Graded Homework X.

Due Friday, November 17.
1.(a) Define a function f on \mathbb{R} by setting $f(x)=\left\{\begin{array}{ll}f(x)=x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { else }\end{array}\right.$. Is this function continuous on \mathbb{R} ? (you may use without proof the fact the the function $x \mapsto \sin (x)$ is continuous).
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=\left\{\begin{array}{ll}x & \text { if } x \in \mathbb{Q} \\ 1-x & \text { else }\end{array}\right.$. At which points in \mathbb{R} is g continuous?
2. Let $f:[a, b] \rightarrow[a, b](a<b)$ be a function such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\left|x-x^{\prime}\right|$ for all $x \neq x^{\prime} \in[a, b]$.
(a) Using the ε, δ definition of continuity, show that f is continuous on $[a, b]$.
(b) Prove that there exists a unique point $x \in[a, b]$ such that $f(x)=x$ (introduce a suitable auxiiary function).
3. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f(0)=f(1)$.

Show that for all $n \in \mathbb{N}$ there exists $x \in\left[0,1-\frac{1}{n}\right]$ such that $f(x)=f\left(x+\frac{1}{n}\right)$.
(Hint : is it possible that $f((k+1) / n)-f(k / n)$ keeps a constant sign for all $k=0, \ldots, n-1$?)
4.(a) Show that if f is a continuous function on a closed bounded interval $[a, b]$ such that $f(x)>0$ for all $x \in[a, b]$ then there exists $m>0$ such that $f(x) \geq m$ for all $x \in[a, b]$.
In the following, we pick two continuous functions f, g from $[0,1] \rightarrow[0,1]$ such that $f(x)<g(x)$ for all $x \in[0,1]$.
(b) Show that there exists $m>0$ such that $f(x)+m<g(x)$ for all $x \in[0,1]$.
(c) Show that there exists $M>1$ such that $M f(x)<g(x)$ for all $x \in[0,1]$.
5. Let f be a function from \mathbb{R} to \mathbb{R} such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Recall that we proved in the first midterm that one has then $f(q)=q f(1)$ for all $q \in \mathbb{Q}$. Use this to show that $f(x)=x f(1)$ for all $x \in \mathbb{R}$.

