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Math 380 Group G1

Graded Homework VII .

Due Friday, November 3.

1. Use two di�erent methods to compute the circulation of the vector �eld V on the curve C, in the following
cases :
(a) V (x, y) = (xy, x− y), C is the triangle with vertices (0, 0), (0, 3), (1,−1) and is oriented clockwise ;
(b) V (x, y) = (xy, ey), and R is the circle of center (0, 0) and radius 3, oriented counterclockwise.
Correction. (a) There are three line integrals to compute. The �rst is given by the parameterization x(t) = 0,
y(t) = 3t, 0 ≤ t ≤ 1 ; the second is x(t) = t, y(t) = 3− 4t, 0 ≤ t ≤ 1 ; and the third is x(t) = 1− t, y(t) = t− 1,
0 ≤ t ≤ 1 (Of course, there are other possible parameterizations !).

The �rst line integral is then

∫ 1

0

(
0 + (0− 3t).3

)
dt = −9

2
; the second is∫ 1

0

(
t(3− 4t).1 + (t− (3− 4t)).(−4)

)
dt =

∫ 1

0

(
− 4t2 − 17t + 12

)
dt = −4

3
− 17

2
+ 12 =

13
6
.

Finally, the third integral is

∫ 1

0

(
(1− t).(t− 1).(−1) + (2− 2t).1

)
dt =

∫ 1

0

(
t2 − 4t + 3

)
=

1
3
− 2 + 3 =

4
3
. Thus,

we eventually obtain that I =
∫

C

x2y dx + (x− y) dy = −9
2

+
13
6

+
4
3

= −1.

Green's theorem tells us that (denoting by T the interior of the triangle)

I = −
∫∫

T

(
1− x

)
dxdy = −

∫ 1

x=0

( ∫ 3−4x

y=−x

(1− x)dy

)
dx = −

∫ 1

x=0

(1− x)
(
(3− 4x)− (−x)

)
dx , so

I =
∫ 1

0

(1− x)
(
− 3x2 + 6x− 3

)
dx = −1 + 3− 3 = −1 .

(b) First, using a line integral, we have, using the usual parameterization for a circle :

J =
∫

C

xydx+eydy =
∫ 2π

0

(
(9 cos(t) sin(t))(− cos(t)+e3 sin(t)(3 cos(t))

)
dt =

∫ 2π

0

(
−9 cos2(t) sin(t)+3 cos(t)e3 sin(t)

)
dt

J =
[
3 cos3(t) + e3 sin(t)

]2π

0

= 0

Denoting by D the disk delimited by C, Green's theorem gives

J =
∫∫

D

(
0− y

)
dxdy = −

∫∫
D

ydxdy = 0 .

2. For each of the following "di�erential forms" P (x, y)dx+Q(x, y)dy, determine whether there exists a function

f such that P (x, y)dx + Q(x, y)dy =
∂f

∂x
dx +

∂f

∂y
dy ; is it exists, �nd such a function.

(a) P (x, y) = x2 + y, Q(x, y) = 2y.
(b) P (x, y) = xy2, Q(x, y) = x2y.
(c) P (x, y) = 2xy cos(x2y) + 1, Q(x, y) = x2 cos(x2y) + ey

Correction (a) One has
∂P

∂y
= 1, and

∂Q

∂x
= 0 ; thus,

∂P

∂y
6= ∂Q

∂x
, and this shows that there exists no function

f such that P (x, y)dx + Q(x, y)dy =
∂f

∂x
dx +

∂f

∂y
dy.

(b) This time one can see that
∂P

∂y
= 2xy =

∂Q

∂x
; f(x, y) =

x2y2

2
is easily seen to be such that

P (x, y)dx + Q(x, y)dy =
∂f

∂x
dx +

∂f

∂y
dy.



(c) This time we see that
∂P

∂y
= 2x cos(x2y)− 2x3y sin(x2)y =

∂Q

∂x
, so we know that there exists a function

f with the desired property. To �nd it, we integrate with respect to x with y constant, and with respect
to y with x constant ; this yields f(x, y) = sin(x2y) + x + g(y), and f(x, y) = sin(x2y) + ey + h(x) ; thus
f(x, y) = sin(x2y) + x + ey is a solution, which is easily veri�ed by computing the partial derivatives of f .
Remark. Pay attention to the fact that in (b) and (c) f is not the only solution ; any function of the form
f(x, y) + c, where c is a constant, is also a solution.

3. (a) Prove that the integral

∫
γ

(6x + 2y)dx + (6y + 2x)dy has the same value whenever γ is a positively

oriented curve from A = (0, 0) to B = (1, 1). Check this by computing this integral in the case where γ is a
straight line segment, and γ is an arc of the parabola of equation y = x2.
(b) Find a function f such that its gradient at the point (x, y) is equal to (6x + 2y, 6y + 2x) ; explain why this
function enables one to compute easily the integrals of the preceding question.
Correction. (a) The functions P (x, y) = 6x + 2y and Q(x, y) = 6y + 2x are continuously di�erentiable in R2

and
∂P

∂y
= 2 =

∂Q

∂x
. Thus the integral

∫
Pdx + Qdy is independent of path.

For the �rst example, a parameterization of the curve γ1 is x(t) = y(t) = t, 0 ≤ t ≤ 1, so one obtains∫
γ1

(6x + 2y)dx + (6y + 2x)dy =
∫ 1

t=0

(
(6t + 2t)1 + 6t + 2t).1

)
dt = 8.

For the second example, the curve γ2 may be parameterized by setting x = t, y = t2, 0 ≤ t ≤ 1, so one gets∫
γ1

(6x + 2y)dx + (6y + 2x)dy =
∫ 1

t=0

(
(6t + 2t2)1 + (6t2 + 2t).2t

)
dt =

∫ 1

0

(
12t3 + 6t2 + 6t

)
dt = 3 + 2 + 3 = 8 .

(b) To �nd f , one �rst considers y as a constant, and computes an integral in terms of x, which gives that
f(x, y) = 3x2 + 2yx + g(y), where g is some function of y ; doing the same for y, one obtains f(x, y) =
3y2 + 2xy + h(x). These two identities indicate that the function f(x, y) = 3y2 + 2xy + 3y2 should work, and
a direct veri�cation shows that it is indeed the case.

Since the line integrals that we computed above are of the form

∫
∂f

∂x
dx +

∂f

∂y
dy (where the line integral is

computed on some curve between (0, 0) and (1, 1), their value is f(1, 1)− f(0, 0) = 3 + 2 + 3− 0 = 8.

4. A cardioid is a curve of equation (in polar coordinates) r = (1 + cos(θ)), 0 ≤ θ ≤ 2π. Compute the area of
the domain delimited by a cardioid ; for this, use θ as a parameter, and use trigonometric relations to show
that x(θ)y′(θ)− y(θ)x′(θ) = 1 + 2 cos(θ) + cos2(θ) (why does this help ?).
Correction. Denoting the cardioid, oriented counterclockwise, by γ, Green's theorem gives that the area A

of the domain delimited by the cardioid is such that 2A =
∫

γ

xdy − ydx. Since we are given equations in polar

coordinates, our parameterization here is x = r cos(θ) = (1 + cos(θ)) cos(θ), and y = (1 + cos(θ)) sin(θ). Thus,
x′(θ) = − sin(θ)− 2 sin(θ) cos(θ), and y′(θ) = cos(θ)− sin2(θ) + cos2(θ). This gives

x(θ)y′(θ) = cos2(θ) + 2 cos3(θ)− sin2(θ) cos(θ) + cos4(θ)− cos2(θ) sin2(θ) , and

y(θ)x′(θ) = − sin2(θ)− 2 sin2(θ) cos(θ)− sin2(θ) cos(θ)− 2 sin2(θ) cos2(θ) .

This yields

x(θ)y′(θ)− y′(θ)x(θ) = 1 + 2 cos(θ)(cos2(θ) + sin2(θ)) + cos2(θ)(sin2(θ) + sin2(θ)) = 1 + 2 cos(θ) + cos2(θ) .

We then get that

2A =
∫ 2π

θ=0

(1 + 2 cos(θ) + cos2(θ))dθ = 2π + 0 + π = 3π .

Eventually, we obtain that the area of the cardioid is
3π

2
.


