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Graded Homework II

Due Friday, September 15 .

1. Let f : N → R be de�ned by : f(1) = 1, f(2) = 2 and, for all n ≥ 2, f(n + 1) =

{
2f(n

2 ) + 1 if n is even

f(n− 1) + 2 if n is odd
.

Prove by induction that f(n) = n for all n.
Correction. Let P (n) denote the property "f(n) = n". Then P (1) is true, and P (2) is also true.
Assume now that n ≥ 2 is such that P (n) is true for all k ≤ n (strong induction). Then, if n is even, we

have that f(
n

2
) =

n

2
by our strong induction hypothesis, so that f(n + 1) = 2f(

n

2
) + 1 = n + 1. If n is odd,

then the fact that f(n− 1) = n− 1 implies that f(n + 1) = f(n− 1) + 2 = n + 1. In both cases, we see that
f(n + 1) = n + 1, so that P (n + 1) is true. The strong induction theorem enables us to conclude that P (n) is
true for all n ∈ N, i.e f(n) = n for all n ∈ N.
(Remark : as usual, if you want to prove this using classic induction rather than strong induction, you may
simply introduce the following property P ′(n) :"f(k) = k for all k ≤ n").

2. Let f : E → F be a function ; show that :
(a)

(
f is one-to-one

)
⇔

(
for all A,A′ ⊂ E, f(A) ∩ f(A′) = f(A ∩A′)

)
;

(b)
(
f is onto

)
⇔

(
for all B ⊂ F B = f(f−1(B))

)
.

Correction. (a) Assume that f is one-to-one ; by de�nition, we have, for all A,A′ ⊂ E, that f(A ∩ A′) =
{f(x) : x ∈ A∩A′} ⊂ f(A) = {f(x) : x ∈ A} (because A∩A′ ⊂ A). Similarly, we have f(A∩A′) ⊂ f(A′), so that
it is always true that f(A∩A′) ⊂ f(A)∩ f(A′). Thus, we simply have to prove that f(A)∩ f(A′) ⊂ f(A∩A′).
Let now x ∈ f(A) ∩ f(A′) : by de�nition, there exist a ∈ A and a′ ∈ A′ such that x = f(a) and x = f(a′).
Since f is one-to-one, we necessarily have a = a′, so that a belongs to both A and A′, and x ∈ f(A ∩ A′).
Therefore, f(A) ∩ f(A′) ⊂ f(A ∩ A′), and this is enough to �nish the proof of the left-to-right sense of the
implication. To go from right to left, assume that f(A) ∩ f(A′) = f(A ∩ A′) for all A,A′ ⊂ E, and pick
x 6= y ∈ E. Then {x} ∩ {y} = ∅, so our hypothesis implies that f({x}) ∩ f({y}) = ∅. Since f({x}) = {f(x)},
and f({y}) = {f(y)}, this means that f(x) 6= f(y), so that f is one-to-one. This concludes the proof of the
�rst equivalence.
(b) Notice that f(f−1(B)) = {f(x) : x ∈ E and f(x) ∈ B}, so one always has f(f−1(B)) ⊂ B. Assuming now
that f is onto, we need to prove that B ⊂ f(f−1(B)). For that, pick b ∈ B ; since f is onto, there exists z ∈ E
such that f(z) = b. In particular f(z) ∈ B, so z ∈ f−1(B) and b ∈ f(f−1(B)). We �nally obtain b ∈ f(f−1(B))
for all b ∈ B, which yields B ⊂ f(f−1(B)). This is enough to prove that B = f(f−1(B)) for all B ⊂ F if f is
onto.
To prove the converse, assume that B = f(f−1(B)) for all B ⊂ F , and pick z ∈ F . Then {z} = f(f−1({z})),
so in particular f−1(z) = {x : f(x) = z} is nonempty (otherwise its image by f would be the empty set) ; in
other words, there exists x such that f(x) = z, which proves that g is onto. This concludes the proof of the
second equivalence.

3. Let f : E → F be a function. Given A ⊂ E, B ⊂ F , are the following asertions true in general ? You have to
either prove the result or provide a counterexample, and explain your assertions in detail (using if necessary
the de�nition of a �nite set given in class).
(a) A is �nite ⇒ f(A) is �nite .
(b) f(A) is �nite ⇒ A is �nite.
(c) B is �nite ⇒ f−1(B) is �nite.
(d) f−1(B) is �nite ⇒ B is �nite .
Correction. (a) is true : stating that A is �nite means that there is a bijection ϕ from {1, . . . ,m} onto A for



some m ∈ N. Then f ◦ ϕ is a surjection from {1, . . . ,m} onto f(A), which means that f(A) is �nite.
(b) is false : simply consider E = F = N, A = N, and f(x) = 1 for all x. Then f(N) = {1} is �nite, but we
saw in class that N is in�nite.
(c) is false, as is shown by the same counterexample as for (b) : with the notations of (b), we have f−1({1}) = N.
(d) is again false : consider the same function f as above, and B = {n ∈ N : n ≥ 2}. Then B is in�nite, but
f−1(B) = ∅, so f−1(B) is �nite.

4. Let x, y ∈ R. Prove that max(x, y) =
x + y + |x− y|

2
, and min(x, y) =

x + y − |x− y|
2

.

Correction. If x ≥ y, then max(x, y) = x and
x + y + |x− y|

2
=

x + y + x− y

2
= x, so in that case we do

have max(x, y) =
x + y + |x− y|

2
. If x < y, then max(x, y) = y, and

x + y + |x− y|
2

=
x + y − x + y

2
= y, so

again we obtain max(x, y) =
x + y + |x− y|

2
. Since necessarily one of the assertions "x ≥ y" and "x < y"

holds, this is enough to prove the result.

Similarly, if x ≥ y then
x + y − |x− y|

2
= y = min(x, y), and if x < y then

x + y − |x− y|
2

= x = min(x, y), so
we see that the second statement is also true.

5. Prove that, for all a, b ∈ R, one has |a− b|+ |a + b| ≥ |a|+ |b|.
Correction. To prove this, as usual with statements involving the absolute value, we break the proof into
subcases :
(a) a − b ≥ 0 and a + b ≥ 0. Then |a − b| + |a + b| = a − b + a + b = 2a ; but we know that we have both
a ≥ b (because a− b ≥ 0) and a ≥ −b (because a + b ≥ 0), so that a ≥ |b|. This gives us that a = |a| (because
a ≥ |b| ≥ 0), and 2a = a + a ≥ |a|+ |b|, so �nally we obtain |a− b|+ |a + b| ≥ |a|+ |b|.
(b) a− b ≥ 0 and a+ b < 0. Then |a− b|+ |a+ b| = a− b−a− b = −2b. We have this time a < −b, so knowing
that a ≥ b yields −b > b, in other words b < 0, so−b = |b|. Notice that we have b ≤ a < −b, so that |a| ≤ |b|,
and thus |a− b|+ |a + b| = 2|b| ≥ |b|+ |a|.
(c) a− b < 0 and a + b ≤ 0. Setting a′ = −a, b′ = −b, one can see, since |x| = | − x| for any x ∈ R, that this
case may be reduced to case (a) (why ?).
(d) a− b < 0 and a + b > 0. For the same reason, this may be reduced to case (b).
Notice that there are several possible ways of breaking the proof into subcases ; for instance, here, one could
have used the cases "a and b are ≥ 0"," a ≥ 0 and b < 0", "a < 0 and b ≥ 0", and "a < 0 and b < 0". As
an exercise, you may try to write down the proof using these subcases, noticing that here again the two last
cases may be reduced to the �rst two.

6. Using only the axioms seen in class (or those in the textbook), prove that, for all reals a, b, c, d, the following
assertions are true :
• (a + b) + (c + d) = (a + d) + (c + b) .
• ab = 0 ⇒ a = 0 or b = 0).
Correction. To prove the �rst one, we may write that
(a + b) + (c + d) = a + (b + (c + d)) (associativity) = a + ((b + c) + d) (associativity again)

= a + (d + (c + b)) (commutativity, twice) = (a + d) + (c + b) (associativity).
For the second one, we use a proof by contradiction : assume that a, b are not 0 and ab = 0. Then �rst

recall that 0.x = x.0 = 0 for all x ∈ R (this was done in class) ; therefore,
1
a
(ab) = 0, but by associativity

of multiplication, and by de�nition of the inverse,
1
a
(ab) = (

1
a
a)b = 1.b = b. Thus this gives b = 0, which

contradicts our assumption.
(Notice that we could have avoided a proof by contradiction : we could have proved directly that (a 6= 0 and b 6=
0) ⇒ ab 6= 0, which is equivalent to the property of the reals we proved above).


