Graded Homework III

Correction of the exercises.

1. Compute, if they exist, $\sup (A)$ and $\inf (A)$ in the following cases. In each case, state whether A admits a maximal element, and do the same for minimal elements.
$A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} ; A=\left\{x \in \mathbb{Q}: x^{2}<2\right\} ; A=\left\{(-1)^{n}+\frac{1}{n}: n \in \mathbb{N}\right\}$.
Correction. Let $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Then for all $a \in A$ we have $a=\frac{1}{n}$ for some $n \in \mathbb{N}$, so that $0 \leq a \leq 1$. This shows that 0 is a lower bound of A and that 1 is a upper bound of A. So both $\sup (A)$ and $\inf (A)$ exist and, since $1 \in A$, this immediately implies that $\sup (A)=1$. Furthermore, by the archimedean property of \mathbb{R}, we know that for any $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that $\frac{1}{n} \leq \varepsilon$, so that for any $\varepsilon>0$ there exists some $a \in A$ such that $a \leq 0+\varepsilon$. Since 0 is a lower bound of A this proves that $0=\inf (A)$. Thus we see that A admits a maximal element (because $\sup (A) \in A$) but no minimal element (because $\inf (A) \notin A$).
Let now $A=\left\{x \in \mathbb{Q}: x^{2}<2\right\}$. We have $a^{2}<2$ for all $a \in A$, so that $-\sqrt{2} \leq a \leq \sqrt{2}$ for all $a \in A$, and this proves that both $\sup (A)$ and $\inf (A)$ exist.
To compute $\sup (A)$, recall that we saw in class that for any $x \in \mathbb{R}$ and any $\varepsilon>0$ there exists $q \in \mathbb{Q}$ such that $x-\varepsilon \leq q \leq x$. Applying this to $x=\sqrt{2}$, we see that for any $\varepsilon>0$ there exists $a \in A$ such that $a \geq x-\varepsilon$; since we saw that $\sqrt{2}$ is a upper bound of A this is enough to prove that $\sup (A)=\sqrt{2}$. The same idea works to prove that $\inf (A)=-\sqrt{2}$; notice that one could also use the fact that $A=-A$, so that $\inf (A)=-\sup (A)$ (why ?), which shows $\inf (A)=-\sqrt{2}$. We saw in class that $\sqrt{2} \notin \mathbb{Q}$, so that $\sup (A) \notin A, \inf (A) \notin A$, and this proves that A has neither a maximal element nor a minimal element.
Let this time $A=\left\{(-1)^{n}+\frac{1}{n}: n \in \mathbb{N}\right\}$. We have $-1 \leq(-1)^{n}+\leq 1+\frac{1}{n} \leq 2$ for all $n \in \mathbb{N}$, so that -1 is a lower bound of $A, 2$ is a upper bound of A, and both $\sup (A)$ and $\inf (A)$ exist. Let us now compute $\inf (A)$: for all $\varepsilon>0$, we have $\frac{1}{n} \leq \varepsilon$ for all big enough n. Therefore, if n is odd, we have $(-1)^{n}+\frac{1}{n} \leq-1+\varepsilon$ and this, added to the fact that -1 is a lower bound of A, yields $-1=\sup (A)$. Therefpre A doesn't have a minimal element $(-1 \notin A)$. To compute $\sup (A)$, notice that for all $n \geq 2$ we have $(-1)^{n}+\frac{1}{n} \leq 1=\frac{1}{2}=\frac{3}{2}$. Since the element obtained for $n=1$ is 0 , this proves that $a \leq \frac{3}{2}$ for all $a \in A$; and since $\frac{3}{2} \in A$, this is enough to conclude that $\sup (A)=\frac{3}{2}$ and that A has a maximal element.
2. Let $A=\left\{x^{2}+y^{2}: x, y \in \mathbb{R}\right.$ and $\left.x y=1\right\}$. Prove that A is bounded below, but not bounded above. Compute $\inf (A)$.
Correction. For all $a \in A$, we have $a=x^{2}+y^{2}$ for some $x, y \in \mathbb{R}$. It implies that $a \geq 0$, so 0 is a lower bound of A, which proves that A is bounded below.
To prove that A is not bounded above, notice that $n^{2}+\frac{1}{n^{2}} \in A$ for all $n \in \mathbb{N}$ (because $n \cdot \frac{1}{n}=1$ for all n), so any upper bound u of A would have to satisfy $u \geq n^{2}$ for all $n \in \mathbb{N}$. We saw in class that \mathbb{N} is not bounded above, so this is impossible, and this proves that A has no upper bound.
To compute $\inf (A)$, let x and y be such that $x y=1$. Then $x^{2}+y^{2}=x^{2}+\frac{1}{x^{2}}$. Looking at a picture of a circle and a hyperbola (what is the link here?), one can guess that $\inf (A)$ is attained for $x=y=1$. To prove this, notice that since the equation for A depends only on $|x|$ and $|y|$ one may assume that both are positive; furthermore, one of $|x|$ and $|y|$ has to be bigger than 1 (why?), so one may assume without loss of generality
that $x \geq 1$. We have then $x=1+\varepsilon$, with $\varepsilon>0$. Then one can write
$x^{2}+\frac{1}{x^{2}}=(1+\varepsilon)^{2}+\frac{1}{(1+\varepsilon)^{2}}=1+2 \varepsilon+\varepsilon^{2}+\frac{1}{1+2 \varepsilon+\varepsilon^{2}}=1+\frac{\left(2 \varepsilon+\varepsilon^{2}\right)\left(1+2 \varepsilon+\varepsilon^{2}\right)+1}{1+2 \varepsilon+\varepsilon^{2}}=2+\frac{2 \varepsilon^{3}+\varepsilon^{4}}{1+2 \varepsilon+\varepsilon^{2}} \geq 2$.
Therefore 2 is a lower bound of A; since one has $2 \in A$, this proves that $\inf (A)=2$.
3. Let $A, B \subset \mathbb{R}$ be bounded subsets of \mathbb{R}. We define $A+B=\{a+b: a \in A, b \in B\}$.

Show that $\sup (A), \sup (B), \sup (A+B)$ exist and that $\sup (A+B)=\sup (A)+\sup (B)$.

Correction.

By definition of a bounded set, there exist M, N such that $a \leq M$ for all $a \in A$, and $b \leq N$ for all $b \in B$. This implies that $a+b \leq M+N$ for all $(a, b) \in A \times B$; in other words, $x \leq M+N$ for all $x \in A+B$, which proves that $A+B$ is bounded above, so that $\sup (A+B)$ exists. The fact that $\sup (A), \sup (B)$ exist is a direct consequence of the fact that A, B are bounded.
Notice that above we could have taken $M=\sup (A), N=\sup (B)$, so that the preceeding inequality implies that $x \leq \sup (A)+\sup (B)$ for all $x \in A+B$; in other words, $\sup (A)+\sup (B)$ is an upper bound of $A+B$, so that $\sup (A+B) \leq \sup (A)+\sup (B)$.
To show the converse inequality, we need to find, for all $\varepsilon>0$, some $x \in A+B$ such that $x \geq \sup (A)+\sup (B)-\varepsilon$. We know that, for all $\delta>0$, there exists $a \in A$ such that $a \geq \sup (A)-\delta$, and $b \geq \sup (B)-\delta$; this implies $a+b \geq \sup (A)+\sup (B)-2 \delta$. Thus, if we now let $\delta=\frac{\varepsilon}{2}$, the above inequality becomes $a+b \geq \sup (A)+\sup (B)-\varepsilon$. Therefore there does exist, for all $\varepsilon>0$, some $x \in A+B$ such that $x \geq \sup (A)+\sup (B)-\varepsilon$. This concludes the proof of the fact that $\sup (A+B)=\sup (A)+\sup (B)$.
4. Let $A \subset \mathbb{R}$ be a bounded set containing at least two elements, and $x \in A$.
(a) Prove that $\sup (A \backslash\{x\})$ exists (remember that $A \backslash\{x\}=\{a \in A: a \neq x\}$.
(b) Prove that if $x<\sup (A \backslash\{x\})$ then $\sup (A \backslash\{x\})=\sup (A)$. (c) Prove that if $\sup (A \backslash\{x\})<\sup (A)$ then $x=\sup (A)$.
Correction. (a) $A \backslash\{x\} \subset A$, so any upper bound of A is also an upper bound of $A \backslash\{x\}$); since A is bounded, this proves that the set of upper bounds of $A \backslash\{x\})$ is nonempty, so that $\sup (A \backslash\{x\})$) exists (and is $\leq \sup (A)$).
(b) The fact that $A \backslash\{x\}) \subset A$ implies that $\sup (A \backslash\{x\})) \leq \sup (A)$. To see that the converse inequality is true in our case, let $\varepsilon>0$ be small enough that $\sup (A)-\varepsilon>x$. By definition of the sup, there exists $a \in A$ such that $a>\sup (A)-\varepsilon$. This implies that $a \neq x$, so that we actually proved that for all $\varepsilon>0$ there is $a \in A \backslash\{x\}$ such that $a>\sup (A)-\varepsilon$. This shows that $\sup (A)-\varepsilon$ is not an upper bound of $A \backslash\{x\}$, so $\sup (A)-\varepsilon \leq \sup (A \backslash\{x\})$, for all $\varepsilon>0$, so that $\sup (A) \leq \sup (A \backslash\{x\}$. This concludes the proof of the fact that $\sup (A)=\sup (A \backslash\{x\}$.
(c) Assume that $\sup (A \backslash\{x\})<\sup (A)$, and pick $\varepsilon>0$ small enough that $\sup (A)-\varepsilon>\sup (A \backslash\{x\})$. By definition of the sup, there exists $a \in A$ such that $a \geq \sup (A)-\varepsilon$; in particular $a>\sup (A \backslash\{x\})$, so $a \notin A \backslash\{x\}$. Since $a \in A$, this implies that $a=x$. Thus we obtained $x \geq \sup (A)-\varepsilon$ for all ε. This implies that $x \geq \sup (A)$, and $x \leq \sup (A)$ is also true because $x \in A$. We finally obtained $x=\sup (A)$.
5. Let A, B be bounded subsets of \mathbb{R}. Prove that $A \cup B$ is also bounded and that $\sup (A \cup B)=\max (\sup (A), \sup (B))$, $\inf (A \cup B)=\min (\inf (A), \inf (B))$.
Correction. Let M (resp. M^{\prime}) be an upper bound of A (resp B), and m (resp. m^{\prime}) be a lower bound of A (resp. M^{\prime}). Then, for all $x \in A$ we have $m \leq x \leq M$, and for all $x \in B$ we have $m^{\prime} \leq x \leq M^{\prime}$. Thus, for all $x \in A \cup B$ we have $\min \left(m, m^{\prime}\right) \leq x \leq \max \left(M, M^{\prime}\right)$.
This shows that $\min \left(m, m^{\prime}\right)$ is a lower bound for $A \cup B$, and $\max \left(M, M^{\prime}\right)$ is an upper bound for $A \cup B$. Thus, $A \cup B$ is bounded. Notice that we could have take $M=\sup (A), M^{\prime}=\sup (B), m=\inf (A), m^{\prime}=\inf (B)$; thus the above reasoning implies that $\min (\inf (A), \inf (B))$ is a lower bound of $A \cup B$, and $\max (\sup (A), \sup (B))$ is an upper bound of $A \cup B$.
For any $\varepsilon>0$ there exist $a \in A$ and $b \in B$ such that $a \leq \inf (A)+\varepsilon$ and $b \leq \inf (B)+\varepsilon$; therefore, $a \leq \min (\inf (A), \inf (B))+\varepsilon($ if $\inf (A) \leq \inf (B))$ or $b \leq \min (\inf (A), \inf (B))+\varepsilon($ if $\inf (B) \leq \inf (A))$. This means that for any $\varepsilon>0$ there exists $x \in A \cup B$ such that $x \leq \min (\inf (A), \inf (B))+\varepsilon$. This, added to the fact that $\min (\inf (A), \inf (B))$ is a lower bound of $A \cup B$, implies that $\min (\inf (A), \inf (B))=\inf (A \cup B)$. The proof for the least upper bound is similar.

