Graded Homework V

Correction.

1 Using the definition of the limit, show that the following sequences are convergent and compute their limit : $x_{n}=\frac{1}{n+1}-\frac{1}{n} ; y_{n}=\sqrt{n+1}-\sqrt{n}$.
Correction. We have $x_{n}=\frac{1}{n+1}-\frac{1}{n}=\frac{1}{n(n+1)}$, so it seems that $\lim x_{n}=0$. To prove it, pick $\varepsilon>0$. By the Archimedean Property of the reals, we know that there exists a natural integer $K(\varepsilon)$ such that $K(\varepsilon) \geq \frac{1}{\varepsilon}$. Then we get, for any $n \geq K(\varepsilon)$, that

$$
x_{n}=\frac{1}{n(n+1)} \leq \frac{1}{n} \leq \frac{1}{K(\varepsilon)} \leq \varepsilon
$$

This concludes the proof that the sequence $\left(x_{n}\right)$ converges to 0 ; to deal with the sequence y_{n}, we use the usual trick for square roots to get

$$
y_{n}=\sqrt{n+1}-\sqrt{n}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}
$$

Therefore, we guess that here again the limit of $\left(y_{n}\right)$ exists and is 0 ; to prove it, picking $\varepsilon>0$, we first notice that, as above, there exists a natural integer $K(\varepsilon)$ such that $K(\varepsilon) \geq \frac{1}{\varepsilon^{2}}$. Thus, for any $n \geq K(\varepsilon)$, we have

$$
y_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \leq \frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{K(\varepsilon)}} \leq \varepsilon
$$

2. Using the theorems that we saw in class (Squeeze Theorem, algebraic manipulations of limits), determine whether the following sequences are convergent and, if they are, compute their limit.
$x_{n}=\frac{(n+1)^{3}}{n^{3}} ; y_{n}=\frac{\sin (n)}{\sqrt{n}} ; z_{n}=\frac{\sqrt{n}}{n+\sin (n)}$.
Correction. The first sequence is a quotient of two divergent sequences, so it seems at first that we cannot use the theorems seen in class. But, dividing numerator and denominator by n^{3}, we get that
$x_{n}=\left(1+\frac{1}{n}\right)^{3}=\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)$. Since the sequence $\left(\frac{1}{n}\right)$ converges to 0 (archimedean property of the reals), we see that $\left(x_{n}\right)$ is the product of three sequences that converge to 1 . Since the product of a finite number of convergent sequences converges to the product of the limits, this proves that $\left(x_{n}\right)$ is convergent and that $\lim x_{n}=1.1 .1=1$.
For the second sequence, we use the Squeeze Theorem : since $-1 \leq \sin (n) \leq 1$ for all $n \in \mathbb{N}$, we have $\frac{-1}{\sqrt{n}} \leq y_{n} \leq \frac{1}{\sqrt{n}}$. Thus $\left(y_{n}\right)$ is squeezed between two sequences that converge to 0 , which implies that $\left(y_{n}\right)$ is convergent and $\lim y_{n}=0$.
For the third one, we divide numerator and denominator by \sqrt{n} and obtain $z_{n}=\frac{1}{\sqrt{n}+\frac{\sin (n)}{n}}$. Thus, using the fact that $-1 \leq \frac{\sin (n)}{n} \leq 1$ for all $n \in \mathbb{N}$, one has $\frac{1}{\sqrt{n}+1} \leq z_{n} \leq \frac{1}{\sqrt{n}-1}$ for any $n \geq 2$. This proves that $\left(z_{n}\right)$ is squeezed between two sequences which converge to 0 , which implies that $\left(z_{n}\right)$ is convergent and $\lim z_{n}=0$.
3.. Using the definition of $E(x)$ given in the last homework, and the fact that $E(x) \leq x<E(x)+1$, prove that, for any $x \in \mathbb{R}$, one has $\lim \left(\frac{E(n x)}{n}\right)=x$.
(Optional) Can you use this to prove the Density Theorem?
Correction. One has $E(n x) \leq n x<n x+1$ which, dividing by n, yields $\frac{E(n x)}{n} \leq x<\frac{E(n x)}{n}+\frac{1}{n}$, and thus $0 \leq x-\frac{E(n x)}{n}<\frac{1}{n}$. Thanks to the Squeeze Theorem, we can conclude that the sequence $\left(\frac{E(n x)}{n}-x\right)$ converges to 0 , which is equivalent to saying that $\lim \frac{E(n x)}{n}=n$.
To use this to prove the Density Theorem, notice that each $\frac{E(n x)}{n}$ is a rational number, so the above proof shows that any real is the limit of a sequence of rationals $\left(q_{n}\right)$ such that $q_{n} \leq x$. Pick now $x<y \in \mathbb{R}$, and let $\varepsilon>0$ be such that $y-\varepsilon>x$. We know that there exists a sequence of rationals $\left(q_{n}\right)$ such that $q_{n} \leq y$ and $\lim q_{n}=y$; pick such a sequence, and let n be big enough that $y-q_{n} \leq \varepsilon$. Then we have $y \geq q_{n} \geq y-\varepsilon>x$, which shows that q_{n} is a rational number such that $x<q_{n} \leq y$. If $y \notin \mathbb{Q}$ then we are done, otherwise notice that $y-\frac{1}{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}$, and for n big enough one has $x<y-\frac{1}{n}<y$, so the desired result is proved in that case too.
3. Recall that $n!$ is defined by induction by $1!=1,(n+1)!=(n+1) n!$. Said differently, one has $n!=1.2 .3 \ldots n$. Define now $u_{n}=\frac{n!}{n^{3}}$.
(a) Prove that there exists some $N \in \mathbb{N}$ such that, for all $n \geq N$, one has $\frac{u_{n+1}}{u_{n}} \geq 2$.
(b) Prove by induction that, for all $n \geq N$, one has $u_{n} \geq u_{N} \cdot 2^{n-N}$.
(c) Use this to show that the sequence $\left(u_{n}\right)$ is not convergent.

Correction. (a) By definition of u_{n}, one has, for any $n \in \mathbb{N}$, that

$$
\frac{u_{n+1}}{u_{n}}=\frac{(n+1)!}{n!} \frac{n^{3}}{(n+1)^{3}}=n \frac{n^{3}}{(n+1)^{3}} .
$$

We saw in the second exercise that $\frac{n^{3}}{(n+1)^{3}}$ converges to 1 (it is the inverse of a sequence that converges to 1), so there exists an integer $K\left(\frac{1}{2}\right)$ such that, for any $n \in \mathbb{N}$, one has $n \geq K\left(\frac{1}{2}\right) \Rightarrow \frac{n^{3}}{(n+1)^{3}} \geq 1-\frac{1}{2}=\frac{1}{2}$. Thus, for any $n \geq K\left(\frac{1}{2}\right)$, one has $\frac{u_{n+1}}{u_{n}} \geq \frac{n}{2}$, which proves that, for any $n \geq \max \left(K\left(\frac{1}{2}\right), 4\right)=N$ one has $\frac{u_{n+1}}{u_{n}} \geq 2$. Before going on to question (b), it is worth explaining a bit what's going on here : we have a sequence whose terms become arbitrarily large (n), and one whose terms become increasingly close to $1\left(\frac{(n+1)^{3}}{n^{3}}\right)$. To prove that the terms of the product of these two sequences become arbitrarily large (here, larger than 2 , but you should convince yourself that 2 may be replaced by any real number), we do not exactly use the fact that the second sequence converges to 1 : instead, we use this fact to deduce that, for n big enough, the sequence only takes values that are greater than $\frac{1}{2}$, and deduce the desired result from it. Think about this proof!
(b) The desired statement clearly holds for $n=N$; assume now that $n \geq N$ is such that $u_{n} \geq u_{N} \cdot 2^{n-N}$. Then, by (a), one has $u_{n+1}=\frac{u_{n+1}}{u_{n}} \cdot u_{n} \geq 2 u_{n} \geq 2.2^{n-N}=2^{n+1-N}$. This proves that the property is hereditary; since it is true for $n=N$, it must hold for all $n \geq N$.
(c) The sequence $\left(2^{n-N}\right)$ is not bounded, so the inequality of question (b) shows that $\left(u_{n}\right)$ is not bounded either ; since any convergent sequence has to be bounded, this is enough to conclude that $\left(u_{n}\right)$ is not convergent.

