University of Illinois at Urbana-Champaign Fall 2006
Math 444 Group E13

Graded Homework 1I
Due Friday, September 15 .

2f(%)+1 if n is even
1.Let f: N — Rbedefined by : f(1) =1, f(2) = 2 and, for all n > 2, +1) = 2
f:N= ned by : /(1) /@) nd, foralln 22, f(n +1) {f(n1)+2 if n is odd
Prove by induction that f(n) = n for all n.
Correction. Let P(n) denote the property " f(n) = n". Then P(1) is true, and P(2) is also true.

Assume now that n > 2 is such that P(n) is true for all & < n (strong induction). Then, if n is even, we
have that f(g) = % by our strong induction hypothesis, so that f(n+ 1) = 2f(g) +1=n+1.1If nis odd,

then the fact that f(n —1) = n — 1 implies that f(n+1) = f(n— 1)+ 2 =n+ 1. In both cases, we see that
f(n+1) =n+1, so that P(n+ 1) is true. The strong induction theorem enables us to conclude that P(n) is
true for all n € N, i.e f(n) =n for all n € N.

(Remark : as usual, if you want to prove this using classic induction rather than strong induction, you may
simply introduce the following property P’(n) :"f(k) =k for all k < n").

2. Let f: E — F be a function ; show that :

(a) (f is one-to-one) « (for all A, A’ C E, f(A)N f(A") = f(ANA));

(b) (f is onto) < (forall BC F B = f(f~'(B))).

Correction. (a) Assume that f is one-to-one; by definition, we have, for all A, A’ C E, that f(AN A’) =
{f(x): x € ANA"} C f(A) ={f(z): x € A} (because ANA" C A). Similarly, we have f(ANA") C f(A’), so that
it is always true that f(ANA’") C f(A)N f(A’). Thus, we simply have to prove that f(A)N f(A") C f(ANA").
Let now z € f(A) N f(A’) : by definition, there exist « € A and o’ € A’ such that x = f(a) and = = f(d').
Since f is one-to-one, we necessarily have a = o/, so that a belongs to both A and A’, and z € f(AN A’).
Therefore, f(A) N f(A") C f(AN A"), and this is enough to finish the proof of the left-to-right sense of the
implication. To go from right to left, assume that f(A) N f(A") = f(AN A’) for all A, A’ C E, and pick
x #y € E. Then {z} N{y} = 0, so our hypothesis implies that f({z}) N f({y}) = 0. Since f({z}) = {f(z)},
and f({y}) = {f(y)}, this means that f(z) # f(y), so that f is one-to-one. This concludes the proof of the
first equivalence.

(b) Notice that f(f~*(B)) ={f(z): € E and f(x) € B}, so one always has f(f~!(B)) C B. Assuming now
that f is onto, we need to prove that B C f(f~!(B)). For that, pick b € B since f is onto, there exists z € F
such that f(z) = b. In particular f(z) € B,so z € f~1(B) and b € f(f~1(B)). We finally obtain b € f(f~1(B))
for all b € B, which yields B C f(f~1(B)). This is enough to prove that B = f(f~!(B)) for all B C F if f is
onto.

To prove the converse, assume that B = f(f~1(B)) for all B C F, and pick z € F. Then {z} = f(f~1({z})),
so in particular f~1(2) = {z: f(x) = 2} is nonempty (otherwise its image by f would be the empty set); in
other words, there exists  such that f(x) = z, which proves that g is onto. This concludes the proof of the
second equivalence.

3. Let f: E— F be a function. Given A C E, B C F, are the following asertions true in general 7 You have to
either prove the result or provide a counterexample, and explain your assertions in detail (using if necessary
the definition of a finite set given in class).

(a) Ais finite = f(A) is finite .

(b) f(A) is finite = A is finite.

(c) B is finite = f~1(B) is finite.

(d) f~1(B) is finite = B is finite .

Correction. (a) is true : stating that A is finite means that there is a bijection ¢ from {1,...,m} onto A for



some m € N. Then f o ¢ is a surjection from {1,...,m} onto f(A), which means that f(A) is finite.

(b) is false : simply consider E = FF =N, A =N, and f(z) = 1 for all z. Then f(N) = {1} is finite, but we
saw in class that N is infinite.

(c) is false, as is shown by the same counterexample as for (b) : with the notations of (b), we have f~1({1}) = N.
(d) is again false : consider the same function f as above, and B = {n € N: n > 2}. Then B is infinite, but
f7Y(B) =0, so f~1(B) is finite.
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4. Let x,y € R. Prove that max(x,y) = , and min(z,y) =

rtytle—yl _rtytar—y
. -

. If < y, then max(z,y) = y, and

Correction. If z > y, then max(z,y) = z and 5 =z, so in that case we do
rtytle—yl _r+y—az+y
2 B 2

. Since necessarily one of the assertions "z > y" and "z < y"

rT+y+lr—y
9

again we obtain max(z,y) =

have max(z,y) = =y, so

rT+y+lr—y

holds, this is enough to prove the result.
z+y—|z—yl z+y—|z—yl

Similarly, if x > y then 5

= y = min(z,y), and if z < y then = ¢ = min(z,y), so

we see that the second statement is also true.

5. Prove that, for all a,b € R, one has |a — b| + |a + b| > |a| + |b].

Correction. To prove this, as usual with statements involving the absolute value, we break the proof into
subcases :

(a) a—b>0and a+b>0. Then |a —b|+ |a+b =a—b+a+ b= 2a; but we know that we have both
a > b (because a — b > 0) and a > —b (because a + b > 0), so that a > |b|. This gives us that a = |a| (because
a > 1b| > 0), and 2a = a + a > |a| + |b], so finally we obtain |a — b| + |a + b] > |a| + |b].

(b)a—b>0and a+b < 0. Then |a—b|+|a+b| =a—b—a—b=—2b. We have this time a < —b, so knowing
that a > b yields —b > b, in other words b < 0, so—b = |b|. Notice that we have b < a < —b, so that |a|] < |b],
and thus |a — b| + |a + b| = 2[b| > |b| + |al.

(c) a—b<0and a+b<0. Setting ' = —a, b’ = —b, one can see, since |z| = | — z| for any = € R, that this
case may be reduced to case (a) (why?).

(d) @ —b < 0and a+ b > 0. For the same reason, this may be reduced to case (b).

Notice that there are several possible ways of breaking the proof into subcases ; for instance, here, one could
have used the cases "a and b are > 0"," a > 0 and b < 0", "a < 0 and b > 0", and "a < 0 and b < 0". As
an exercise, you may try to write down the proof using these subcases, noticing that here again the two last
cases may be reduced to the first two.

6. Using only the axioms seen in class (or those in the textbook), prove that, for all reals a, b, ¢, d, the following
assertions are true :
e (a+b)+(c+d)=(a+d)+(c+Db).
eab=0=a=0o0rb=0).
Correction. To prove the first one, we may write that
(a+0b)+ (c+d)=a+ (b+ (c+d)) (associativity) = a + ((b + ¢) + d) (associativity again)
=a+ (d+ (c+ b)) (commutativity, twice) = (a + d) + (c + b) (associativity).
For the second one, we use a proof by contradiction : assume that a, b are not 0 and ab = 0. Then first

1
recall that 0.z = 2.0 = 0 for all © € R (this was done in class); therefore, —(ab) = 0, but by associativity
a

1 1

of multiplication, and by definition of the inverse, —(ab) = (—a)b = 1.b = b. Thus this gives b = 0, which
a a

contradicts our assumption.

(Notice that we could have avoided a proof by contradiction : we could have proved directly that (a # 0 and b #
0) = ab # 0, which is equivalent to the property of the reals we proved above).



