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Math 444 Group E13

Graded Homework V
Correction.

1 Using the definition of the limit, show that the following sequences are convergent and compute their limit :
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Correction. We have x, = —— — — = —— 5o it seems that limz,, = 0. To prove it, pick € > 0. By
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the Archimedean Property of the reals, we know that there exists a natural integer K (g) such that K(g) >
Then we get, for any n > K(¢), that
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This concludes the proof that the sequence (z,,) converges to 0; to deal with the sequence y,,, we use the usual
trick for square roots to get
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Therefore, we guess that here again the limit of (y,,) exists and is 0; to prove it, picking ¢ > 0, we first notice

1
that, as above, there exists a natural integer K (¢) such that K(e) > —. Thus, for any n > K(¢), we have
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2. Using the theorems that we saw in class (Squeeze Theorem, algebraic manipulations of limits), determine
whether the following sequences are convergent and, if they are, compute their limit.
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Correction. The first sequence is a quotient of two divergent sequences, so it seems at first that we cannot

use the theorems seen in class. But, dividing numerator and denominator by n3, we get that

1 1 1 1 1
2, =(14+ =)= (1+ —)(1+ =)(1 + ). Since the sequence (—) converges to 0 (archimedean property of the
n n n n n

reals), we see that (z,) is the product of three sequences that converge to 1. Since the product of a finite
number of convergent sequences converges to the product of the limits, this proves that (x,,) is convergent and
that limz,, = 1.1.1 = 1.
For the second sequence, we use the Squeeze Theorem : since —1 < sin(n) < 1 for all n € N, we have
-1 1
N <y, < T Thus (y,) is squeezed between two sequences that converge to 0, which implies that (y,,) is
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convergent and limy, = 0.
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For the third one, we divide numerator and denominator by y/n and obtain z,, = . Thus, using the

i 1
sin(n) <1 for all n € N, one has m <z, < NS

is squeezed between two sequences which converge to 0, which implies that (z,,) is convergent and lim z,, = 0.

fact that —1 <

for any n > 2. This proves that (z,)



3.. Using the definition of E(x) given in the last homework, and the fact that E(z) < z < E(z) + 1, prove
that, for any 2 € R, one has lim(=~) = z.

(Optional) Can you use this to prove the Density Theorem 7
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Correction. One has E(nz) < nz < nz + 1 which, dividing by n, yields (nz) <z< (n2) + —, and
n n n
E 1 E
thus 0 <z — (nz) < —. Thanks to the Squeeze Theorem, we can conclude that the sequence ( (nz) —x)
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n
shows that any real is the limit of a sequence of rationals (g, ) such that ¢, < z. Pick now z < y € R, and let
€ > 0 be such that y — e > x. We know that there exists a sequence of rationals (g,) such that ¢, < y and

lim ¢, = y; pick such a sequence, and let n be big enough that y — ¢, < €. Then we have y > ¢, >y — e > «,
which shows that g, is a rational number such that = < ¢, < y. If y € Q then we are done, otherwise notice

converges to 0, which is equivalent to saying that lim

To use this to prove the Density Theorem, notice that each is a rational number, so the above proof
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that y — — € Q for all n € N, and for n big enough one has z < y — — < y, so the desired result is proved in
n n

that case too.

4. Recall that n! is defined by induction by 1! = 1, (n+1)! = (n+1)n!. Said differently, one has n! =1.2.3...n.

n!
Define now u,, = —-
n
u
(a) Prove that there exists some N € N such that, for all n > N, one has ntl >,
Un
(b) Prove by induction that, for all n > N, one has wu,, > uy.2"~ .
(c) Use this to show that the sequence (u,) is not convergent.
Correction. (a) By definition of wu,, one has, for any n € N, that
Upr1 (n+1)! nd n3
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We saw in the second exercise that W converges to 1 (it is the inverse of a sequence that converges to 1),
n
there exists an integer K (=) such that, f € N, one has n > K (%) = ARSI S O
so there exists an integer K (=) such that, for any n ,one has n > K (- ———— >1— - = . Thus,
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for any n > K(§), one has -+ > 5 which proves that, for any n > maX(K(§),4) — N one has —+L > 2,
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Before going on to question (b), it is worth explaining a bit what’s going on here : we have a sequence whose
3
terms become arbitrarily large (n), and one whose terms become increasingly close to 1 ((":731)) To prove

that the terms of the product of these two sequences become arbitrarily large (here, larger than 2, but you
should convince yourself that 2 may be replaced by any real number), we do not exactly use the fact that the
second sequence converges to 1 : instead, we use this fact to deduce that, for n big enough, the sequence only
takes values that are greater than %, and deduce the desired result from it. Think about this proof!

(b) The desired statement clearly holds for n = N ; assume now that n > N is such that u,, > un.2" V. Then,

ntl Uy > 2uy, > 227N = 971N This proves that the property is hereditary ; since

by (a), one has u, 11 =

u
it is true for n = N, it must hold for all n > N.

(c) The sequence (2"~) is not bounded, so the inequality of question (b) shows that (u,) is not bounded
either ; since any convergent sequence has to be bounded, this is enough to conclude that (u,,) is not convergent.



