Graded Homework VII .

Due Friday, November 3.

1. Use two different methods to compute the circulation of the vector field V on the curve C, in the following cases :
(a) $V(x, y)=(x y, x-y), C$ is the triangle with vertices $(0,0),(0,3),(1,-1)$ and is oriented clockwise ;
(b) $V(x, y)=\left(x y, e^{y}\right)$, and R is the circle of center $(0,0)$ and radius 3 , oriented counterclockwise.

Correction. (a) There are three line integrals to compute. The first is given by the parameterization $x(t)=0$, $y(t)=3 t, 0 \leq t \leq 1$; the second is $x(t)=t, y(t)=3-4 t, 0 \leq t \leq 1$; and the third is $x(t)=1-t, y(t)=t-1$, $0 \leq t \leq 1$ (Of course, there are other possible parameterizations!).
The first line integral is then $\int_{0}^{1}(0+(0-3 t) .3) d t=-\frac{9}{2}$; the second is
$\int_{0}^{1}(t(3-4 t) \cdot 1+(t-(3-4 t)) \cdot(-4)) d t=\int_{0}^{1}\left(-4 t^{2}-17 t+12\right) d t=-\frac{4}{3}-\frac{17}{2}+12=\frac{13}{6}$.
Finally, the third integral is $\int_{0}^{1}((1-t) \cdot(t-1) \cdot(-1)+(2-2 t) \cdot 1) d t=\int_{0}^{1}\left(t^{2}-4 t+3\right)=\frac{1}{3}-2+3=\frac{4}{3}$. Thus, we eventually obtain that $I=\int_{C} x^{2} y d x+(x-y) d y=-\frac{9}{2}+\frac{13}{6}+\frac{4}{3}=-1$.
Green's theorem tells us that (denoting by T the interior of the triangle)

$$
\begin{aligned}
& I=-\iint_{T}(1-x) d x d y=-\int_{x=0}^{1}\left(\int_{y=-x}^{3-4 x}(1-x) d y\right) d x=-\int_{x=0}^{1}(1-x)((3-4 x)-(-x)) d x, \text { so } \\
& I=\int_{0}^{1}(1-x)\left(-3 x^{2}+6 x-3\right) d x=-1+3-3=-1
\end{aligned}
$$

(b) First, using a line integral, we have, using the usual parameterization for a circle :

$$
\begin{gathered}
J=\int_{C} x y d x+e^{y} d y=\int_{0}^{2 \pi}\left((9 \cos (t) \sin (t))\left(-\cos (t)+e^{3 \sin (t)}(3 \cos (t))\right) d t=\int_{0}^{2 \pi}\left(-9 \cos ^{2}(t) \sin (t)+3 \cos (t) e^{3 \sin (t)}\right) d t\right. \\
J=\left[3 \cos ^{3}(t)+e^{3 \sin (t)}\right]_{0}^{2 \pi}=0
\end{gathered}
$$

Denoting by D the disk delimited by C, Green's theorem gives

$$
J=\iint_{D}(0-y) d x d y=-\iint_{D} y d x d y=0 .
$$

2. For each of the following "differential forms" $P(x, y) d x+Q(x, y) d y$, determine whether there exists a function f such that $P(x, y) d x+Q(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$; is it exists, find such a function.
(a) $P(x, y)=x^{2}+y, Q(x, y)=2 y$.
(b) $P(x, y)=x y^{2}, Q(x, y)=x^{2} y$.
(c) $P(x, y)=2 x y \cos \left(x^{2} y\right)+1, Q(x, y)=x^{2} \cos \left(x^{2} y\right)+e^{y}$

Correction (a) One has $\frac{\partial P}{\partial y}=1$, and $\frac{\partial Q}{\partial x}=0$; thus, $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, and this shows that there exists no function f such that $P(x, y) d x+Q(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$.
(b) This time one can see that $\frac{\partial P}{\partial y}=2 x y=\frac{\partial Q}{\partial x} ; f(x, y)=\frac{x^{2} y^{2}}{2}$ is easily seen to be such that $P(x, y) d x+Q(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$.
(c) This time we see that $\frac{\partial P}{\partial y}=2 x \cos (x 2 y)-2 x^{3} y \sin \left(x^{2}\right) y=\frac{\partial Q}{\partial x}$, so we know that there exists a function f with the desired property. To find it, we integrate with respect to x with y constant, and with respect to y with x constant; this yields $f(x, y)=\sin \left(x^{2} y\right)+x+g(y)$, and $f(x, y)=\sin \left(x^{2} y\right)+e^{y}+h(x)$; thus $f(x, y)=\sin \left(x^{2} y\right)+x+e^{y}$ is a solution, which is easily verified by computing the partial derivatives of f. Remark. Pay attention to the fact that in (b) and (c) f is not the only solution; any function of the form $f(x, y)+c$, where c is a constant, is also a solution.
3. (a) Prove that the integral $\int_{\gamma}(6 x+2 y) d x+(6 y+2 x) d y$ has the same value whenever γ is a positively oriented curve from $A=(0,0)$ to $B=(1,1)$. Check this by computing this integral in the case where γ is a straight line segment, and γ is an arc of the parabola of equation $y=x^{2}$.
(b) Find a function f such that its gradient at the point (x, y) is equal to $(6 x+2 y, 6 y+2 x)$; explain why this function enables one to compute easily the integrals of the preceding question.
Correction. (a) The functions $P(x, y)=6 x+2 y$ and $Q(x, y)=6 y+2 x$ are continuously differentiable in \mathbb{R}^{2} and $\frac{\partial P}{\partial y}=2=\frac{\partial Q}{\partial x}$. Thus the integral $\int P d x+Q d y$ is independent of path.
For the first example, a parameterization of the curve γ_{1} is $x(t)=y(t)=t, 0 \leq t \leq 1$, so one obtains $\left.\int_{\gamma_{1}}(6 x+2 y) d x+(6 y+2 x) d y=\int_{t=0}^{1}((6 t+2 t) 1+6 t+2 t) \cdot 1\right) d t=8$
For the second example, the curve γ_{2} may be parameterized by setting $x=t, y=t^{2}, 0 \leq t \leq 1$, so one gets
$\int_{\gamma_{1}}(6 x+2 y) d x+(6 y+2 x) d y=\int_{t=0}^{1}\left(\left(6 t+2 t^{2}\right) 1+\left(6 t^{2}+2 t\right) \cdot 2 t\right) d t=\int_{0}^{1}\left(12 t^{3}+6 t^{2}+6 t\right) d t=3+2+3=8$.
(b) To find f, one first considers y as a constant, and computes an integral in terms of x, which gives that $f(x, y)=3 x^{2}+2 y x+g(y)$, where g is some function of y; doing the same for y, one obtains $f(x, y)=$ $3 y^{2}+2 x y+h(x)$. These two identities indicate that the function $f(x, y)=3 y^{2}+2 x y+3 y^{2}$ should work, and a direct verification shows that it is indeed the case.
Since the line integrals that we computed above are of the form $\int \frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$ (where the line integral is computed on some curve between $(0,0)$ and $(1,1)$, their value is $f(1,1)-f(0,0)=3+2+3-0=8$.
4. A cardioid is a curve of equation (in polar coordinates) $r=(1+\cos (\theta)), 0 \leq \theta \leq 2 \pi$. Compute the area of the domain delimited by a cardioid; for this, use θ as a parameter, and use trigonometric relations to show that $x(\theta) y^{\prime}(\theta)-y(\theta) x^{\prime}(\theta)=1+2 \cos (\theta)+\cos ^{2}(\theta)$ (why does this help?).
Correction. Denoting the cardioid, oriented counterclockwise, by γ, Green's theorem gives that the area A of the domain delimited by the cardioid is such that $2 A=\int_{\gamma} x d y-y d x$. Since we are given equations in polar coordinates, our parameterization here is $x=r \cos (\theta)=(1+\cos (\theta)) \cos (\theta)$, and $y=(1+\cos (\theta)) \sin (\theta)$. Thus, $x^{\prime}(\theta)=-\sin (\theta)-2 \sin (\theta) \cos (\theta)$, and $y^{\prime}(\theta)=\cos (\theta)-\sin ^{2}(\theta)+\cos ^{2}(\theta)$. This gives

$$
\begin{gathered}
x(\theta) y^{\prime}(\theta)=\cos ^{2}(\theta)+2 \cos ^{3}(\theta)-\sin ^{2}(\theta) \cos (\theta)+\cos ^{4}(\theta)-\cos ^{2}(\theta) \sin ^{2}(\theta), \text { and } \\
y(\theta) x^{\prime}(\theta)=-\sin ^{2}(\theta)-2 \sin ^{2}(\theta) \cos (\theta)-\sin ^{2}(\theta) \cos (\theta)-2 \sin ^{2}(\theta) \cos ^{2}(\theta) .
\end{gathered}
$$

This yields

$$
x(\theta) y^{\prime}(\theta)-y^{\prime}(\theta) x(\theta)=1+2 \cos (\theta)\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)+\cos ^{2}(\theta)\left(\sin ^{2}(\theta)+\sin ^{2}(\theta)\right)=1+2 \cos (\theta)+\cos ^{2}(\theta) .
$$

We then get that

$$
2 A=\int_{\theta=0}^{2 \pi}\left(1+2 \cos (\theta)+\cos ^{2}(\theta)\right) d \theta=2 \pi+0+\pi=3 \pi
$$

Eventually, we obtain that the area of the cardioid is $\frac{3 \pi}{2}$.

