University of Illinois at Urbana-Champaign Fall 2006
Math 444 Group E13

Graded Homework III
Correction of the exercises.

1. Compute, if they exist, sup(A4) and inf(A) in the following cases. In each case, state whether A admits a
maximal element, and do the same for minimal elements.
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Correction. Let A = {f n € N}. Then for all a € A we have a = — for some n € N, so that 0 < a < 1. This

shows that 0 is a lower bound of A and that 1 is a upper bound of A So both sup(A4) and inf(A) exist and,
since 1 € A, this immediately implies that sup(A) = 1. Furthermore, by the archimedean property of R, we

know that for any £ > 0 there exists n € N such that — < ¢, so that for any £ > 0 there exists some a € A

such that a < 0+ ¢. Since 0 is a lower bound of A thisré)roves that 0 = inf(A). Thus we see that A admits a
maximal element (because sup(A) € A) but no minimal element (because inf(A) ¢ A).

Let now A = {z € Q: 2% < 2}. We have a? < 2 for all a € A, so that —V2 <a<+V2forall a € A, and this
proves that both sup(A) and inf(A) exist.

To compute sup(A), recall that we saw in class that for any € R and any e > 0 there exists ¢ € Q such that
x —¢e < q < z. Applying this to z = /2, we see that for any € > 0 there exists a € A such that a > = — ¢}
since we saw that /2 is a upper bound of A this is enough to prove that sup(A) = /2. The same idea works
to prove that inf(A) = —/2; notice that one could also use the fact that A = —A, so that inf(A) = —sup(A)
(why ?), which shows inf(A4) = —/2. We saw in class that v/2 ¢ Q, so that sup(A) ¢ A, inf(A) ¢ A, and this
proves that A has neither a maximal element nor a minimal element.

1 1
Let this time A = {(-1)" 4+ —ineE N}. We have —1 < (-1)"+ <1+ - <2 for all n € N, so that —1 is a
lower bound of A, 2 is a upper bound of A, and both sup(A) and inf(A) exist. Let us now compute inf(A) :
1 1
for all € > 0, we have — < ¢ for all big enough n. Therefore, if n is odd, we have (—1)" + — < —1 + ¢ and this,
n

n
added to the fact that —1 is a lower bound of A, yields —1 = sup(A). Therefpre A doesn’t have a minimal

1 1 3
element (—1 ¢ A). To compute sup(A), notice that for all n > 2 we have (-1)" 4+ — < 1= 3= 3 Since the
n

. . . 3 .
element obtained for n = 1 is 0, this proves that a < % for all @ € A; and since 5 € A, this is enough to

3
conclude that sup(A) = 3 and that A has a maximal element.

2. Let A= {z? +4*: 2,y € R and zy = 1}. Prove that A is bounded below, but not bounded above. Compute
inf(A).
Correction. For all a € A, we have a = 22 + y? for some z,y € R. It implies that a > 0, so 0 is a lower bound
of A, which proves that A is bounded below.

1 1
To prove that A is not bounded above, notice that n? + 3 € A for all n € N (because n.— = 1 for all n), so

any upper bound v of A would have to satisfy v > n? for all n € N. We saw in class that N is not bounded
above, so this is impossible, and this proves that A has no upper bound.

1
To compute inf(A), let z and y be such that xy = 1. Then 2?2 +y? =22+ — . Looking at a picture of a
x

circle and a hyperbola (what is the link here ?), one can guess that inf(A) is attained for z = y = 1. To prove
this, notice that since the equation for A depends only on |z| and |y| one may assume that both are positive;
furthermore, one of |z| and |y| has to be bigger than 1 (why ?), so one may assume without loss of generality



that z > 1. We have then x = 1 + ¢, with £ > 0. Then one can write

1 1 1 (2e+e?)(1+2e+¢€%) +1 23 4 ¢*
2 2 2
T (1+¢) (14¢)? e T ey 2 14 2e+¢e2 142 +¢e2

Therefore 2 is a lower bound of A ; since one has 2 € A, this proves that inf(A) = 2.

3. Let A, B C R be bounded subsets of R. We define A+ B ={a+b:a€ A,be B}.

Show that sup(A), sup(B), sup(A + B) exist and that sup(A + B) = sup(A) + sup(B).

Correction.

By definition of a bounded set, there exist M, N such that a < M for all a € A, and b < N for all b € B.
This implies that a +b < M + N for all (a,b) € A x Bj; in other words, x < M + N for all € A+ B, which
proves that A+ B is bounded above, so that sup(A + B) exists. The fact that sup(4), sup(B) exist is a direct
consequence of the fact that A, B are bounded.

Notice that above we could have taken M = sup(A), N = sup(B), so that the preceeding inequality implies
that < sup(A) + sup(B) for all z € A+ B; in other words, sup(A) + sup(B) is an upper bound of A + B,
so that sup(A + B) < sup(A) + sup(B).

To show the converse inequality, we need to find, for all € > 0, some = € A+ B such that x > sup(A)+sup(B)—e¢.
We know that, for all § > 0, there exists a € A such that a > sup(A) — 4, and b > sup(B) — ¢ ; this implies

a+b > sup(A)+sup(B)—2¢. Thus, if we now let § = g, the above inequality becomes a+b > sup(A)+sup(B)—e.

Therefore there does exist, for all € > 0, some x € A + B such that > sup(A) + sup(B) — e. This concludes
the proof of the fact that sup(A + B) = sup(A4) + sup(B).

4. Let A C R be a bounded set containing at least two elements, and = € A.

(a) Prove that sup(A \ {z}) exists (remember that A\ {z} = {a € A: a # x}.

(b) Prove that if < sup(A \ {z}) then sup(A \ {z}) = sup(4). (c) Prove that if sup(A \ {z}) < sup(A) then
x = sup(A4).

Correction. (a) A\ {z} C A, so any upper bound of A is also an upper bound of A\ {z}); since A is bounded,
this proves that the set of upper bounds of A\ {x}) is nonempty, so that sup(A\{z})) exists (and is < sup(A)).
(b) The fact that A\ {z}) C A implies that sup(A \ {z})) < sup(A). To see that the converse inequality is
true in our case, let € > 0 be small enough that sup(A) — € > z. By definition of the sup, there exists a € A
such that a > sup(A) — e. This implies that a # z, so that we actually proved that for all € > 0 there is
a € A\ {z} such that a > sup(A4) — . This shows that sup(A4) — ¢ is not an upper bound of A \ {z}, so
sup(A) — e < sup(A \ {z}), for all € > 0, so that sup(A) < sup(A \ {z}. This concludes the proof of the fact
that sup(A) =sup(4\ {z}.

(c) Assume that sup(A \ {z}) < sup(4), and pick € > 0 small enough that sup(4) —e > sup(4 \ {z}). By
definition of the sup, there exists a € A such that a > sup(A)—e¢; in particular a > sup(A\{z}),soa &€ A\ {z}.
Since a € A, this implies that a = . Thus we obtained = > sup(A) — ¢ for all e. This implies that > sup(4),
and z < sup(A) is also true because z € A. We finally obtained x = sup(4).

5. Let A, B be bounded subsets of R. Prove that AUB is also bounded and that sup(AUB) = max(sup(A), sup(B)),
inf(A U B) = min(inf(A), inf(B)).

Correction. Let M (resp. M’) be an upper bound of A (resp B), and m (resp. m’) be a lower bound of A
(resp. M'). Then, for all z € A we have m < x < M, and for all x € B we have m’ < 2 < M’. Thus, for all
z € AU B we have min(m,m’) < z < max(M, M").

This shows that min(m,m’) is a lower bound for AU B, and max(M, M’) is an upper bound for AU B. Thus,
AU B is bounded. Notice that we could have take M = sup(A4), M’ = sup(B), m = inf(A), m' = inf(B) ; thus
the above reasoning implies that min(inf(A),inf(B)) is a lower bound of A U B, and max(sup(A4), sup(B)) is
an upper bound of AU B.

For any € > 0 there exist a € A and b € B such that ¢ < inf(4) + ¢ and b < inf(B) + ¢; therefore,
a < min(inf(A),inf(B)) 4+ € (if inf(4) < inf(B)) or b < min(inf(A),inf(B)) + ¢ (if inf(B) < inf(A4)). This
means that for any € > 0 there exists € AU B such that z < min(inf(A),inf(B)) +e. This, added to the fact
that min(inf(A),inf(B)) is a lower bound of AU B, implies that min(inf(A),inf(B)) = inf(A U B).

The proof for the least upper bound is similar.



