
University of Illinois at Urbana-Champaign Fall 2006
Math 444 Group E13

Graded Homework V

Correction.

1 Using the de�nition of the limit, show that the following sequences are convergent and compute their limit :

xn =
1

n + 1
− 1

n
; yn =

√
n + 1−

√
n.

Correction. We have xn =
1

n + 1
− 1

n
=

1
n(n + 1)

, so it seems that lim xn = 0. To prove it, pick ε > 0. By

the Archimedean Property of the reals, we know that there exists a natural integer K(ε) such that K(ε) ≥ 1
ε
.

Then we get, for any n ≥ K(ε), that

xn =
1

n(n + 1)
≤ 1

n
≤ 1

K(ε)
≤ ε .

This concludes the proof that the sequence (xn) converges to 0 ; to deal with the sequence yn, we use the usual
trick for square roots to get

yn =
√

n + 1−
√

n =
(
√

n + 1−
√

n)(
√

n + 1 +
√

n)√
n + 1 +

√
n

=
1√

n + 1 +
√

n
.

Therefore, we guess that here again the limit of (yn) exists and is 0 ; to prove it, picking ε > 0, we �rst notice

that, as above, there exists a natural integer K(ε) such that K(ε) ≥ 1
ε2
. Thus, for any n ≥ K(ε), we have

yn =
1√

n + 1 +
√

n
≤ 1√

n
≤ 1√

K(ε)
≤ ε .

2. Using the theorems that we saw in class (Squeeze Theorem, algebraic manipulations of limits), determine
whether the following sequences are convergent and, if they are, compute their limit.

xn =
(n + 1)3

n3
; yn =

sin(n)√
n

; zn =
√

n

n + sin(n)
.

Correction. The �rst sequence is a quotient of two divergent sequences, so it seems at �rst that we cannot
use the theorems seen in class. But, dividing numerator and denominator by n3, we get that

xn = (1 +
1
n

)3 = (1 +
1
n

)(1 +
1
n

)(1 +
1
n

). Since the sequence (
1
n

) converges to 0 (archimedean property of the

reals), we see that (xn) is the product of three sequences that converge to 1. Since the product of a �nite
number of convergent sequences converges to the product of the limits, this proves that (xn) is convergent and
that lim xn = 1.1.1 = 1.
For the second sequence, we use the Squeeze Theorem : since −1 ≤ sin(n) ≤ 1 for all n ∈ N, we have
−1√

n
≤ yn ≤

1√
n
. Thus (yn) is squeezed between two sequences that converge to 0, which implies that (yn) is

convergent and lim yn = 0.

For the third one, we divide numerator and denominator by
√

n and obtain zn =
1

√
n + sin(n)

n

. Thus, using the

fact that −1 ≤ sin(n)
n

≤ 1 for all n ∈ N, one has
1√

n + 1
≤ zn ≤

1√
n− 1

for any n ≥ 2. This proves that (zn)

is squeezed between two sequences which converge to 0, which implies that (zn) is convergent and lim zn = 0.



3.. Using the de�nition of E(x) given in the last homework, and the fact that E(x) ≤ x < E(x) + 1, prove
that, for any x ∈ R, one has lim(E(nx)

n ) = x.
(Optional) Can you use this to prove the Density Theorem ?

Correction. One has E(nx) ≤ nx < nx + 1 which, dividing by n, yields
E(nx)

n
≤ x <

E(nx)
n

+
1
n
, and

thus 0 ≤ x− E(nx)
n

<
1
n
. Thanks to the Squeeze Theorem, we can conclude that the sequence (

E(nx)
n

− x)

converges to 0, which is equivalent to saying that lim
E(nx)

n
= n.

To use this to prove the Density Theorem, notice that each
E(nx)

n
is a rational number, so the above proof

shows that any real is the limit of a sequence of rationals (qn) such that qn ≤ x. Pick now x < y ∈ R, and let
ε > 0 be such that y − ε > x. We know that there exists a sequence of rationals (qn) such that qn ≤ y and
lim qn = y ; pick such a sequence, and let n be big enough that y − qn ≤ ε. Then we have y ≥ qn ≥ y − ε > x,
which shows that qn is a rational number such that x < qn ≤ y. If y 6∈ Q then we are done, otherwise notice

that y − 1
n
∈ Q for all n ∈ N, and for n big enough one has x < y − 1

n
< y, so the desired result is proved in

that case too.

4. Recall that n! is de�ned by induction by 1! = 1, (n+1)! = (n+1)n!. Said di�erently, one has n! = 1.2.3 . . . n.

De�ne now un =
n!
n3

.

(a) Prove that there exists some N ∈ N such that, for all n ≥ N , one has
un+1

un
≥ 2.

(b) Prove by induction that, for all n ≥ N , one has un ≥ uN .2n−N .
(c) Use this to show that the sequence (un) is not convergent.
Correction. (a) By de�nition of un, one has, for any n ∈ N, that

un+1

un
=

(n + 1)!
n!

n3

(n + 1)3
= n

n3

(n + 1)3
.

We saw in the second exercise that
n3

(n + 1)3
converges to 1 (it is the inverse of a sequence that converges to 1),

so there exists an integer K(
1
2
) such that, for any n ∈ N, one has n ≥ K(

1
2
)⇒ n3

(n + 1)3
≥ 1− 1

2
=

1
2
. Thus,

for any n ≥ K(
1
2
), one has

un+1

un
≥ n

2
, which proves that, for any n ≥ max(K(

1
2
), 4) = N one has

un+1

un
≥ 2.

Before going on to question (b), it is worth explaining a bit what's going on here : we have a sequence whose

terms become arbitrarily large (n), and one whose terms become increasingly close to 1 ( (n+1)3

n3 ). To prove

that the terms of the product of these two sequences become arbitrarily large (here, larger than 2, but you
should convince yourself that 2 may be replaced by any real number), we do not exactly use the fact that the
second sequence converges to 1 : instead, we use this fact to deduce that, for n big enough, the sequence only
takes values that are greater than 1

2 , and deduce the desired result from it. Think about this proof !
(b) The desired statement clearly holds for n = N ; assume now that n ≥ N is such that un ≥ uN .2n−N . Then,

by (a), one has un+1 =
un+1

un
.un ≥ 2un ≥ 2.2n−N = 2n+1−N . This proves that the property is hereditary ; since

it is true for n = N , it must hold for all n ≥ N .
(c) The sequence (2n−N ) is not bounded, so the inequality of question (b) shows that (un) is not bounded
either ; since any convergent sequence has to be bounded, this is enough to conclude that (un) is not convergent.


