1. Compute, if they exist, sup(A) and inf(A) in the following cases. In each case, state whether A admits a maximal element, and do the same for minimal elements.

\[A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}; \quad A = \left\{ x \in \mathbb{Q} : x^2 < 2 \right\}; \quad A = \left\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \right\}. \]

Correction. Let \(A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}. \) Then for all \(a \in A \) we have \(a = \frac{1}{n} \) for some \(n \in \mathbb{N} \), so that \(0 \leq a \leq 1 \). This shows that 0 is a lower bound of \(A \) and that 1 is a upper bound of \(A \). So both sup(\(A \)) and inf(\(A \)) exist and, since \(1 \in A \), this immediately implies that sup(\(A \)) = 1. Furthermore, by the archimedean property of \(\mathbb{R} \), we know that for any \(\varepsilon > 0 \) there exists \(n \in \mathbb{N} \) such that \(\frac{1}{n} \leq \varepsilon \), so that for any \(\varepsilon > 0 \) there exists some \(a \in A \) such that \(a \leq 0 + \varepsilon \). Since 0 is a lower bound of \(A \) this proves that \(0 = \inf(A) \). Thus we see that \(A \) admits a maximal element (because sup(\(A \)) \(\in A \)) but no minimal element (because inf(\(A \)) \(\notin A \)).

Let now \(A = \left\{ x \in \mathbb{Q} : x^2 < 2 \right\}. \) We have \(a^2 < 2 \) for all \(a \in A \), so that \(-\sqrt{2} \leq a \leq \sqrt{2} \) for all \(a \in A \), and this proves that both sup(\(A \)) and inf(\(A \)) exist.

To compute sup(\(A \)), recall that we saw in class that for any \(x \in \mathbb{R} \) and any \(\varepsilon > 0 \) there exists \(q \in \mathbb{Q} \) such that \(x - \varepsilon \leq q \leq x \). Applying this to \(x = \sqrt{2} \), we see that for any \(\varepsilon > 0 \) there exists \(a \in A \) such that \(a \geq x - \varepsilon \); since we saw that \(\sqrt{2} \) is a upper bound of \(A \) this is enough to prove that sup(\(A \)) = \(\sqrt{2} \). The same idea works to prove that inf(\(A \)) = \(-\sqrt{2} \); notice that one could also use the fact that \(A = \{ -a : a \in A \} \) (why?), which shows inf(\(A \)) = \(-\sqrt{2} \). We saw in class that \(\sqrt{2} \notin \mathbb{Q} \), so that sup(\(A \)) \(\notin A \), inf(\(A \)) \(\notin A \), and this proves that \(A \) has neither a maximal element nor a minimal element.

Let this time \(A = \left\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \right\}. \) We have \(-1 \leq (-1)^n + \frac{1}{n} \leq 1 \) for all \(n \in \mathbb{N} \), so that \(-1 \) is a lower bound of \(A \), 2 is a upper bound of \(A \), and both sup(\(A \)) and inf(\(A \)) exist. Let us now compute inf(\(A \)):

\[\text{for all } \varepsilon > 0, \text{ we have } \frac{1}{n} \leq \varepsilon \text{ for all big enough } n. \] Therefore, if \(n \) is odd, we have \((-1)^n + \frac{1}{n} \leq -1 + \varepsilon \) and this, added to the fact that \(-1 \) is a lower bound of \(A \), yields \(-1 = \inf(A) \). Therefore \(A \) doesn’t have a minimal element \((-1) \notin A \). To compute sup(\(A \)), notice that for all \(n \geq 2 \) we have \((-1)^n + \frac{1}{n} \leq 1 = \frac{1}{2} = \frac{3}{2} \). Since the element obtained for \(n = 1 \) is 0, this proves that \(a \leq \frac{3}{2} \) for all \(a \in A \); and since \(\frac{3}{2} \in A \), this is enough to conclude that sup(\(A \)) = \(\frac{3}{2} \) and that \(A \) has a maximal element.

2. Let \(A = \{ x^2 + y^2 : x, y \in \mathbb{R} \text{ and } xy = 1 \} \). Prove that \(A \) is bounded below, but not bounded above. Compute inf(\(A \)).

Correction. For all \(a \in A \), we have \(a = x^2 + y^2 \) for some \(x, y \in \mathbb{R} \). It implies that \(a \geq 0 \), so 0 is a lower bound of \(A \), which proves that \(A \) is bounded below.

To prove that \(A \) is not bounded above, notice that \(n^2 + \frac{1}{n^2} \in A \) for all \(n \in \mathbb{N} \) (because \(n, \frac{1}{n} = 1 \) for all \(n \)), so any upper bound \(u \) of \(A \) would have to satisfy \(u \geq n^2 \) for all \(n \in \mathbb{N} \). We saw in class that \(\mathbb{N} \) is not bounded above, so this is impossible, and this proves that \(A \) has no upper bound.

To compute inf(\(A \)), let \(x \) and \(y \) be such that \(xy = 1 \). Then \(x^2 + y^2 = x^2 + \frac{1}{x^2} \). Looking at a picture of a circle and a hyperbola (what is the link here?), one can guess that inf(\(A \)) is attained for \(x = y = 1 \). To prove this, notice that since the equation for \(A \) depends only on \(|x| \) and \(|y| \) one may assume that both are positive; furthermore, one of \(|x| \) and \(|y| \) has to be bigger than 1 (why?), so one may assume without loss of generality...
that $x \geq 1$. We have then $x = 1 + \varepsilon$, with $\varepsilon > 0$. Then one can write
\[
x^2 + \frac{1}{x^2} = \frac{(1+\varepsilon)^2 + 1}{(1+\varepsilon)^2} = 1 + 2\varepsilon + \varepsilon^2 + 1 = 2 + \frac{(2\varepsilon + \varepsilon^2)(1 + 2\varepsilon + \varepsilon^2) + 1}{1 + 2\varepsilon + \varepsilon^2} = 2 + \frac{2\varepsilon^3 + \varepsilon^4}{1 + 2\varepsilon + \varepsilon^2} \geq 2.
\]

Therefore 2 is a lower bound of A; since one has $2 \in A$, this proves that $\inf(A) = 2$.

3. Let $A, B \subset \mathbb{R}$ be bounded subsets of \mathbb{R}. We define $A + B = \{a + b : a \in A, b \in B\}$.
Show that $\sup(A)$, $\sup(B)$, $\sup(A + B)$ exist and that $\sup(A + B) = \sup(A) + \sup(B)$.

Correction.

By definition of a bounded set, there exist M, N such that $a \leq M$ for all $a \in A$, and $b \leq N$ for all $b \in B$. This implies that $a + b \leq M + N$ for all $(a, b) \in A \times B$; in other words, $x \leq M + N$ for all $x \in A + B$, which proves that $A + B$ is bounded above, so that $\sup(A + B)$ exists. The fact that $\sup(A)$, $\sup(B)$ exist is a direct consequence of the fact that A, B are bounded.

Notice that above we could have taken $M = \sup(A)$, $N = \sup(B)$, so that the preceding inequality implies that $x \leq \sup(A) + \sup(B)$ for all $x \in A + B$; in other words, $\sup(A) + \sup(B)$ is an upper bound of $A + B$, so that $\sup(A + B) \leq \sup(A) + \sup(B)$.

To show the converse inequality, we need to find, for all $\varepsilon > 0$, some $x \in A + B$ such that $x \geq \sup(A) + \sup(B) - \varepsilon$.

We know that, for all $\delta > 0$, there exists $a \in A$ such that $a \geq \sup(A) - \delta$, and $b \geq \sup(B) - \delta$; this implies $a + b \geq (\sup(A) + \sup(B)) - 2\delta$. Thus, if we now let $\delta = \frac{\varepsilon}{2}$, the above inequality becomes $a + b \geq (\sup(A) + \sup(B)) - \varepsilon$.

Therefore there does exist, for all $\varepsilon > 0$, some $x \in A + B$ such that $x \geq \sup(A) + \sup(B) - \varepsilon$. This concludes the proof of the fact that $\sup(A + B) = \sup(A) + \sup(B)$.

4. Let $A \subset \mathbb{R}$ be a bounded set containing at least two elements, and $x \in A$.

(a) Prove that $\sup(A \setminus \{x\})$ exists (remember that $A \setminus \{x\} = \{a \in A : a \neq x\}$).

(b) Prove that if $x < \sup(A \setminus \{x\})$ then $\sup(A \setminus \{x\}) = \sup(A)$.

(c) Prove that if $\sup(A \setminus \{x\}) < \sup(A)$ then $x = \sup(A)$.

Correction.

(a) $A \setminus \{x\} \subset A$, so any upper bound of A is also an upper bound of $A \setminus \{x\}$; since A is bounded, this proves that the set of upper bounds of $A \setminus \{x\}$ is nonempty, so that $\sup(A \setminus \{x\})$ exists (and is $\leq \sup(A)$).

(b) The fact that $A \setminus \{x\} \subset A$ implies that $\sup(A \setminus \{x\}) \leq \sup(A)$. To see that the converse inequality is true in our case, let $\varepsilon > 0$ be small enough that $\sup(A) - \varepsilon > x$. By definition of the sup, there exists $a \in A$ such that $a > \sup(A) - \varepsilon$. This implies that $a \neq x$, so that we actually proved that for all $\varepsilon > 0$ there is $a \in A \setminus \{x\}$ such that $a > \sup(A) - \varepsilon$. This shows that $\sup(A) - \varepsilon$ is not an upper bound of $A \setminus \{x\}$, so $\sup(A) - \varepsilon \leq \sup(A \setminus \{x\})$, for all $\varepsilon > 0$, so that $\sup(A) \leq \sup(A \setminus \{x\})$. This concludes the proof of the fact that $\sup(A) = \sup(A \setminus \{x\})$.

(c) Assume that $\sup(A \setminus \{x\}) < \sup(A)$, and pick $\varepsilon > 0$ small enough that $\sup(A) - \varepsilon > \sup(A \setminus \{x\})$. By definition of the sup, there exists $a \in A$ such that $a \geq \sup(A) - \varepsilon$; in particular $a > \sup(A \setminus \{x\})$, so $a \notin A \setminus \{x\}$. Since $a \in A$, this implies that $a = x$. Thus we obtained $x = \sup(A) - \varepsilon$ for all ε. This implies that $x \geq \sup(A)$, and $x \leq \sup(A)$ is also true because $x \in A$. We finally obtained $x = \sup(A)$.

5. Let A, B be bounded subsets of \mathbb{R}. Prove that $A \cup B$ is also bounded and that $\sup(A \cup B) = \max(\sup(A), \sup(B))$.

Correction. Let M (resp. M') be an upper bound of A (resp B), and m (resp. m') be a lower bound of A (resp. M'). Then, for all $x \in A$ we have $m \leq x \leq M$, and for all $x \in B$ we have $m' \leq x \leq M'$. Thus, for all $x \in A \cup B$ we have $m \leq x \leq M'$.

This shows that m is a lower bound for $A \cup B$, and M' is an upper bound for $A \cup B$. Thus, $A \cup B$ is bounded. Notice that we could have taken $M = \sup(A)$, $M' = \sup(B)$, $m = \inf(A)$, $m' = \inf(B)$; thus the above reasoning implies that $\min(\inf(A), \inf(B))$ is a lower bound of $A \cup B$, and $\max(\sup(A), \sup(B))$ is an upper bound of $A \cup B$.

For any $\varepsilon > 0$ there exist $a \in A$ and $b \in B$ such that $a \leq \inf(A) + \varepsilon$ and $b \leq \inf(B) + \varepsilon$; therefore, $a \leq \min(\inf(A), \inf(B)) + \varepsilon$ (if $\inf(A) \leq \inf(B)$) or $a \leq \min(\inf(A), \inf(B)) + \varepsilon$ (if $\inf(B) \leq \inf(A)$). This means that for any $\varepsilon > 0$ there exists $x \in A \cup B$ such that $x \leq \min(\inf(A), \inf(B)) + \varepsilon$. This, added to the fact that $\min(\inf(A), \inf(B))$ is a lower bound of $A \cup B$, implies that $\min(\inf(A), \inf(B)) = \inf(A \cup B)$.

The proof for the least upper bound is similar.