University of Illinois at Urbana-Champaign Math 444 Fall 2006 Group E13

Graded Homework X. Due Friday, November 17.

1.(a) Define a function f on \mathbb{R} by setting $f(x) = \begin{cases} f(x) = x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{else} \end{cases}$. Is this function continuous on \mathbb{R} ? (you may use without proof the fact the the function $x \mapsto \sin(x)$ is continuous). (b) Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 1-x & \text{else} \end{cases}$. At which points in \mathbb{R} is g continuous?

2. Let f: [a, b] → [a, b] (a < b) be a function such that |f(x) - f(x')| < |x - x'| for all x ≠ x' ∈ [a, b].
(a) Using the ε, δ definition of continuity, show that f is continuous on [a, b].
(b) Prove that there exists a unique point x ∈ [a, b] such that f(x) = x (introduce a suitable auxiliary function).

3. Let $f: [0,1] \to [0,1]$ be a continuous function such that f(0) = f(1). Show that for all $n \in \mathbb{N}$ there exists $x \in [0, 1 - \frac{1}{n}]$ such that $f(x) = f(x + \frac{1}{n})$. (Hint : is it possible that f((k+1)/n) - f(k/n) keeps a constant sign for all $k = 0, \dots, n-1$?)

4.(a) Show that if f is a continuous function on a closed bounded interval [a, b] such that f(x) > 0 for all $x \in [a, b]$ then there exists m > 0 such that $f(x) \ge m$ for all $x \in [a, b]$. In the following, we pick two continuous functions f, g from $[0, 1] \to [0, 1]$ such that f(x) < g(x) for all $x \in [0, 1]$. (b) Show that there exists m > 0 such that f(x) + m < g(x) for all $x \in [0, 1]$. (c) Show that there exists M > 1 such that Mf(x) < g(x) for all $x \in [0, 1]$.

5. Let f be a function from \mathbb{R} to \mathbb{R} such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Recall that we proved in the first midterm that one has then f(q) = qf(1) for all $q \in \mathbb{Q}$. Use this to show that f(x) = xf(1) for all $x \in \mathbb{R}$.