of the domain delimited by the cardioid is such that 2A = | xdy — ydz. Since we are given equations in polar

vy
coordinates, our parameterization here is = r cos(f) = (1 + cos(f)) cos(d), and y = (1 + cos(f)) sin(d). Thus,
2’ (0) = —sin(h) — 2sin(f) cos(), and y'(A) = cos() — sin?(6) + cos?(#). This gives

z(0)y'(0) = cos?(0) + 2 cos®(A) — sin?(0) cos() + cos*(0) — cos?(6) sin*(f) , and
y(0)2' () = —sin?(0) — 2sin?(#) cos(6) — sin?(#) cos(6) — 2sin?(#) cos?(6) .
This yields
z(0)y'(0) — 4/ (0)z(0) = 1 + 2cos(8)(cos?(0) + sin?(8)) + cos? () (sin*(#) + sin®()) = 1 + 2cos(8) + cos?(6) .
We then get that

27
2A = / (14 2cos(f) + cos?(0))df = 2w + 0+ 7 = 37 .
9=0

3
Eventually, we obtain that the area of the cardioid is g



