University of Illinois at Urbana-Champaign Math 444

Graded Homework V Correction.

1 Using the definition of the limit, show that the following sequences are convergent and compute their limit : $x_n = \frac{1}{n+1} - \frac{1}{n}$; $y_n = \sqrt{n+1} - \sqrt{n}$. **Correction.** We have $x_n = \frac{1}{n+1} - \frac{1}{n} = \frac{1}{n(n+1)}$, so it seems that $\lim x_n = 0$. To prove it, pick $\varepsilon > 0$. By

the Archimedean Property of the reals, we know that there exists a natural integer $K(\varepsilon)$ such that $K(\varepsilon) \geq \frac{1}{2}$. Then we get, for any $n \geq K(\varepsilon)$, that

$$x_n = \frac{1}{n(n+1)} \le \frac{1}{n} \le \frac{1}{K(\varepsilon)} \le \varepsilon$$
.

This concludes the proof that the sequence (x_n) converges to 0; to deal with the sequence y_n , we use the usual trick for square roots to get

$$y_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Therefore, we guess that here again the limit of (y_n) exists and is 0; to prove it, picking $\varepsilon > 0$, we first notice that, as above, there exists a natural integer $K(\varepsilon)$ such that $K(\varepsilon) \geq \frac{1}{\varepsilon^2}$. Thus, for any $n \geq K(\varepsilon)$, we have

$$y_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{K(\varepsilon)}} \le \varepsilon$$
.

2. Using the theorems that we saw in class (Squeeze Theorem, algebraic manipulations of limits), determine whether the following sequences are convergent and, if they are, compute their limit.

 $x_n = \frac{(n+1)^3}{n^3}; y_n = \frac{\sin(n)}{\sqrt{n}}; z_n = \frac{\sqrt{n}}{n+\sin(n)}.$

Correction. The first sequence is a quotient of two divergent sequences, so it seems at first that we cannot

use the theorems seen in class. But, dividing numerator and denominator by n^3 , we get that $x_n = (1 + \frac{1}{n})^3 = (1 + \frac{1}{n})(1 + \frac{1}{n})(1 + \frac{1}{n})$. Since the sequence $(\frac{1}{n})$ converges to 0 (archimedean property of the reals), we see that (x_n) is the product of three sequences that converge to 1. Since the product of a finite number of convergent sequences converges to the product of the limits, this proves that (x_n) is convergent and that $\lim x_n = 1.1.1 = 1$.

For the second sequence, we use the Squeeze Theorem : since $-1 \leq \sin(n) \leq 1$ for all $n \in \mathbb{N}$, we have $\frac{-1}{\sqrt{n}} \leq y_n \leq \frac{1}{\sqrt{n}}$. Thus (y_n) is squeezed between two sequences that converge to 0, which implies that (y_n) is convergent and $\lim y_n = 0$.

For the third one, we divide numerator and denominator by \sqrt{n} and obtain $z_n = \frac{1}{\sqrt{n} + \frac{\sin(n)}{2}}$. Thus, using the

fact that $-1 \leq \frac{\sin(n)}{n} \leq 1$ for all $n \in \mathbb{N}$, one has $\frac{1}{\sqrt{n+1}} \leq z_n \leq \frac{1}{\sqrt{n-1}}$ for any $n \geq 2$. This proves that (z_n) is squeezed between two sequences which converge to 0, which implies that (z_n) is convergent and $\lim z_n = 0$.

3. Using the definition of E(x) given in the last homework, and the fact that $E(x) \leq x < E(x) + 1$, prove that, for any $x \in \mathbb{R}$, one has $\lim(\frac{E(nx)}{n}) = x$. (Optional) Can you use this to prove the Density Theorem?

Correction. One has $E(nx) \le nx < nx + 1$ which, dividing by n, yields $\frac{E(nx)}{n} \le x < \frac{E(nx)}{n} + \frac{1}{n}$, and thus $0 \le x - \frac{E(nx)}{n} < \frac{1}{n}$. Thanks to the Squeeze Theorem, we can conclude that the sequence $(\frac{E(nx)}{n} - x)$ converges to 0, which is equivalent to saying that $\lim \frac{E(nx)}{n} = n$.

To use this to prove the Density Theorem, notice that each $\frac{E(nx)}{n}$ is a rational number, so the above proof shows that any real is the limit of a sequence of rationals (q_n) such that $q_n \leq x$. Pick now $x < y \in \mathbb{R}$, and let $\varepsilon > 0$ be such that $y - \varepsilon > x$. We know that there exists a sequence of rationals (q_n) such that $q_n \leq y$ and z > 0 be such that y - z > x. We know that there exists a sequence of rationals (q_n) such that $q_n \leq y$ and $\lim q_n = y$; pick such a sequence, and let n be big enough that $y - q_n \leq \varepsilon$. Then we have $y \geq q_n \geq y - \varepsilon > x$, which shows that q_n is a rational number such that $x < q_n \leq y$. If $y \notin \mathbb{Q}$ then we are done, otherwise notice that $y - \frac{1}{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}$, and for n big enough one has $x < y - \frac{1}{n} < y$, so the desired result is proved in

4. Recall that n! is defined by induction by 1! = 1, (n+1)! = (n+1)n!. Said differently, one has n! = 1.2.3...n. Define now $u_n = \frac{n!}{n^3}$.

(a) Prove that there exists some $N \in \mathbb{N}$ such that, for all $n \ge N$, one has $\frac{u_{n+1}}{u_n} \ge 2$.

(b) Prove by induction that, for all $n \ge N$, one has $u_n \ge u_N \cdot 2^{n-N}$.

(c) Use this to show that the sequence (u_n) is not convergent.

Correction. (a) By definition of u_n , one has, for any $n \in \mathbb{N}$, that

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{n!} \frac{n^3}{(n+1)^3} = n \frac{n^3}{(n+1)^3} \ .$$

We saw in the second exercise that $\frac{n^3}{(n+1)^3}$ converges to 1 (it is the inverse of a sequence that converges to 1), so there exists an integer $K(\frac{1}{2})$ such that, for any $n \in \mathbb{N}$, one has $n \ge K(\frac{1}{2}) \Rightarrow \frac{n^3}{(n+1)^3} \ge 1 - \frac{1}{2} = \frac{1}{2}$. Thus, for any $n \ge K(\frac{1}{2})$, one has $\frac{u_{n+1}}{u_n} \ge \frac{n}{2}$, which proves that, for any $n \ge \max(K(\frac{1}{2}), 4) = N$ one has $\frac{u_{n+1}}{u_n} \ge 2$. Before going on to question (b), it is worth explaining a bit what's going on here : we have a sequence whose terms become arbitrarily large (n), and one whose terms become increasingly close to 1 $\left(\frac{(n+1)^3}{n^3}\right)$. To prove that the terms of the product of these two sequences become arbitrarily large (here, larger than 2, but you should convince yourself that 2 may be replaced by any real number), we do not exactly use the fact that the second sequence converges to 1: instead, we use this fact to deduce that, for n big enough, the sequence only (b) The desired statement clearly holds for n = N; assume now that $n \ge N$ is such that $u_n \ge u_N \cdot 2^{n-N}$. Then, by (a), one has $u_{n+1} = \frac{u_{n+1}}{u_n} \cdot u_n \ge 2u_n \ge 2 \cdot 2^{n-N} = 2^{n+1-N}$. This proves that the property is hereditary; since it is true for n = N it much ball for $u_n \ge 2 \cdot 2^{n-N}$. takes values that are greater than $\frac{1}{2}$, and deduce the desired result from it. Think about this proof!

it is true for n = N, it must hold for all $n \ge N$.

(c) The sequence (2^{n-N}) is not bounded, so the inequality of question (b) shows that (u_n) is not bounded either; since any convergent sequence has to be bounded, this is enough to conclude that (u_n) is not convergent.